File: stochastic_solvers.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (366 lines) | stat: -rw-r--r-- 15,601 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
function [dr, info] = stochastic_solvers(dr, task, M_, options_, exo_steady_state, exo_det_steady_state)
%[dr, info] = stochastic_solvers(dr, task, M_, options_, exo_steady_state, exo_det_steady_state)
% Computes the reduced form solution of a rational expectations model (first, second or third
% order approximation of the stochastic model around the deterministic steady state).
%
% INPUTS
% - dr         [struct]     Decision rules for stochastic simulations.
% - task       [integer]    scalar, if task = 0 then decision rules are computed and if task = 1 then only eigenvales are computed.
% - M_         [struct]     Definition of the model.
% - options_   [struct]     Options.
% - exo_steady_state        [vector]     steady state value for exogenous variables
% - exo_det_steady_state    [vector]     steady state value for exogenous deterministic variables                                    
%
% OUTPUTS
% - dr         [struct]     Decision rules for stochastic simulations.
% - info       [integer]    scalar, error code:
%
%                                 info=1 -> the model doesn't define current variables uniquely
%                                 info=2 -> problem in mjdgges.dll info(2) contains error code.
%                                 info=3 -> BK order condition not satisfied info(2) contains "distance"
%                                           absence of stable trajectory.
%                                 info=4 -> BK order condition not satisfied info(2) contains "distance"
%                                           indeterminacy.
%                                 info=5 -> BK rank condition not satisfied.
%                                 info=6 -> The jacobian matrix evaluated at the steady state is complex.
%                                 info=9 -> k_order_pert was unable to compute the solution

% Copyright © 1996-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

info = 0;

if options_.linear
    options_.order = 1;
end

local_order = options_.order;
if local_order~=1 && M_.hessian_eq_zero
    local_order = 1;
    warning('stochastic_solvers: using order = 1 because Hessian is equal to zero');
end
if options_.order>2 && ~options_.k_order_solver
    error('You need to set k_order_solver for order>2')
end

if options_.aim_solver && (local_order > 1)
    error('Option "aim_solver" is incompatible with order >= 2')
end

if M_.maximum_endo_lag == 0
    if local_order >= 2
        fprintf('\nSTOCHASTIC_SOLVER: Dynare does not solve purely forward models at higher order.\n')
        fprintf('STOCHASTIC_SOLVER: To circumvent this restriction, you can add a backward-looking dummy equation of the form:\n')
        fprintf('STOCHASTIC_SOLVER: junk=0.9*junk(-1);\n')
        error(['2nd and 3rd order approximation not implemented for purely ' ...
               'forward models'])
    end
    if M_.exo_det_nbr~=0
        fprintf('\nSTOCHASTIC_SOLVER: Dynare does not solve purely forward models with var_exo_det.\n')
        fprintf('STOCHASTIC_SOLVER: To circumvent this restriction, you can add a backward-looking dummy equation of the form:\n')
        fprintf('STOCHASTIC_SOLVER: junk=0.9*junk(-1);\n')
        error('var_exo_det not implemented for purely forward models')
    end
end

if M_.maximum_endo_lead==0 && M_.exo_det_nbr~=0
    fprintf('\nSTOCHASTIC_SOLVER: Dynare does not solve purely backward models with var_exo_det.\n')
    fprintf('STOCHASTIC_SOLVER: To circumvent this restriction, you can add a foward-looking dummy equation of the form:\n')
    fprintf('STOCHASTIC_SOLVER: junk=0.9*junk(+1);\n')
    error('var_exo_det not implemented for purely backwards models')
end

if options_.k_order_solver
    if options_.bytecode
        warning('Option "bytecode" is ignored when computing perturbation solution at higher order')
    end
    orig_order = options_.order;
    options_.order = local_order;
    dr = set_state_space(dr,M_);
    [dr,info] = k_order_pert(dr,M_,options_);
    options_.order = orig_order;
    return
end

klen = M_.maximum_lag + M_.maximum_lead + 1;
exo_simul = [repmat(exo_steady_state',klen,1) repmat(exo_det_steady_state',klen,1)];
iyv = M_.lead_lag_incidence';
iyv = iyv(:);
iyr0 = find(iyv) ;

it_ = M_.maximum_lag + 1;
z = repmat(dr.ys,1,klen);
if local_order == 1
    if (options_.bytecode)
        [~, loc_dr] = bytecode('dynamic','evaluate', M_, options_, z, exo_simul, ...
                               M_.params, dr.ys, 1);
        jacobia_ = [loc_dr.g1 loc_dr.g1_x loc_dr.g1_xd];
    else
        [~,jacobia_] = feval([M_.fname '.dynamic'],z(iyr0),exo_simul, ...
                             M_.params, dr.ys, it_);
    end
elseif local_order == 2
    if (options_.bytecode)
        warning('Option "bytecode" is ignored when computing perturbation solution at order = 2')
    end
    [~,jacobia_,hessian1] = feval([M_.fname '.dynamic'],z(iyr0),...
                                  exo_simul, ...
                                  M_.params, dr.ys, it_);
    [infrow, ~] = find(isinf(hessian1));
    if options_.debug
        if ~isempty(infrow)
            fprintf('\nSTOCHASTIC_SOLVER: The Hessian of the dynamic model contains Inf.\n')
            fprintf('STOCHASTIC_SOLVER: Try running model_diagnostics to find the source of the problem.\n')
            save([M_.dname filesep 'Output' filesep M_.fname '_debug.mat'],'hessian1')
        end
    end
    if ~isempty(infrow)
        info(1)=11;
        return
    end
    [nanrow, ~] = find(isnan(hessian1));
    if options_.debug
        if ~isempty(nanrow)
            fprintf('\nSTOCHASTIC_SOLVER: The Hessian of the dynamic model contains NaN.\n')
            fprintf('STOCHASTIC_SOLVER: Try running model_diagnostics to find the source of the problem.\n')
            save([M_.dname filesep 'Output' filesep M_.fname '_debug.mat'],'hessian1')
        end
    end
    if ~isempty(nanrow)
        info(1)=12;
        return
    end
end

[infrow,infcol]=find(isinf(jacobia_));

if options_.debug
    if ~isempty(infrow)
        fprintf('\nSTOCHASTIC_SOLVER: The Jacobian of the dynamic model contains Inf. The problem is associated with:\n\n')
        display_problematic_vars_Jacobian(infrow,infcol,M_,dr.ys,'dynamic','STOCHASTIC_SOLVER: ')
        save([M_.dname filesep 'Output' filesep M_.fname '_debug.mat'],'jacobia_')
    end
end

if ~isempty(infrow)
    info(1)=10;
    return
end

if ~isreal(jacobia_)
    if max(max(abs(imag(jacobia_)))) < 1e-15
        jacobia_ = real(jacobia_);
    else
        if options_.debug
            [imagrow,imagcol]=find(abs(imag(jacobia_))>1e-15);
            fprintf('\nMODEL_DIAGNOSTICS: The Jacobian of the dynamic model contains imaginary parts. The problem arises from: \n\n')
            display_problematic_vars_Jacobian(imagrow,imagcol,M_,dr.ys,'dynamic','STOCHASTIC_SOLVER: ')
        end
        info(1) = 6;
        info(2) = sum(sum(imag(jacobia_).^2));
        return
    end
end

[nanrow,nancol]=find(isnan(jacobia_));
if options_.debug
    if ~isempty(nanrow)
        fprintf('\nSTOCHASTIC_SOLVER: The Jacobian of the dynamic model contains NaN. The problem is associated with:\n\n')
        display_problematic_vars_Jacobian(nanrow,nancol,M_,dr.ys,'dynamic','STOCHASTIC_SOLVER: ')
        save([M_.dname filesep 'Output' filesep M_.fname '_debug.mat'],'jacobia_')
    end
end

if ~isempty(nanrow)
    info(1) = 8;
    NaN_params=find(isnan(M_.params));
    info(2:length(NaN_params)+1) =  NaN_params;
    return
end

kstate = dr.kstate;
nstatic = M_.nstatic;
nfwrd = M_.nfwrd;
nspred = M_.nspred;
nboth = M_.nboth;
nsfwrd = M_.nsfwrd;
order_var = dr.order_var;
nd = size(kstate,1);
nz = nnz(M_.lead_lag_incidence);

sdyn = M_.endo_nbr - nstatic;

[~,cols_b,cols_j] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+1, ...
                                               order_var));
b = zeros(M_.endo_nbr,M_.endo_nbr);
b(:,cols_b) = jacobia_(:,cols_j);

if M_.maximum_endo_lead == 0
    % backward models: simplified code exist only at order == 1
    if local_order == 1
        [k1,~,k2] = find(kstate(:,4));
        if M_.maximum_endo_lag
            dr.state_var = find(M_.lead_lag_incidence(1,:));
        else
            dr.state_var = [];
        end
        dr.ghx(:,k1) = -b\jacobia_(:,k2);
        if M_.exo_nbr
            dr.ghu =  -b\jacobia_(:,nz+1:end);
        end
        dr.eigval = eig(kalman_transition_matrix(dr,nstatic+(1:nspred),1:nspred));
        dr.full_rank = 1;
        dr.edim = nnz(abs(dr.eigval) > options_.qz_criterium);
        dr.sdim = nd-dr.edim;
        if dr.edim
            temp = sort(abs(dr.eigval));
            temp = temp(dr.sdim+1:nd)-1-options_.qz_criterium;
            info(1) = 3;
            info(2) = temp'*temp;
        end
    else
        fprintf('\nSTOCHASTIC_SOLVER: Dynare does not solve purely backward models at higher order.\n')
        fprintf('STOCHASTIC_SOLVER: To circumvent this restriction, you can add a forward-looking dummy equation of the form:\n')
        fprintf('STOCHASTIC_SOLVER: junk=0.9*junk(+1);\n')
        error(['2nd and 3rd order approximation not implemented for purely ' ...
               'backward models'])
    end
else
    % If required, use AIM solver if not check only
    if options_.aim_solver && (task == 0)
        [dr,info] = AIM_first_order_solver(jacobia_,M_,dr,options_.qz_criterium);

    else  % use original Dynare solver
        [dr,info] = dyn_first_order_solver(jacobia_,M_,dr,options_,task);
        if info(1) || task
            return
        end
    end

    if local_order > 1
        % Second order
        dr = dyn_second_order_solver(jacobia_,hessian1,dr,M_,...
                                     options_.threads.kronecker.sparse_hessian_times_B_kronecker_C);

        % reordering second order derivatives, used for deterministic
        % variables below
        k1 = nonzeros(M_.lead_lag_incidence(:,order_var)');
        kk = [k1; length(k1)+(1:M_.exo_nbr+M_.exo_det_nbr)'];
        nk = size(kk,1);
        kk1 = reshape(1:nk^2,nk,nk);
        kk1 = kk1(kk,kk);
        hessian1 = hessian1(:,kk1(:));
    end
end


%exogenous deterministic variables
if M_.exo_det_nbr > 0
    gx = dr.gx;
    f1 = sparse(jacobia_(:,nonzeros(M_.lead_lag_incidence(M_.maximum_endo_lag+2:end,order_var))));
    f0 = sparse(jacobia_(:,nonzeros(M_.lead_lag_incidence(M_.maximum_endo_lag+1,order_var))));
    fudet = sparse(jacobia_(:,nz+M_.exo_nbr+1:end));
    M1 = inv(f0+[zeros(M_.endo_nbr,nstatic) f1*gx zeros(M_.endo_nbr,nsfwrd-nboth)]);
    M2 = M1*f1;
    dr.ghud = cell(M_.exo_det_length,1);
    dr.ghud{1} = -M1*fudet;
    for i = 2:M_.exo_det_length
        dr.ghud{i} = -M2*dr.ghud{i-1}(end-nsfwrd+1:end,:);
    end

    if local_order > 1
        lead_lag_incidence = M_.lead_lag_incidence;
        k0 = find(lead_lag_incidence(M_.maximum_endo_lag+1,order_var)');
        k1 = find(lead_lag_incidence(M_.maximum_endo_lag+2,order_var)');
        hu = dr.ghu(nstatic+[1:nspred],:);
        hud = dr.ghud{1}(nstatic+1:nstatic+nspred,:);
        zx = [eye(nspred);dr.ghx(k0,:);gx*dr.Gy;zeros(M_.exo_nbr+M_.exo_det_nbr, ...
                                                      nspred)];
        zu = [zeros(nspred,M_.exo_nbr); dr.ghu(k0,:); gx*hu; zeros(M_.exo_nbr+M_.exo_det_nbr, ...
                                                          M_.exo_nbr)];
        zud=[zeros(nspred,M_.exo_det_nbr);dr.ghud{1};gx(:,1:nspred)*hud;zeros(M_.exo_nbr,M_.exo_det_nbr);eye(M_.exo_det_nbr)];
        R1 = hessian1*kron(zx,zud);
        dr.ghxud = cell(M_.exo_det_length,1);
        kf = M_.endo_nbr-nfwrd-nboth+1:M_.endo_nbr;
        kp = nstatic+[1:nspred];
        dr.ghxud{1} = -M1*(R1+f1*dr.ghxx(kf,:)*kron(dr.ghx(kp,:),dr.ghud{1}(kp,:)));
        Eud = eye(M_.exo_det_nbr);
        for i = 2:M_.exo_det_length
            hudi = dr.ghud{i}(kp,:);
            zudi=[zeros(nspred,M_.exo_det_nbr);dr.ghud{i};gx(:,1:nspred)*hudi;zeros(M_.exo_nbr+M_.exo_det_nbr,M_.exo_det_nbr)];
            R2 = hessian1*kron(zx,zudi);
            dr.ghxud{i} = -M2*(dr.ghxud{i-1}(kf,:)*kron(dr.Gy,Eud)+dr.ghxx(kf,:)*kron(dr.ghx(kp,:),dr.ghud{i}(kp,:)))-M1*R2;
        end
        R1 = hessian1*kron(zu,zud);
        dr.ghudud = cell(M_.exo_det_length,1);
        dr.ghuud{1} = -M1*(R1+f1*dr.ghxx(kf,:)*kron(dr.ghu(kp,:),dr.ghud{1}(kp,:)));
        Eud = eye(M_.exo_det_nbr);
        for i = 2:M_.exo_det_length
            hudi = dr.ghud{i}(kp,:);
            zudi=[zeros(nspred,M_.exo_det_nbr);dr.ghud{i};gx(:,1:nspred)*hudi;zeros(M_.exo_nbr+M_.exo_det_nbr,M_.exo_det_nbr)];
            R2 = hessian1*kron(zu,zudi);
            dr.ghuud{i} = -M2*dr.ghxud{i-1}(kf,:)*kron(hu,Eud)-M1*R2;
        end
        R1 = hessian1*kron(zud,zud);
        dr.ghudud = cell(M_.exo_det_length,M_.exo_det_length);
        dr.ghudud{1,1} = -M1*R1-M2*dr.ghxx(kf,:)*kron(hud,hud);
        for i = 2:M_.exo_det_length
            hudi = dr.ghud{i}(nstatic+1:nstatic+nspred,:);
            zudi=[zeros(nspred,M_.exo_det_nbr);dr.ghud{i};gx(:,1:nspred)*hudi+dr.ghud{i-1}(kf,:);zeros(M_.exo_nbr+M_.exo_det_nbr,M_.exo_det_nbr)];
            R2 = hessian1*kron(zudi,zudi);
            dr.ghudud{i,i} = -M2*(dr.ghudud{i-1,i-1}(kf,:)+...
                                  2*dr.ghxud{i-1}(kf,:)*kron(hudi,Eud) ...
                                  +dr.ghxx(kf,:)*kron(hudi,hudi))-M1*R2;
            R2 = hessian1*kron(zud,zudi);
            dr.ghudud{1,i} = -M2*(dr.ghxud{i-1}(kf,:)*kron(hud,Eud)+...
                                  dr.ghxx(kf,:)*kron(hud,hudi))...
                -M1*R2;
            for j=2:i-1
                hudj = dr.ghud{j}(kp,:);
                zudj=[zeros(nspred,M_.exo_det_nbr);dr.ghud{j};gx(:,1:nspred)*hudj;zeros(M_.exo_nbr+M_.exo_det_nbr,M_.exo_det_nbr)];
                R2 = hessian1*kron(zudj,zudi);
                dr.ghudud{j,i} = -M2*(dr.ghudud{j-1,i-1}(kf,:)+dr.ghxud{j-1}(kf,:)* ...
                                      kron(hudi,Eud)+dr.ghxud{i-1}(kf,:)* ...
                                      kron(hudj,Eud)+dr.ghxx(kf,:)*kron(hudj,hudi))-M1*R2;
            end
        end
    end
end

if options_.loglinear
    % this needs to be extended for order=2,3
    [il,~,ik,k1] = indices_lagged_leaded_exogenous_variables(dr.order_var,M_);
    [illag,~,iklag,klag1] = indices_lagged_leaded_exogenous_variables(dr.order_var(M_.nstatic+(1:M_.nspred)),M_);
    if ~isempty(ik)
        if M_.nspred > 0
            dr.ghx(ik,iklag) = repmat(1./dr.ys(k1),1,length(klag1)).*dr.ghx(ik,iklag).* ...
                repmat(dr.ys(klag1)',length(ik),1);
            dr.ghx(ik,illag) = repmat(1./dr.ys(k1),1,length(illag)).*dr.ghx(ik,illag);
        end
        if M_.exo_nbr > 0
            dr.ghu(ik,:) = repmat(1./dr.ys(k1),1,M_.exo_nbr).*dr.ghu(ik,:);
        end
    end
    if ~isempty(il) && M_.nspred > 0
        dr.ghx(il,iklag) = dr.ghx(il,iklag).*repmat(dr.ys(klag1)', ...
                                                    length(il),1);
    end
    if local_order > 1
        error('Loglinear options currently only works at order 1')
    end
end
end