1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
function ds = surgibbs(ds, param_names, beta0, A, ndraws, discarddraws, thin, eqtags, model_name)
% Implements Gibbs Sampling for SUR
%
% INPUTS
% ds [dseries] data
% param_names [cellstr] list of parameters to estimate
% beta0 [vector] prior values (in order of param_names)
% A [matrix] prior distribution variance (in order of
% param_names)
% ndraws [int] number of draws
% discarddraws [int] number of draws to discard
% thin [int] if thin == N, save every Nth draw
% eqtags [cellstr] names of equation tags to estimate. If empty,
% estimate all equations
% model_name [string] name to use in oo_ and inc file
%
% OUTPUTS
% none
%
% SPECIAL REQUIREMENTS
% dynare must have been run with the option: json=compute
%
% REFERENCES
% - Ando, Tomohiro and Zellner, Arnold. 2010. Hierarchical Bayesian Analysis of the
% Seemingly Unrelated Regression and Simultaneous Equations Models Using a
% Combination of Direct Monte Carlo and Importance Sampling Techniques.
% Bayesian Analysis Volume 5, Number 1, pp. 65-96.
% Copyright © 2017-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
global M_ oo_ options_
%
% Check inputs
%
assert(nargin >= 5 && nargin <= 9, 'Incorrect number of arguments passed to surgibbs');
assert(isdseries(ds), 'The 1st argument must be a dseries');
assert(iscellstr(param_names), 'The 2nd argument must be a cellstr');
assert(isvector(beta0) && length(beta0) == length(param_names), ...
'The 3rd argument must be a vector with the same length as param_names and the same ');
if isrow(beta0)
beta0 = beta0';
end
assert(ismatrix(A) && all(all((A == A'))) && length(beta0) == size(A, 2), ...
'The 4th argument must be a symmetric matrix with the same dimension as beta0');
assert(isint(ndraws), 'The 5th argument must be an integer');
if nargin == 5
discarddraws = 0;
else
assert(isint(discarddraws), 'The 6th argument, if provided, must be an integer');
end
if nargin == 6
thin = 1;
else
assert(isint(thin), 'The 7th argument, if provided, must be an integer');
end
if nargin <= 8
if ~isfield(oo_, 'surgibbs')
model_name = 'surgibbs_model_number_1';
else
model_name = ['surgibbs_model_number_' num2str(length(fieldnames(oo_.surgibbs)) + 1)];
end
else
if ~isvarname(model_name)
error('The 9th argument must be a valid string');
end
end
%
% Estimation
%
if nargin == 8
[nobs, X, Y, m, lhssub, fp] = sur(ds, param_names, eqtags);
else
[nobs, X, Y, m, lhssub, fp] = sur(ds, param_names);
end
oo_.surgibbs.(model_name).dof = nobs;
beta = beta0;
A = inv(A);
thinidx = 1;
drawidx = 1;
nparams = length(param_names);
oo_.surgibbs.(model_name).betadraws = zeros(floor((ndraws-discarddraws)/thin), nparams);
if ~options_.noprint
disp('surgibbs: estimating, please wait...')
end
hh_fig = dyn_waitbar(0,'Please wait. Gibbs sampler...');
set(hh_fig,'Name','Surgibbs estimation.');
residdraws = zeros(floor((ndraws-discarddraws)/thin), nobs, m);
for i = 1:ndraws
if ~mod(i,100)
dyn_waitbar(i/ndraws,hh_fig,'Please wait. Gibbs sampler...');
end
% Draw Omega, given X, Y, Beta
resid = reshape(Y - X*beta, nobs, m);
Omega = rand_inverse_wishart(m, nobs, chol(inv(resid'*resid/nobs)));
% Draw beta, given X, Y, Omega
tmp = kron(inv(Omega), eye(nobs));
tmp1 = X'*tmp*X;
Omegabar = inv(tmp1 + A);
betahat = tmp1\X'*tmp*Y;
betabar = Omegabar*(tmp1*betahat+A*beta0);
beta = rand_multivariate_normal(betabar', chol(Omegabar), nparams)';
if i > discarddraws
if thinidx == thin
oo_.surgibbs.(model_name).betadraws(drawidx, 1:nparams) = beta';
residdraws(drawidx, 1:nobs, 1:m) = resid;
thinidx = 1;
drawidx = drawidx + 1;
else
thinidx = thinidx + 1;
end
end
end
dyn_waitbar_close(hh_fig);
%
% Save results.
%
oo_.surgibbs.(model_name).posterior.mean.beta = (sum(oo_.surgibbs.(model_name).betadraws)/rows(oo_.surgibbs.(model_name).betadraws))';
oo_.surgibbs.(model_name).posterior.variance.beta = cov(oo_.surgibbs.(model_name).betadraws);
% Yhat
oo_.surgibbs.(model_name).Yhat = X*oo_.surgibbs.(model_name).posterior.mean.beta;
oo_.surgibbs.(model_name).YhatOrig = oo_.surgibbs.(model_name).Yhat;
oo_.surgibbs.(model_name).Yobs = Y;
% Residuals
oo_.surgibbs.(model_name).resid = Y - oo_.surgibbs.(model_name).Yhat;
% Correct Yhat reported back to user
oo_.surgibbs.(model_name).Yhat = oo_.surgibbs.(model_name).Yhat + lhssub;
yhatname = [model_name '_FIT'];
ds.(yhatname) = dseries(oo_.surgibbs.(model_name).Yhat, fp, yhatname);
% Compute and save posterior densities.
for i=1:nparams
xx = oo_.surgibbs.(model_name).betadraws(:,i);
nn = length(xx);
bandwidth = mh_optimal_bandwidth(xx, nn, 0, 'gaussian');
[x, f] = kernel_density_estimate(xx, 512, nn, bandwidth, 'gaussian');
oo_.surgibbs.(model_name).posterior.density.(param_names{i}) = [x, f];
end
% Update model1s parameters with posterior mean.
oo_.surgibbs.(model_name).param_idxs = zeros(length(param_names), 1);
for i = 1:length(param_names)
if ~strcmp(param_names{i}, 'intercept')
oo_.surgibbs.(model_name).param_idxs(i) = find(strcmp(M_.param_names, param_names{i}));
M_.params(oo_.surgibbs.(model_name).param_idxs(i)) = oo_.surgibbs.(model_name).posterior.mean.beta(i);
end
end
oo_.surgibbs.(model_name).pnames = param_names;
oo_.surgibbs.(model_name).neqs = m;
% Estimate for sigma^2
SS_res = oo_.surgibbs.(model_name).resid'*oo_.surgibbs.(model_name).resid;
oo_.surgibbs.(model_name).s2 = SS_res/oo_.surgibbs.(model_name).dof;
% Set appropriate entries in Sigma_e
posterior_mean_resid = reshape((sum(residdraws))/rows(residdraws), nobs, m);
Sigma_e = posterior_mean_resid'*posterior_mean_resid/oo_.surgibbs.(model_name).dof;
% System R² value of McElroy (1977) - formula from Judge et al. (1986, p. 477)
%
% The R² is computed at the posterior mean of the estimated
% parameters. Maybe it would make more sense to compute a posterior
% distribution for this statistic…
oo_.surgibbs.(model_name).R2 = 1 - (oo_.surgibbs.(model_name).resid' * kron(inv(Sigma_e), eye(nobs)) * oo_.surgibbs.(model_name).resid) ...
/ (oo_.surgibbs.(model_name).Yobs' * kron(inv(Sigma_e), eye(nobs)-ones(nobs,nobs)/nobs) * oo_.surgibbs.(model_name).Yobs);
% Write .inc file
write_param_init_inc_file('surgibbs', model_name, oo_.surgibbs.(model_name).param_idxs, oo_.surgibbs.(model_name).posterior.mean.beta);
%
% Print Output
%
if ~options_.noprint
ttitle = 'Gibbs Sampling on SUR';
preamble = {['Model name: ' model_name], ...
sprintf('No. Equations: %d', oo_.surgibbs.(model_name).neqs), ...
sprintf('No. Independent Variables: %d', size(X, 2)), ...
sprintf('Observations: %d', oo_.surgibbs.(model_name).dof)};
afterward = {sprintf('s^2: %f', oo_.surgibbs.(model_name).s2), sprintf('R^2: %f', oo_.surgibbs.(model_name).R2)};
dyn_table(ttitle, preamble, afterward, param_names,...
{'Posterior mean', 'Posterior std.'}, 4,...
[oo_.surgibbs.(model_name).posterior.mean.beta, sqrt(diag(oo_.surgibbs.(model_name).posterior.variance.beta))]);
end
%
% Plot
%
% The histogram() function is not implemented in Octave
if ~options_.nograph && ~isoctave
figure
nrows = 5;
ncols = floor(nparams/nrows);
if mod(nparams, nrows) ~= 0
ncols = ncols + 1;
end
for j = 1:length(param_names)
subplot(nrows, ncols, j)
histogram(oo_.surgibbs.(model_name).betadraws(:, j))
hc = histcounts(oo_.surgibbs.(model_name).betadraws(:, j));
line([oo_.surgibbs.(model_name).posterior.mean.beta(j) oo_.surgibbs.(model_name).posterior.mean.beta(j)], [min(hc) max(hc)], 'Color', 'red');
title(param_names{j}, 'Interpreter', 'none')
end
end
end
|