1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
function [endogenousvariables, exogenousvariables] = static_model_inversion(constraints, exogenousvariables, endo_names, exo_names, freeinnovations, M_, options_, oo_)
% [endogenousvariables, exogenousvariables] = static_model_inversion(constraints, exogenousvariables, endo_names, exo_names, freeinnovations, M_, options_, oo_)
% INPUTS
% - constraints [dseries] with N constrained endogenous variables from t1 to t2.
% - exogenousvariables [dseries] with Q exogenous variables.
% - endo_names [cell] list of endogenous variable names.
% - exo_names [cell] list of exogenous variable names.
% - freeinstruments [cell] list of exogenous variable names used to control the constrained endogenous variables.
% - M_ [structure] Definition of the model
% - options_ [structure] Options
% - oo_ [structure] Storage of results
%
% OUTPUTS
% - endogenous [dseries]
% - exogenous [dseries]
%
% REMARKS
% Copyright © 2019-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
% Get indices for the free innovations.
freeinnovations_id = zeros(length(freeinnovations), 1);
if length(freeinnovations)<M_.exo_nbr
for i=1:length(freeinnovations)
freeinnovations_id(i) = find(strcmp(freeinnovations{i}, exo_names));
end
else
freeinnovations_id = transpose(1:length(exo_names));
end
nxfree = length(freeinnovations_id);
% Get indices for the the controlled and free endogenous variables.
controlledendogenousvariables_id = zeros(length(freeinnovations), 1);
if length(freeinnovations)<M_.endo_nbr
for i=1:length(freeinnovations)
controlledendogenousvariables_id(i) = find(strcmp(constraints.name{i}, endo_names));
end
freeendogenousvariables_id = setdiff(transpose(1:length(endo_names)), controlledendogenousvariables_id);
else
controlledendogenousvariables_id = transpose(1:length(endo_names));
freeendogenousvariables_id = [];
end
nyfree = length(freeendogenousvariables_id);
nyctrl = length(controlledendogenousvariables_id);
% Build structure to be passed to the objective function.
ModelInversion.nyfree = nyfree;
ModelInversion.nyctrl = nyctrl;
ModelInversion.nxfree = nxfree;
ModelInversion.y_constrained_id = controlledendogenousvariables_id;
ModelInversion.y_free_id = freeendogenousvariables_id;
ModelInversion.x_free_id = freeinnovations_id;
ModelInversion.J_id = [M_.endo_nbr+ModelInversion.y_free_id ; 3*M_.endo_nbr+ModelInversion.x_free_id];
% Get function handles to the dynamic model routines.
dynamic_resid = str2func([M_.fname '.sparse.dynamic_resid']);
dynamic_g1 = str2func([M_.fname '.sparse.dynamic_g1']);
% Initialization of the returned simulations (endogenous variables).
Y = NaN(M_.endo_nbr, nobs(constraints));
for i=1:nyctrl
Y(controlledendogenousvariables_id(i),1:end) = transpose(constraints.data(:,i));
end
% Exogenous variables.
X = exogenousvariables.data;
% Inversion of the model, solvers for the free endogenous and exogenous variables (call a Newton-like algorithm in each period).
ity = 1;
itx = find(exogenousvariables.dates==constraints.dates(1));
options_.solve_algo=4;
for t = 1:nobs(constraints)
% Set the current values of the constrained endogenous variables.
ycur = Y(controlledendogenousvariables_id,ity);
% Vector z gather the free endogenous variables (initialized with lagged
% values) and the free exogenous variables (initialized with 0).
z = [Y(freeendogenousvariables_id,ity); zeros(nxfree, 1)];
% Solves for z.
[z, errorflag, ~, ~, errorcode] = dynare_solve(@static_model_for_inversion, z, options_.simul.maxit, options_.dynatol.f, options_.dynatol.x, ...
options_, dynamic_resid, dynamic_g1, ycur, X(itx, :), M_.params, oo_.steady_state, M_.dynamic_g1_sparse_rowval, M_.dynamic_g1_sparse_colval, M_.dynamic_g1_sparse_colptr, ModelInversion);
if errorflag
error('Enable to solve the system of equations (with error code %i).', errorcode)
end
% Update the matrix of exogenous variables.
X(itx,freeinnovations_id) = z(nyfree+(1:nxfree));
% Update the matrix of endogenous variables.
if nyfree
Y(freeendogenousvariables_id,ity) = z(1:nyfree);
end
% Increment counters
ity = ity+1;
itx = itx+1;
end
endogenousvariables = dseries(Y', constraints.dates(1), endo_names);
exogenousvariables = dseries(X(find(exogenousvariables.dates==constraints.dates(1))+(0:(nobs(constraints)-1)),:), constraints.dates(1), exo_names);
function [r, J] = static_model_for_inversion(z, dynamic_resid, dynamic_g1, ycur, x, params, steady_state, sparse_rowval, sparse_colval, sparse_colptr, ModelInversion)
endo_nbr = ModelInversion.nyfree+ModelInversion.nyctrl;
% Set up y
y = NaN(3*endo_nbr, 1);
y(endo_nbr+ModelInversion.y_constrained_id) = ycur;
if ModelInversion.nyfree
y(endo_nbr+ModelInversion.y_free_id) = z(1:ModelInversion.nyfree);
end
% Update x
x(ModelInversion.x_free_id) = z(ModelInversion.nyfree+(1:ModelInversion.nxfree));
[r, T_order, T] = dynamic_resid(y, x, params, steady_state);
if nargout>1
Jacobian = dynamic_g1(y, x, params, steady_state, sparse_rowval, ...
sparse_colval, sparse_colptr, T_order, T);
J = Jacobian(:, ModelInversion.J_id);
end
|