1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
function y_=simult_(M_,options_,y0,dr,ex_,iorder)
% Simulates the model using a perturbation approach, given the path for the exogenous variables and the
% decision rules.
%
% INPUTS
% M_ [struct] model
% options_ [struct] options
% y0 [double] n*1 vector, initial value (n is the number of declared endogenous variables plus the number
% of auxilliary variables for lags and leads); must be in declaration order, i.e. as in M_.endo_names
% dr [struct] matlab's structure where the reduced form solution of the model is stored.
% ex_ [double] T*q matrix of innovations.
% iorder [integer] order of the taylor approximation.
%
% OUTPUTS
% y_ [double] n*(T+1) time series for the endogenous variables.
%
% SPECIAL REQUIREMENTS
% none
% Copyright © 2001-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
iter = size(ex_,1);
endo_nbr = M_.endo_nbr;
exo_nbr = M_.exo_nbr;
if options_.loglinear && ~options_.logged_steady_state
k = get_all_variables_but_lagged_leaded_exogenous(M_);
dr.ys(k)=log(dr.ys(k));
end
if (iorder > 3) || (iorder == 3 && ~options_.pruning)
if options_.order~=iorder
error(['The k_order_simul routine requires the specified approximation order to be '...
'consistent with the one used for computing the decision rules'])
end
y_ = k_order_simul(iorder,M_.nstatic,M_.npred,M_.nboth,M_.nfwrd,exo_nbr, ...
y0(dr.order_var,:),ex_',dr.ys(dr.order_var),dr, ...
options_.pruning);
y_(dr.order_var,:) = y_;
else
k2 = dr.kstate(find(dr.kstate(:,2) <= M_.maximum_lag+1),[1 2]);
k2 = k2(:,1)+(M_.maximum_lag+1-k2(:,2))*endo_nbr;
y_ = zeros(size(y0,1),iter+M_.maximum_lag);
y_(:,1) = y0;
order_var = dr.order_var;
switch iorder
case 1
y_(:,1) = y_(:,1)-dr.ys;
if isempty(dr.ghu)% For (linearized) deterministic models.
for i = 2:iter+M_.maximum_lag
yhat = y_(order_var(k2),i-1);
y_(order_var,i) = dr.ghx*yhat;
end
elseif isempty(dr.ghx)% For (linearized) purely forward variables (no state variables).
y_(dr.order_var,:) = dr.ghu*transpose(ex_);
else
epsilon = dr.ghu*transpose(ex_);
for i = 2:iter+M_.maximum_lag
yhat = y_(order_var(k2),i-1);
y_(order_var,i) = dr.ghx*yhat + epsilon(:,i-1);
end
end
y_ = bsxfun(@plus,y_,dr.ys);
case 2
constant = dr.ys(order_var)+.5*dr.ghs2;
if options_.pruning
y__ = y0;
for i = 2:iter+M_.maximum_lag
yhat1 = y__(order_var(k2))-dr.ys(order_var(k2));
yhat2 = y_(order_var(k2),i-1)-dr.ys(order_var(k2));
epsilon = ex_(i-1,:)';
abcOut1 = A_times_B_kronecker_C(.5*dr.ghxx,yhat1);
abcOut2 = A_times_B_kronecker_C(.5*dr.ghuu,epsilon);
abcOut3 = A_times_B_kronecker_C(dr.ghxu,yhat1,epsilon);
y_(order_var,i) = constant + dr.ghx*yhat2 + dr.ghu*epsilon ...
+ abcOut1 + abcOut2 + abcOut3;
y__(order_var) = dr.ys(order_var) + dr.ghx*yhat1 + dr.ghu*epsilon;
end
else
for i = 2:iter+M_.maximum_lag
yhat = y_(order_var(k2),i-1)-dr.ys(order_var(k2));
epsilon = ex_(i-1,:)';
abcOut1 = A_times_B_kronecker_C(.5*dr.ghxx,yhat);
abcOut2 = A_times_B_kronecker_C(.5*dr.ghuu,epsilon);
abcOut3 = A_times_B_kronecker_C(dr.ghxu,yhat,epsilon);
y_(dr.order_var,i) = constant + dr.ghx*yhat + dr.ghu*epsilon ...
+ abcOut1 + abcOut2 + abcOut3;
end
end
case 3
% only with pruning
% the third moments of the shocks are assumed null. We don't have
% an interface for specifying them
ghx = dr.ghx;
ghu = dr.ghu;
ghxx = dr.ghxx;
ghxu = dr.ghxu;
ghuu = dr.ghuu;
ghs2 = dr.ghs2;
ghxxx = dr.ghxxx;
ghxxu = dr.ghxxu;
ghxuu = dr.ghxuu;
ghuuu = dr.ghuuu;
ghxss = dr.ghxss;
ghuss = dr.ghuss;
nspred = M_.nspred;
ipred = M_.nstatic+(1:nspred);
%construction follows Andreasen et al (2013), Technical
%Appendix, Formulas (65) and (66)
%split into first, second, and third order terms
yhat1 = y0(order_var(k2))-dr.ys(order_var(k2));
yhat2 = zeros(nspred,1);
yhat3 = zeros(nspred,1);
for i=2:iter+M_.maximum_lag
u = ex_(i-1,:)';
%construct terms of order 2 from second order part, based
%on linear component yhat1
gyy = A_times_B_kronecker_C(ghxx,yhat1);
guu = A_times_B_kronecker_C(ghuu,u);
gyu = A_times_B_kronecker_C(ghxu,yhat1,u);
%construct terms of order 3 from second order part, based
%on order 2 component yhat2
gyy12 = A_times_B_kronecker_C(ghxx,yhat1,yhat2);
gy2u = A_times_B_kronecker_C(ghxu,yhat2,u);
%construct terms of order 3, all based on first order component yhat1
y2a = kron(yhat1,yhat1);
gyyy = A_times_B_kronecker_C(ghxxx,y2a,yhat1);
u2a = kron(u,u);
guuu = A_times_B_kronecker_C(ghuuu,u2a,u);
yu = kron(yhat1,u);
gyyu = A_times_B_kronecker_C(ghxxu,yhat1,yu);
gyuu = A_times_B_kronecker_C(ghxuu,yu,u);
%add all terms of order 3, linear component based on third
%order yhat3
yhat3 = ghx*yhat3 +gyy12 ... % prefactor is 1/2*2=1, see (65) Appendix Andreasen et al.
+ gy2u ... % prefactor is 1/2*2=1, see (65) Appendix Andreasen et al.
+ 1/6*(gyyy + guuu + 3*(gyyu + gyuu + ghxss*yhat1 + ghuss*u)); %note: s is treated as variable, thus xss and uss are third order
yhat2 = ghx*yhat2 + 1/2*(gyy + guu + 2*gyu + ghs2);
yhat1 = ghx*yhat1 + ghu*u;
y_(order_var,i) = dr.ys(order_var)+yhat1 + yhat2 + yhat3; %combine terms again
yhat1 = yhat1(ipred);
yhat2 = yhat2(ipred);
yhat3 = yhat3(ipred);
end
end
end
|