File: set_all_parameters.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (142 lines) | stat: -rw-r--r-- 4,478 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
function M_ = set_all_parameters(xparam1,estim_params_,M_)

%@info:
%! @deftypefn {Function File} {@var{M_} =} dseries (@var{xparams1},@var{estim_params_},@var{M_})
%! @anchor{set_all_parameters}
%! @sp 1
%! Update parameter values (deep parameters and covariance matrices).
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item xparam1
%! N*1 vector of doubles, the values of the N estimated parameters.
%! @item estim_params_
%! Dynare structure describing the estimated parameters.
%! @item M_
%! Dynare structure describing the model.
%! @end table
%! @sp 1
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item M_
%! Dynare structure describing the model, with updated parameters and covariances matrices.
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @sp 1
%! @ref{DsgeSmoother}, @ref{dynare_estimation_1}, @ref{@@gsa.monte_carlo_filtering}, @ref{identification.analysis}, @ref{PosteriorFilterSmootherAndForecast}, @ref{prior_posterior_statistics_core}, @ref{prior_sampler}
%! @sp 2
%! @strong{This function calls:}
%! @sp 2
%! @end deftypefn
%@eod:

% Copyright © 2003-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

nvx = estim_params_.nvx;
ncx = estim_params_.ncx;
nvn = estim_params_.nvn;
ncn = estim_params_.ncn;
np = estim_params_.np;
if nvx || ncx
    Sigma_e = M_.Sigma_e;
    Correlation_matrix = M_.Correlation_matrix;
end
H = M_.H;
Correlation_matrix_ME = M_.Correlation_matrix_ME;
% setting shocks variance on the diagonal of Covariance matrix; used later
% for updating covariances
if nvx
    var_exo = estim_params_.var_exo;
    for i=1:nvx
        k =var_exo(i,1);
        Sigma_e(k,k) = xparam1(i)^2;
    end
end
% update offset
offset = nvx;

% setting measument error variance; on the diagonal of Covariance matrix; used later
% for updating covariances
if nvn
    for i=1:nvn
        k = estim_params_.nvn_observable_correspondence(i,1);
        H(k,k) = xparam1(i+offset)^2;
    end
end

% update offset
offset = nvx+nvn;

% setting shocks covariances
if ncx
    corrx = estim_params_.corrx;
    for i=1:ncx
        k1 = corrx(i,1);
        k2 = corrx(i,2);
        Correlation_matrix(k1,k2) = xparam1(i+offset);
        Correlation_matrix(k2,k1) = Correlation_matrix(k1,k2);
    end
end
% update offset
offset = nvx+nvn+ncx;

% setting measurement error covariances
if ncn
    corrn_observable_correspondence = estim_params_.corrn_observable_correspondence;
    for i=1:ncn
        k1 = corrn_observable_correspondence(i,1);
        k2 = corrn_observable_correspondence(i,2);
        Correlation_matrix_ME(k1,k2) = xparam1(i+offset);
        Correlation_matrix_ME(k2,k1) = Correlation_matrix_ME(k1,k2);
    end
end

% update offset
offset = nvx+ncx+nvn+ncn;
% setting structural parameters
%
if np
    M_.params(estim_params_.param_vals(:,1)) = xparam1(offset+1:end);
end

% updating matrices in M_
if nvx || ncx
    %build covariance matrix from correlation matrix and variances already on
    %diagonal
    Sigma_e = diag(sqrt(diag(Sigma_e)))*Correlation_matrix*diag(sqrt(diag(Sigma_e)));
    %if calibrated covariances, set them now to their stored value
    if isfield(estim_params_,'calibrated_covariances')
        Sigma_e(estim_params_.calibrated_covariances.position)=estim_params_.calibrated_covariances.cov_value;
    end
    M_.Sigma_e = Sigma_e;
    M_.Correlation_matrix=Correlation_matrix;
end
if nvn || ncn
    %build covariance matrix from correlation matrix and variances already on
    %diagonal
    H = diag(sqrt(diag(H)))*Correlation_matrix_ME*diag(sqrt(diag(H)));
    %if calibrated covariances, set them now to their stored value
    if isfield(estim_params_,'calibrated_covariances_ME')
        H(estim_params_.calibrated_covariances_ME.position)=estim_params_.calibrated_covariances_ME.cov_value;
    end
    M_.H = H;
    M_.Correlation_matrix_ME=Correlation_matrix_ME;
end