File: simultxdet.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (168 lines) | stat: -rw-r--r-- 5,970 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
function [y_,int_width,int_width_ME]=simultxdet(y0,ex,ex_det, iorder,var_list,M_,oo_,options_)
%function [y_,int_width,int_width_ME]=simultxdet(y0,ex,ex_det, iorder,var_list,M_,oo_,options_)
%
% Simulates a stochastic model in the presence of deterministic exogenous shocks
%
% INPUTS:
%    y0:        initial values, of length M_.maximum_lag
%    ex:        matrix of stochastic exogenous shocks, starting at period 1
%    ex_det:    matrix of deterministic exogenous shocks, starting at period 1-M_.maximum_lag
%    iorder:    order of approximation
%    var_list:  list of endogenous variables to simulate
%    M_:        Dynare model structure
%    oo_:       Dynare results structure
%    options_:  Dynare options structure
%
% OUTPUTS:
%   yf:          mean forecast
%   int_width:   distance between upper bound and
%                mean forecast
%   int_width_ME:distance between upper bound and
%                mean forecast when considering measurement error
%   int_width_ME:distance between upper bound and
%                mean forecast when considering measurement error
%
% The forecast horizon is equal to size(ex, 1).
% The condition size(ex,1)+M_.maximum_lag=size(ex_det,1) must be verified
%  for consistency.

% Copyright © 2008-2018 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

if options_.order>2 
    error('simultxdet.m: Forecasting with varexo_det does not support order>2.')   
elseif options_.order==2 && options_.pruning
    error('simultxdet.m: Forecasting with varexo_det does not support pruning.')
end
dr = oo_.dr;
ykmin = M_.maximum_lag;
endo_nbr = M_.endo_nbr;
exo_det_steady_state = oo_.exo_det_steady_state;
nstatic = M_.nstatic;
nspred = M_.nspred;
nc = size(dr.ghx,2);
iter = size(ex,1);
if size(ex_det, 1) ~= iter+ykmin
    error('Size mismatch: number of forecasting periods for stochastic exogenous and deterministic exogenous don''t match')
end
y_ = zeros(size(y0,1),iter+ykmin);
y_(:,1:ykmin) = y0;
k1 = ykmin:-1:1;
k2 = dr.kstate(find(dr.kstate(:,2) <= ykmin+1),[1 2]);
k2 = k2(:,1)+(ykmin+1-k2(:,2))*endo_nbr;
k3 = M_.lead_lag_incidence(1:ykmin,:)';
k3 = find(k3(:));
k4 = dr.kstate(find(dr.kstate(:,2) < ykmin+1),[1 2]);
k4 = k4(:,1)+(ykmin+1-k4(:,2))*endo_nbr;

nvar = length(var_list);
if nvar == 0
    nvar = endo_nbr;
    ivar = 1:nvar;
else
    ivar=zeros(nvar,1);
    for i=1:nvar
        i_tmp = strmatch(var_list{i}, M_.endo_names, 'exact');
        if isempty(i_tmp)
            disp(var_list{i})
            error ('One of the variable specified does not exist') ;
        else
            ivar(i) = i_tmp;
        end
    end
end

if iorder == 1
    for i = ykmin+1: iter+ykmin
        tempx1 = y_(dr.order_var,k1);
        tempx2 = tempx1-repmat(dr.ys(dr.order_var),1,ykmin);
        tempx = tempx2(k2);
        y_(dr.order_var,i) = dr.ys(dr.order_var)+dr.ghx*tempx+dr.ghu*ex(i-ykmin,:)';
        for j=1:min(ykmin+M_.exo_det_length+1-i,M_.exo_det_length)
            y_(dr.order_var,i) = y_(dr.order_var,i) + dr.ghud{j}*(ex_det(i+j-1,:)'-exo_det_steady_state);
        end

        k1 = k1+1;
    end
elseif iorder == 2
    for i = ykmin+1: iter+ykmin
        tempx1 = y_(dr.order_var,k1);
        tempx2 = tempx1-repmat(dr.ys(dr.order_var),1,ykmin);
        tempx = tempx2(k2);
        tempu = ex(i-ykmin,:)';
        tempuu = kron(tempu,tempu);
        tempxx = kron(tempx,tempx);
        tempxu = kron(tempx,tempu);
        y_(dr.order_var,i) = dr.ys(dr.order_var)+dr.ghs2/2+dr.ghx*tempx+ ...
            dr.ghu*tempu+0.5*(dr.ghxx*tempxx+dr.ghuu*tempuu)+dr.ghxu* ...
            tempxu;
        for j=1:min(ykmin+M_.exo_det_length+1-i,M_.exo_det_length)
            tempud = ex_det(i+j-1,:)'-exo_det_steady_state;
            tempudud = kron(tempud,tempud);
            tempxud = kron(tempx,tempud);
            tempuud = kron(tempu,tempud);
            y_(dr.order_var,i) = y_(dr.order_var,i) + dr.ghud{j}*tempud + ...
                dr.ghxud{j}*tempxud + dr.ghuud{j}*tempuud + ...
                0.5*dr.ghudud{j,j}*tempudud;
            for k=1:j-1
                tempudk = ex_det(i+k-1,:)'-exo_det_steady_state;
                tempududk = kron(tempudk,tempud);
                y_(dr.order_var,i) = y_(dr.order_var,i) + ...
                    dr.ghudud{k,j}*tempududk;
            end
        end
        k1 = k1+1;
    end
else
    error('simultxdet.m: order>2 not supported.')
end

[A,B] = kalman_transition_matrix(dr,nstatic+(1:nspred),1:nc);

inv_order_var = dr.inv_order_var;
ghx1 = dr.ghx(inv_order_var(ivar),:);
ghu1 = dr.ghu(inv_order_var(ivar),:);

sigma_u = B*M_.Sigma_e*B';
sigma_u1 = ghu1*M_.Sigma_e*ghu1';
sigma_y = 0;

var_yf=NaN(iter,nvar); %initialize
for i=1:iter
    sigma_y1 = ghx1*sigma_y*ghx1'+sigma_u1; %only valid at first order, needs to be fixed, see https://git.dynare.org/Dynare/dynare/-/issues/1940
    var_yf(i,:) = diag(sigma_y1)';
    if i == iter
        break
    end
    sigma_u = A*sigma_u*A';
    sigma_y = sigma_y+sigma_u;
end

fact = norminv((1-options_.forecasts.conf_sig)/2,0,1);
if nargout==3
    var_yf_ME=var_yf;
    var_yf_ME(:,options_.varobs_id)=var_yf(:,options_.varobs_id)+repmat(diag(M_.H)',horizon,1);
    int_width_ME = zeros(horizon,M_.endo_nbr);
end

int_width = zeros(iter,nvar);
for i=1:nvar
    int_width(:,i) = fact*sqrt(var_yf(:,i));
    if nargout==3
        int_width_ME(:,i) = -fact*sqrt(var_yf_ME(:,i));
    end
end