File: solve_two_boundaries_stacked.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (298 lines) | stat: -rw-r--r-- 14,291 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
function [y, T, success, max_res, iter] = solve_two_boundaries_stacked(fh, y, x, steady_state, T, Block_Num, cutoff, options_, M_)
% Computes the deterministic simulation of a block of equations containing
% both lead and lag variables, using a Newton method over the stacked Jacobian
% (in particular, this excludes LBJ).
%
% INPUTS
%   fh                  [handle]        function handle to the dynamic file for the block
%   y                   [matrix]        All the endogenous variables of the model
%   x                   [matrix]        All the exogenous variables of the model
%   steady_state        [vector]        steady state of the model
%   T                   [matrix]        Temporary terms
%   Block_Num           [integer]       block number
%   cutoff              [double]        cutoff to correct the direction in Newton in case
%                                       of singular jacobian matrix
%   options_             [structure]     storing the options
%   M_                   [structure]     Model description
%
% OUTPUTS
%   y                   [matrix]        All endogenous variables of the model
%   T                   [matrix]        Temporary terms
%   success             [logical]       Whether a solution was found
%   max_res             [double]        ∞-norm of the residual
%   iter                [integer]       Number of iterations
%
% ALGORITHM
%   Newton with LU or GMRES or BiCGStab

% Copyright © 1996-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

Blck_size = M_.block_structure.block(Block_Num).mfs;
y_index = M_.block_structure.block(Block_Num).variable(end-Blck_size+1:end);
periods = options_.periods;
y_kmin = M_.maximum_lag;
stack_solve_algo = options_.stack_solve_algo;

if ~ismember(stack_solve_algo, [0 2 3 4])
    error('Unsupported stack_solve_algo value')
end

verbose = options_.verbosity;

cvg=false;
iter=0;
correcting_factor=0.01;
ilu_setup.droptol=1e-10;
ilu_setup.type = 'ilutp';
%ilu_setup.milu = 'col';
ilu_setup.milu = 'off';
ilu_setup.thresh = 1;
ilu_setup.udiag = 0;
max_resa=1e100;
lambda = 1; % Length of Newton step (unused for stack_solve_algo=4)
reduced = 0;
while ~(cvg || iter > options_.simul.maxit)
    r = NaN(Blck_size, periods);
    g1a = spalloc(Blck_size*periods, Blck_size*periods, M_.block_structure.block(Block_Num).NNZDerivatives*periods);
    for it_ = y_kmin+(1:periods)
        [yy, T(:, it_), r(:, it_-y_kmin), g1]=fh(dynendo(y, it_, M_), x(it_, :), M_.params, steady_state, ...
                                                 M_.block_structure.block(Block_Num).g1_sparse_rowval, ...
                                                 M_.block_structure.block(Block_Num).g1_sparse_colval, ...
                                                 M_.block_structure.block(Block_Num).g1_sparse_colptr, T(:, it_));
        y(:, it_) = yy(M_.endo_nbr+(1:M_.endo_nbr));
        if periods == 1
            g1a = g1(:, Blck_size+(1:Blck_size));
        elseif it_ == y_kmin+1
            g1a(1:Blck_size, 1:Blck_size*2) = g1(:, Blck_size+1:end);
        elseif it_ == y_kmin+periods
            g1a((periods-1)*Blck_size+1:end, (periods-2)*Blck_size+1:end) = g1(:, 1:2*Blck_size);
        else
            g1a((it_-y_kmin-1)*Blck_size+(1:Blck_size), (it_-y_kmin-2)*Blck_size+(1:3*Blck_size)) = g1;
        end
    end
    preconditioner = 2;
    ya = reshape(y(y_index, y_kmin+(1:periods)), 1, periods*Blck_size)';
    ra = reshape(r, periods*Blck_size, 1);
    b=-ra+g1a*ya;
    [max_res, max_indx]=max(max(abs(r')));
    if ~isreal(r)
        max_res = (-max_res^2)^0.5;
    end
    if ~isreal(max_res) || isnan(max_res)
        cvg = false;
    elseif M_.block_structure.block(Block_Num).is_linear && iter>0
        cvg = true;
    else
        cvg = (max_res < options_.dynatol.f);
    end
    if ~cvg
        if iter>0
            if ~isreal(max_res) || isnan(max_res) || (max_resa<max_res && iter>1)
                if verbose && ~isreal(max_res)
                    disp(['Variable ' M_.endo_names{max_indx} ' (' int2str(max_indx) ') returns an undefined value']);
                end
                if isnan(max_res)
                    detJ=det(g1aa);
                    if abs(detJ)<1e-7
                        max_factor=max(max(abs(g1aa)));
                        ze_elem=sum(diag(g1aa)<cutoff);
                        if verbose
                            disp([num2str(full(ze_elem),'%d') ' elements on the Jacobian diagonal are below the cutoff (' num2str(cutoff,'%f') ')']);
                        end
                        if correcting_factor<max_factor
                            correcting_factor=correcting_factor*4;
                            if verbose
                                disp(['The Jacobian matrix is singular, det(Jacobian)=' num2str(detJ,'%f') '.']);
                                disp('    trying to correct the Jacobian matrix:');
                                disp(['    correcting_factor=' num2str(correcting_factor,'%f') ' max(Jacobian)=' num2str(full(max_factor),'%f')]);
                            end
                            dx = (g1aa+correcting_factor*speye(periods*Blck_size))\ba- ya_save;
                            y(y_index, y_kmin+(1:periods))=reshape((ya_save+lambda*dx)',length(y_index),periods);
                            continue
                        else
                            disp('The singularity of the jacobian matrix could not be corrected');
                            success = false;
                            return
                        end
                    end
                elseif lambda>1e-8 && stack_solve_algo ~= 4
                    lambda=lambda/2;
                    reduced = 1;
                    if verbose
                        disp(['reducing the path length: lambda=' num2str(lambda,'%f')]);
                    end
                    y(y_index, y_kmin+(1:periods))=reshape((ya_save+lambda*dx)',length(y_index),periods);
                    continue
                else
                    if verbose
                        if cutoff==0
                            fprintf('Convergence not achieved in block %d, after %d iterations.\n Increase "maxit".\n',Block_Num, iter);
                        else
                            fprintf('Convergence not achieved in block %d, after %d iterations.\n Increase "maxit" or set "cutoff=0" in model options.\n',Block_Num, iter);
                        end
                    end
                    success = false;
                    return
                end
            else
                if lambda<1 && stack_solve_algo ~= 4
                    lambda=max(lambda*2, 1);
                end
            end
        end
        ya_save=ya;
        g1aa=g1a;
        ba=b;
        max_resa=max_res;
        if stack_solve_algo==0
            dx = g1a\b- ya;
            ya = ya + lambda*dx;
            y(y_index, y_kmin+(1:periods))=reshape(ya',length(y_index),periods);
        elseif stack_solve_algo==2
            flag1=1;
            while flag1>0
                if preconditioner==2
                    [L1, U1]=ilu(g1a,ilu_setup);
                elseif preconditioner==3
                    Size = Blck_size;
                    gss1 =  g1a(Size + 1: 2*Size,Size + 1: 2*Size) + g1a(Size + 1: 2*Size,2*Size+1: 3*Size);
                    [L1, U1]=lu(gss1);
                    L(1:Size,1:Size) = L1;
                    U(1:Size,1:Size) = U1;
                    gss2 = g1a(Size + 1: 2*Size,1: Size) + g1a(Size + 1: 2*Size,Size+1: 2*Size) + g1a(Size + 1: 2*Size,2*Size+1: 3*Size);
                    [L2, U2]=lu(gss2);
                    L(Size+1:(periods-1)*Size,Size+1:(periods-1)*Size) = kron(eye(periods-2), L2);
                    U(Size+1:(periods-1)*Size,Size+1:(periods-1)*Size) = kron(eye(periods-2), U2);
                    gss2 = g1a(Size + 1: 2*Size,1: Size) + g1a(Size + 1: 2*Size,Size+1: 2*Size);
                    [L3, U3]=lu(gss2);
                    L((periods-1)*Size+1:periods*Size,(periods-1)*Size+1:periods*Size) = L3;
                    U((periods-1)*Size+1:periods*Size,(periods-1)*Size+1:periods*Size) = U3;
                    L1 = L;
                    U1 = U;
                elseif preconditioner==4
                    Size = Blck_size;
                    gss1 =  g1a(1: 3*Size, 1: 3*Size);
                    [L, U] = lu(gss1);
                    L1 = kron(eye(ceil(periods/3)),L);
                    U1 = kron(eye(ceil(periods/3)),U);
                    L1 = L1(1:periods * Size, 1:periods * Size);
                    U1 = U1(1:periods * Size, 1:periods * Size);
                end
                [za,flag1] = gmres(g1a,b,Blck_size,1e-6,Blck_size*periods,L1,U1);
                if (flag1>0 || reduced)
                    if verbose
                        if flag1==1
                            disp(['Error in simul: No convergence inside GMRES after ' num2str(periods*10,'%6d') ' iterations, in block ' num2str(Blck_size,'%3d')]);
                        elseif flag1==2
                            disp(['Error in simul: Preconditioner is ill-conditioned, in block ' num2str(Blck_size,'%3d')]);
                        elseif flag1==3
                            disp(['Error in simul: GMRES stagnated (Two consecutive iterates were the same.), in block ' num2str(Blck_size,'%3d')]);
                        end
                    end
                    ilu_setup.droptol = ilu_setup.droptol/10;
                    reduced = 0;
                else
                    dx = za - ya;
                    ya = ya + lambda*dx;
                    y(y_index, y_kmin+(1:periods))=reshape(ya',length(y_index),periods);
                end
            end
        elseif stack_solve_algo==3
            flag1=1;
            while flag1>0
                if preconditioner==2
                    [L1, U1]=ilu(g1a,ilu_setup);
                    [za,flag1] = bicgstab(g1a,b,1e-7,Blck_size*periods,L1,U1);
                elseif preconditioner==3
                    Size = Blck_size;
                    gss0 = g1a(Size + 1: 2*Size,1: Size) + g1a(Size + 1: 2*Size,Size+1: 2*Size) + g1a(Size + 1: 2*Size,2*Size+1: 3*Size);
                    [L1, U1]=lu(gss0);
                    P1 = eye(size(gss0));
                    Q1 = eye(size(gss0));
                    L = kron(eye(periods),L1);
                    U = kron(eye(periods),U1);
                    P = kron(eye(periods),P1);
                    Q = kron(eye(periods),Q1);
                    [za,flag1] = bicgstab1(g1a,b,1e-7,Blck_size*periods,L,U, P, Q);
                else
                    Size = Blck_size;
                    gss0 = g1a(Size + 1: 2*Size,1: Size) + g1a(Size + 1: 2*Size,Size+1: 2*Size) + g1a(Size + 1: 2*Size,2*Size+1: 3*Size);
                    [L1, U1]=lu(gss0);
                    L1 = kron(eye(periods),L1);
                    U1 = kron(eye(periods),U1);
                    [za,flag1] = bicgstab(g1a,b,1e-7,Blck_size*periods,L1,U1);
                end
                if flag1>0 || reduced
                    if verbose
                        if flag1==1
                            disp(['Error in simul: No convergence inside BICGSTAB after ' num2str(periods*10,'%6d') ' iterations, in block ' num2str(Blck_size,'%3d')]);
                        elseif flag1==2
                            disp(['Error in simul: Preconditioner is ill-conditioned, in block ' num2str(Blck_size,'%3d')]);
                        elseif flag1==3
                            disp(['Error in simul: GMRES stagnated (Two consecutive iterates were the same.), in block ' num2str(Blck_size,'%3d')]);
                        end
                    end
                    ilu_setup.droptol = ilu_setup.droptol/10;
                    reduced = 0;
                else
                    dx = za - ya;
                    ya = ya + lambda*dx;
                    y(y_index, y_kmin+(1:periods))=reshape(ya',length(y_index),periods);
                end
            end
        elseif stack_solve_algo==4
            stpmx = 100 ;
            stpmax = stpmx*max([sqrt(ya'*ya);size(y_index,2)]);
            nn=1:size(ra,1);
            g = (ra'*g1a)';
            f = 0.5*ra'*ra;
            p = -g1a\ra;
            yn = lnsrch1(ya,f,g,p,stpmax,@lnsrch1_wrapper_two_boundaries,nn,nn, options_.solve_tolx, fh, Block_Num, y, y_index,x, M_.params, steady_state, T, periods, Blck_size, M_);
            dx = ya - yn;
            y(y_index, y_kmin+(1:periods))=reshape(yn',length(y_index),periods);
        end
    end
    iter=iter+1;
    if verbose
        disp(['iteration: ' num2str(iter,'%d') ' error: ' num2str(max_res,'%e')]);
    end
end

if iter > options_.simul.maxit
    if verbose
        printline(41)
        %disp(['No convergence after ' num2str(iter,'%4d') ' iterations in Block ' num2str(Block_Num,'%d')])
    end
    success = false;
    return
end

success = true;


function y3n = dynendo(y, it_, M_)
    y3n = reshape(y(:, it_+(-1:1)), 3*M_.endo_nbr, 1);

function ra = lnsrch1_wrapper_two_boundaries(ya, fh, Block_Num, y, y_index, x, ...
                                             params, steady_state, T, periods, ...
                                             y_size, M_)
    y(y_index, M_.maximum_lag+(1:periods)) = reshape(ya',length(y_index),periods);
    ra = NaN(periods*y_size, 1);
    for it_ = M_.maximum_lag+(1:periods)
        [~, ~, ra((it_-M_.maximum_lag-1)*y_size+(1:y_size)), g1] = fh(dynendo(y, it_, M_), x(it_, :), params, steady_state, M_.block_structure.block(Block_Num).g1_sparse_rowval, M_.block_structure.block(Block_Num).g1_sparse_colval, M_.block_structure.block(Block_Num).g1_sparse_colptr, T(:, it_));
    end