1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
function [y, T, success, max_res, iter] = solve_two_boundaries_stacked(fh, y, x, steady_state, T, Block_Num, cutoff, options_, M_)
% Computes the deterministic simulation of a block of equations containing
% both lead and lag variables, using a Newton method over the stacked Jacobian
% (in particular, this excludes LBJ).
%
% INPUTS
% fh [handle] function handle to the dynamic file for the block
% y [matrix] All the endogenous variables of the model
% x [matrix] All the exogenous variables of the model
% steady_state [vector] steady state of the model
% T [matrix] Temporary terms
% Block_Num [integer] block number
% cutoff [double] cutoff to correct the direction in Newton in case
% of singular jacobian matrix
% options_ [structure] storing the options
% M_ [structure] Model description
%
% OUTPUTS
% y [matrix] All endogenous variables of the model
% T [matrix] Temporary terms
% success [logical] Whether a solution was found
% max_res [double] ∞-norm of the residual
% iter [integer] Number of iterations
%
% ALGORITHM
% Newton with LU or GMRES or BiCGStab
% Copyright © 1996-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
Blck_size = M_.block_structure.block(Block_Num).mfs;
y_index = M_.block_structure.block(Block_Num).variable(end-Blck_size+1:end);
periods = options_.periods;
y_kmin = M_.maximum_lag;
stack_solve_algo = options_.stack_solve_algo;
if ~ismember(stack_solve_algo, [0 2 3 4])
error('Unsupported stack_solve_algo value')
end
verbose = options_.verbosity;
cvg=false;
iter=0;
correcting_factor=0.01;
ilu_setup.droptol=1e-10;
ilu_setup.type = 'ilutp';
%ilu_setup.milu = 'col';
ilu_setup.milu = 'off';
ilu_setup.thresh = 1;
ilu_setup.udiag = 0;
max_resa=1e100;
lambda = 1; % Length of Newton step (unused for stack_solve_algo=4)
reduced = 0;
while ~(cvg || iter > options_.simul.maxit)
r = NaN(Blck_size, periods);
g1a = spalloc(Blck_size*periods, Blck_size*periods, M_.block_structure.block(Block_Num).NNZDerivatives*periods);
for it_ = y_kmin+(1:periods)
[yy, T(:, it_), r(:, it_-y_kmin), g1]=fh(dynendo(y, it_, M_), x(it_, :), M_.params, steady_state, ...
M_.block_structure.block(Block_Num).g1_sparse_rowval, ...
M_.block_structure.block(Block_Num).g1_sparse_colval, ...
M_.block_structure.block(Block_Num).g1_sparse_colptr, T(:, it_));
y(:, it_) = yy(M_.endo_nbr+(1:M_.endo_nbr));
if periods == 1
g1a = g1(:, Blck_size+(1:Blck_size));
elseif it_ == y_kmin+1
g1a(1:Blck_size, 1:Blck_size*2) = g1(:, Blck_size+1:end);
elseif it_ == y_kmin+periods
g1a((periods-1)*Blck_size+1:end, (periods-2)*Blck_size+1:end) = g1(:, 1:2*Blck_size);
else
g1a((it_-y_kmin-1)*Blck_size+(1:Blck_size), (it_-y_kmin-2)*Blck_size+(1:3*Blck_size)) = g1;
end
end
preconditioner = 2;
ya = reshape(y(y_index, y_kmin+(1:periods)), 1, periods*Blck_size)';
ra = reshape(r, periods*Blck_size, 1);
b=-ra+g1a*ya;
[max_res, max_indx]=max(max(abs(r')));
if ~isreal(r)
max_res = (-max_res^2)^0.5;
end
if ~isreal(max_res) || isnan(max_res)
cvg = false;
elseif M_.block_structure.block(Block_Num).is_linear && iter>0
cvg = true;
else
cvg = (max_res < options_.dynatol.f);
end
if ~cvg
if iter>0
if ~isreal(max_res) || isnan(max_res) || (max_resa<max_res && iter>1)
if verbose && ~isreal(max_res)
disp(['Variable ' M_.endo_names{max_indx} ' (' int2str(max_indx) ') returns an undefined value']);
end
if isnan(max_res)
detJ=det(g1aa);
if abs(detJ)<1e-7
max_factor=max(max(abs(g1aa)));
ze_elem=sum(diag(g1aa)<cutoff);
if verbose
disp([num2str(full(ze_elem),'%d') ' elements on the Jacobian diagonal are below the cutoff (' num2str(cutoff,'%f') ')']);
end
if correcting_factor<max_factor
correcting_factor=correcting_factor*4;
if verbose
disp(['The Jacobian matrix is singular, det(Jacobian)=' num2str(detJ,'%f') '.']);
disp(' trying to correct the Jacobian matrix:');
disp([' correcting_factor=' num2str(correcting_factor,'%f') ' max(Jacobian)=' num2str(full(max_factor),'%f')]);
end
dx = (g1aa+correcting_factor*speye(periods*Blck_size))\ba- ya_save;
y(y_index, y_kmin+(1:periods))=reshape((ya_save+lambda*dx)',length(y_index),periods);
continue
else
disp('The singularity of the jacobian matrix could not be corrected');
success = false;
return
end
end
elseif lambda>1e-8 && stack_solve_algo ~= 4
lambda=lambda/2;
reduced = 1;
if verbose
disp(['reducing the path length: lambda=' num2str(lambda,'%f')]);
end
y(y_index, y_kmin+(1:periods))=reshape((ya_save+lambda*dx)',length(y_index),periods);
continue
else
if verbose
if cutoff==0
fprintf('Convergence not achieved in block %d, after %d iterations.\n Increase "maxit".\n',Block_Num, iter);
else
fprintf('Convergence not achieved in block %d, after %d iterations.\n Increase "maxit" or set "cutoff=0" in model options.\n',Block_Num, iter);
end
end
success = false;
return
end
else
if lambda<1 && stack_solve_algo ~= 4
lambda=max(lambda*2, 1);
end
end
end
ya_save=ya;
g1aa=g1a;
ba=b;
max_resa=max_res;
if stack_solve_algo==0
dx = g1a\b- ya;
ya = ya + lambda*dx;
y(y_index, y_kmin+(1:periods))=reshape(ya',length(y_index),periods);
elseif stack_solve_algo==2
flag1=1;
while flag1>0
if preconditioner==2
[L1, U1]=ilu(g1a,ilu_setup);
elseif preconditioner==3
Size = Blck_size;
gss1 = g1a(Size + 1: 2*Size,Size + 1: 2*Size) + g1a(Size + 1: 2*Size,2*Size+1: 3*Size);
[L1, U1]=lu(gss1);
L(1:Size,1:Size) = L1;
U(1:Size,1:Size) = U1;
gss2 = g1a(Size + 1: 2*Size,1: Size) + g1a(Size + 1: 2*Size,Size+1: 2*Size) + g1a(Size + 1: 2*Size,2*Size+1: 3*Size);
[L2, U2]=lu(gss2);
L(Size+1:(periods-1)*Size,Size+1:(periods-1)*Size) = kron(eye(periods-2), L2);
U(Size+1:(periods-1)*Size,Size+1:(periods-1)*Size) = kron(eye(periods-2), U2);
gss2 = g1a(Size + 1: 2*Size,1: Size) + g1a(Size + 1: 2*Size,Size+1: 2*Size);
[L3, U3]=lu(gss2);
L((periods-1)*Size+1:periods*Size,(periods-1)*Size+1:periods*Size) = L3;
U((periods-1)*Size+1:periods*Size,(periods-1)*Size+1:periods*Size) = U3;
L1 = L;
U1 = U;
elseif preconditioner==4
Size = Blck_size;
gss1 = g1a(1: 3*Size, 1: 3*Size);
[L, U] = lu(gss1);
L1 = kron(eye(ceil(periods/3)),L);
U1 = kron(eye(ceil(periods/3)),U);
L1 = L1(1:periods * Size, 1:periods * Size);
U1 = U1(1:periods * Size, 1:periods * Size);
end
[za,flag1] = gmres(g1a,b,Blck_size,1e-6,Blck_size*periods,L1,U1);
if (flag1>0 || reduced)
if verbose
if flag1==1
disp(['Error in simul: No convergence inside GMRES after ' num2str(periods*10,'%6d') ' iterations, in block ' num2str(Blck_size,'%3d')]);
elseif flag1==2
disp(['Error in simul: Preconditioner is ill-conditioned, in block ' num2str(Blck_size,'%3d')]);
elseif flag1==3
disp(['Error in simul: GMRES stagnated (Two consecutive iterates were the same.), in block ' num2str(Blck_size,'%3d')]);
end
end
ilu_setup.droptol = ilu_setup.droptol/10;
reduced = 0;
else
dx = za - ya;
ya = ya + lambda*dx;
y(y_index, y_kmin+(1:periods))=reshape(ya',length(y_index),periods);
end
end
elseif stack_solve_algo==3
flag1=1;
while flag1>0
if preconditioner==2
[L1, U1]=ilu(g1a,ilu_setup);
[za,flag1] = bicgstab(g1a,b,1e-7,Blck_size*periods,L1,U1);
elseif preconditioner==3
Size = Blck_size;
gss0 = g1a(Size + 1: 2*Size,1: Size) + g1a(Size + 1: 2*Size,Size+1: 2*Size) + g1a(Size + 1: 2*Size,2*Size+1: 3*Size);
[L1, U1]=lu(gss0);
P1 = eye(size(gss0));
Q1 = eye(size(gss0));
L = kron(eye(periods),L1);
U = kron(eye(periods),U1);
P = kron(eye(periods),P1);
Q = kron(eye(periods),Q1);
[za,flag1] = bicgstab1(g1a,b,1e-7,Blck_size*periods,L,U, P, Q);
else
Size = Blck_size;
gss0 = g1a(Size + 1: 2*Size,1: Size) + g1a(Size + 1: 2*Size,Size+1: 2*Size) + g1a(Size + 1: 2*Size,2*Size+1: 3*Size);
[L1, U1]=lu(gss0);
L1 = kron(eye(periods),L1);
U1 = kron(eye(periods),U1);
[za,flag1] = bicgstab(g1a,b,1e-7,Blck_size*periods,L1,U1);
end
if flag1>0 || reduced
if verbose
if flag1==1
disp(['Error in simul: No convergence inside BICGSTAB after ' num2str(periods*10,'%6d') ' iterations, in block ' num2str(Blck_size,'%3d')]);
elseif flag1==2
disp(['Error in simul: Preconditioner is ill-conditioned, in block ' num2str(Blck_size,'%3d')]);
elseif flag1==3
disp(['Error in simul: GMRES stagnated (Two consecutive iterates were the same.), in block ' num2str(Blck_size,'%3d')]);
end
end
ilu_setup.droptol = ilu_setup.droptol/10;
reduced = 0;
else
dx = za - ya;
ya = ya + lambda*dx;
y(y_index, y_kmin+(1:periods))=reshape(ya',length(y_index),periods);
end
end
elseif stack_solve_algo==4
stpmx = 100 ;
stpmax = stpmx*max([sqrt(ya'*ya);size(y_index,2)]);
nn=1:size(ra,1);
g = (ra'*g1a)';
f = 0.5*ra'*ra;
p = -g1a\ra;
yn = lnsrch1(ya,f,g,p,stpmax,@lnsrch1_wrapper_two_boundaries,nn,nn, options_.solve_tolx, fh, Block_Num, y, y_index,x, M_.params, steady_state, T, periods, Blck_size, M_);
dx = ya - yn;
y(y_index, y_kmin+(1:periods))=reshape(yn',length(y_index),periods);
end
end
iter=iter+1;
if verbose
disp(['iteration: ' num2str(iter,'%d') ' error: ' num2str(max_res,'%e')]);
end
end
if iter > options_.simul.maxit
if verbose
printline(41)
%disp(['No convergence after ' num2str(iter,'%4d') ' iterations in Block ' num2str(Block_Num,'%d')])
end
success = false;
return
end
success = true;
function y3n = dynendo(y, it_, M_)
y3n = reshape(y(:, it_+(-1:1)), 3*M_.endo_nbr, 1);
function ra = lnsrch1_wrapper_two_boundaries(ya, fh, Block_Num, y, y_index, x, ...
params, steady_state, T, periods, ...
y_size, M_)
y(y_index, M_.maximum_lag+(1:periods)) = reshape(ya',length(y_index),periods);
ra = NaN(periods*y_size, 1);
for it_ = M_.maximum_lag+(1:periods)
[~, ~, ra((it_-M_.maximum_lag-1)*y_size+(1:y_size)), g1] = fh(dynendo(y, it_, M_), x(it_, :), params, steady_state, M_.block_structure.block(Block_Num).g1_sparse_rowval, M_.block_structure.block(Block_Num).g1_sparse_colval, M_.block_structure.block(Block_Num).g1_sparse_colptr, T(:, it_));
end
|