1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
function writeVarExpectationFunction(var_model_name, horizon)
% function writeVarExpectationFunction(var_model_name, horizon)
% Writes the var_forecast_<<var_model_name>>.m file
%
% INPUTS
%
% var_model_name [string] the name of the VAR model
%
% horizon [int] the forecast horizon
%
% OUTPUTS
%
% NONE
% Copyright © 2017-2018 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
%%
global M_;
%% open file
basename = ['var_forecast_' var_model_name];
fid = fopen([basename '.m'], 'w');
if fid == -1
error(['Could not open ' basename '.m for writing']);
end
%% load .mat file
load(var_model_name, 'autoregressive_matrices', 'mu');
if ~exist('autoregressive_matrices', 'var') || ~exist('mu', 'var')
error([var_model_name '.mat : must contain the variables autoregressive_matrices and mu']);
end
%%
fprintf(fid, 'function ret = %s(y)\n', basename);
fprintf(fid, '%%function ret = %s(y)\n', basename);
fprintf(fid, '%% Calculates the %d-step-ahead forecast from the VAR model %s\n', max(horizon), var_model_name);
fprintf(fid, '%%\n%% Created automatically by Dynare on %s\n%%\n\n', datestr(now));
fprintf(fid, '%%%% Construct y\n');
fprintf(fid, 'assert(length(y) == %d);\n', sum(sum(M_.lead_lag_incidence ~= 0)));
nvars = size(M_.var.(var_model_name).var_list_,1);
var_model_order = M_.var.(var_model_name).order;
yidx = zeros(nvars, min(var_model_order, 2));
% first for order <= 2, drawing variables directly from their M_.endo_names
for i=1:min(var_model_order, 2)
if mod(i, 2) == 0
ridx = 1;
else
ridx = 2;
end
for j=1:nvars
cidx = strcmp(strtrim(M_.var.(var_model_name).var_list_(j,:)), M_.endo_names)';
if ~any(cidx)
error([strtrim(M_.var.(var_model_name).var_list_(j,:)) ' not found in the list of endogenous variables']);
end
yidx(j, i) = M_.lead_lag_incidence(ridx, cidx);
end
end
yidx = yidx(:);
% then for order > 2
if var_model_order > 2
y1idx = zeros((var_model_order - 2)*nvars, var_model_order - 2);
for i=3:var_model_order
for j=1:nvars
idx = find(strcmp(strtrim(M_.var.(var_model_name).var_list_(j,:)), M_.endo_names));
if ~any(idx)
error([strtrim(M_.var.(var_model_name).var_list_(j,:)) ' not found in the list of endogenous variables']);
end
varidx = [M_.aux_vars.orig_index] == idx & [M_.aux_vars.orig_lead_lag] == -i;
cidx = [M_.aux_vars.endo_index];
cidx = cidx(varidx);
y1idx(j, i-2) = M_.lead_lag_incidence(2, cidx);
end
end
yidx = [yidx ; y1idx(:)];
end
if any(yidx == 0)
fprintf(fid, 'y = [');
for i = 1:length(yidx)
if i ~= 1
fprintf(fid, '; ');
end
if yidx(i) == 0
fprintf(fid, '0');
else
fprintf(fid, 'y(%d)', yidx(i));
end
end
fprintf(fid, '];\n');
else
fprintf(fid, 'y = y([');
fprintf(fid, '%d ', yidx);
fprintf(fid, ']);\n');
end
lm = length(mu);
lc = length(autoregressive_matrices);
assert(lc == var_model_order);
A = zeros(lm*lc, lm*lc);
for i=1:lc
if any([lm lm] ~= size(autoregressive_matrices{i}))
error(['The dimensions of mu and autoregressive_matrices for ' var_model_name ' are off']);
end
col = lm*(i-1)+1:lm*i;
A(1:lm, col) = autoregressive_matrices{i};
if i ~= lc
A(lm*i+1:lm*i+lm, col) = eye(lm, lm);
end
end
if var_model_order > 1
mu = [mu; zeros(lm*var_model_order-lm, 1)];
end
fprintf(fid, '\n%%%% Calculate %d-step-ahead forecast for VAR(%d) written as VAR(1)\n', max(horizon), var_model_order);
fprintf(fid, '%% Follows Lütkepohl (2005) pg 15 & 34\n');
if max(horizon) == 1
printInsideOfLoop(fid, mu, A, false);
fprintf(fid, 'ret(1, :) = y(1:%d);\n', lm);
else
if length(horizon) ~= 1
fprintf(fid, 'retidx = 1;\n');
fprintf(fid, 'ret = zeros(%d, %d);\n', length(horizon), lm);
end
fprintf(fid, 'for i=1:%d\n', max(horizon));
printInsideOfLoop(fid, mu, A, true);
if length(horizon) ~= 1
fprintf(fid, ' if any([');
fprintf(fid, '%d ', horizon);
fprintf(fid, '] == i)\n');
fprintf(fid, ' %% If we want a forecast at more than one\n');
fprintf(fid, ' %% horizon save it in ''ret'' when encountered\n');
fprintf(fid, ' ret(retidx, :) = y(1:%d);\n', lm);
fprintf(fid, ' retidx = retidx + 1;\n');
fprintf(fid, ' end\n');
end
fprintf(fid, 'end\n');
if length(horizon) == 1
fprintf(fid, 'ret(1, :) = y(1:%d);\n', lm);
end
end
%% close file
fprintf(fid, 'end\n');
fclose(fid);
end
function printInsideOfLoop(fid, mu, A, inloop)
if inloop
fs = ' ';
ns = ' ';
spaces = ' ';
else
fs = '';
ns = ' ';
spaces = ' ';
end
fprintf(fid, '%sy = ...\n%s[ ... %% intercept\n%s', fs, spaces, ns);
fprintf(fid, [repmat('% f ', 1, size(mu, 2)) '; ...\n' ns], mu');
fprintf(fid, ' ] + ...\n%s[ ... %% autoregressive matrices\n%s', spaces, ns);
fprintf(fid, [repmat('% f ', 1, size(A, 2)) '; ...\n' ns], A');
fprintf(fid, ' ] * y;\n');
end
|