File: static_model_inversion.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (141 lines) | stat: -rw-r--r-- 5,997 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
function [endogenousvariables, exogenousvariables] = static_model_inversion(constraints, exogenousvariables, endo_names, exo_names, freeinnovations, M_, options_, oo_)
% [endogenousvariables, exogenousvariables] = static_model_inversion(constraints, exogenousvariables, endo_names, exo_names, freeinnovations, M_, options_, oo_)
% INPUTS
% - constraints         [dseries]        with N constrained endogenous variables from t1 to t2.
% - exogenousvariables  [dseries]        with Q exogenous variables.
% - endo_names          [cell]           list of endogenous variable names.
% - exo_names           [cell]           list of exogenous variable names.
% - freeinstruments     [cell]           list of exogenous variable names used to control the constrained endogenous variables.
% - M_                  [structure]      Definition of the model
% - options_            [structure]      Options
% - oo_                 [structure]      Storage of results
%
% OUTPUTS
% - endogenous          [dseries]
% - exogenous           [dseries]
%
% REMARKS

% Copyright © 2019-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

% Get indices for the free innovations.
freeinnovations_id = zeros(length(freeinnovations), 1);
if length(freeinnovations)<M_.exo_nbr
    for i=1:length(freeinnovations)
        freeinnovations_id(i) = find(strcmp(freeinnovations{i}, exo_names));
    end
else
    freeinnovations_id = transpose(1:length(exo_names));
end

nxfree = length(freeinnovations_id);

% Get indices for the the controlled and free endogenous variables.
controlledendogenousvariables_id = zeros(length(freeinnovations), 1);
if length(freeinnovations)<M_.endo_nbr
    for i=1:length(freeinnovations)
        controlledendogenousvariables_id(i) = find(strcmp(constraints.name{i}, endo_names));
    end
    freeendogenousvariables_id = setdiff(transpose(1:length(endo_names)), controlledendogenousvariables_id);
else
    controlledendogenousvariables_id = transpose(1:length(endo_names));
    freeendogenousvariables_id = [];
end

nyfree = length(freeendogenousvariables_id);
nyctrl = length(controlledendogenousvariables_id);

% Build structure to be passed to the objective function.
ModelInversion.nyfree = nyfree;
ModelInversion.nyctrl = nyctrl;
ModelInversion.nxfree = nxfree;
ModelInversion.y_constrained_id = controlledendogenousvariables_id;
ModelInversion.y_free_id = freeendogenousvariables_id;
ModelInversion.x_free_id = freeinnovations_id;
ModelInversion.J_id = [M_.endo_nbr+ModelInversion.y_free_id ; 3*M_.endo_nbr+ModelInversion.x_free_id];

% Get function handles to the dynamic model routines.
dynamic_resid = str2func([M_.fname '.sparse.dynamic_resid']);
dynamic_g1 = str2func([M_.fname '.sparse.dynamic_g1']);

% Initialization of the returned simulations (endogenous variables).
Y = NaN(M_.endo_nbr, nobs(constraints));

for i=1:nyctrl
    Y(controlledendogenousvariables_id(i),1:end) = transpose(constraints.data(:,i));
end

% Exogenous variables.
X = exogenousvariables.data;

% Inversion of the model, solvers for the free endogenous and exogenous variables (call a Newton-like algorithm in each period).

ity = 1;
itx = find(exogenousvariables.dates==constraints.dates(1));
options_.solve_algo=4;

for t = 1:nobs(constraints)
    % Set the current values of the constrained endogenous variables.
    ycur = Y(controlledendogenousvariables_id,ity);
    % Vector z gather the free endogenous variables (initialized with lagged
    % values) and the free exogenous variables (initialized with 0).
    z = [Y(freeendogenousvariables_id,ity); zeros(nxfree, 1)];
    % Solves for z.
    [z, errorflag, ~, ~, errorcode] = dynare_solve(@static_model_for_inversion, z, options_.simul.maxit, options_.dynatol.f, options_.dynatol.x, ...
                                                   options_, dynamic_resid, dynamic_g1, ycur, X(itx, :), M_.params, oo_.steady_state, M_.dynamic_g1_sparse_rowval, M_.dynamic_g1_sparse_colval, M_.dynamic_g1_sparse_colptr, ModelInversion);

    if errorflag
        error('Enable to solve the system of equations (with error code %i).', errorcode)
    end
    % Update the matrix of exogenous variables.
    X(itx,freeinnovations_id) = z(nyfree+(1:nxfree));
    % Update the matrix of endogenous variables.
    if nyfree
        Y(freeendogenousvariables_id,ity) = z(1:nyfree);
    end
    % Increment counters
    ity = ity+1;
    itx = itx+1;
end

endogenousvariables = dseries(Y', constraints.dates(1), endo_names);
exogenousvariables = dseries(X(find(exogenousvariables.dates==constraints.dates(1))+(0:(nobs(constraints)-1)),:), constraints.dates(1), exo_names);


function [r, J] = static_model_for_inversion(z, dynamic_resid, dynamic_g1, ycur, x, params, steady_state, sparse_rowval, sparse_colval, sparse_colptr, ModelInversion)

endo_nbr = ModelInversion.nyfree+ModelInversion.nyctrl;

% Set up y
y = NaN(3*endo_nbr, 1);

y(endo_nbr+ModelInversion.y_constrained_id) = ycur;
if ModelInversion.nyfree
    y(endo_nbr+ModelInversion.y_free_id) = z(1:ModelInversion.nyfree);
end

% Update x
x(ModelInversion.x_free_id) = z(ModelInversion.nyfree+(1:ModelInversion.nxfree));

[r, T_order, T] = dynamic_resid(y, x, params, steady_state);

if nargout>1
    Jacobian = dynamic_g1(y, x, params, steady_state, sparse_rowval, ...
                          sparse_colval, sparse_colptr, T_order, T);
    J = Jacobian(:, ModelInversion.J_id);
end