File: writeVarExpectationFunction.m

package info (click to toggle)
dynare 6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,648 kB
  • sloc: cpp: 79,109; ansic: 28,917; objc: 12,430; yacc: 4,528; pascal: 1,993; lex: 1,441; sh: 1,129; python: 634; makefile: 626; lisp: 163; xml: 18
file content (182 lines) | stat: -rw-r--r-- 5,813 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
function writeVarExpectationFunction(var_model_name, horizon)
% function writeVarExpectationFunction(var_model_name, horizon)
% Writes the var_forecast_<<var_model_name>>.m file
%
% INPUTS
%
%   var_model_name   [string]        the name of the VAR model
%
%   horizon          [int]           the forecast horizon
%
% OUTPUTS
%
%   NONE

% Copyright © 2017-2018 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

%%
global M_;

%% open file
basename = ['var_forecast_' var_model_name];
fid = fopen([basename '.m'], 'w');
if fid == -1
    error(['Could not open ' basename '.m for writing']);
end

%% load .mat file
load(var_model_name, 'autoregressive_matrices', 'mu');
if ~exist('autoregressive_matrices', 'var') || ~exist('mu', 'var')
    error([var_model_name '.mat : must contain the variables autoregressive_matrices and mu']);
end

%%
fprintf(fid, 'function ret = %s(y)\n', basename);
fprintf(fid, '%%function ret = %s(y)\n', basename);
fprintf(fid, '%% Calculates the %d-step-ahead forecast from the VAR model %s\n', max(horizon), var_model_name);
fprintf(fid, '%%\n%% Created automatically by Dynare on %s\n%%\n\n', datestr(now));
fprintf(fid, '%%%% Construct y\n');
fprintf(fid, 'assert(length(y) == %d);\n', sum(sum(M_.lead_lag_incidence ~= 0)));

nvars = size(M_.var.(var_model_name).var_list_,1);
var_model_order = M_.var.(var_model_name).order;
yidx = zeros(nvars, min(var_model_order, 2));
% first for order <= 2, drawing variables directly from their M_.endo_names
for i=1:min(var_model_order, 2)
    if mod(i, 2) == 0
        ridx = 1;
    else
        ridx = 2;
    end
    for j=1:nvars
        cidx = strcmp(strtrim(M_.var.(var_model_name).var_list_(j,:)), M_.endo_names)';
        if ~any(cidx)
            error([strtrim(M_.var.(var_model_name).var_list_(j,:)) ' not found in the list of endogenous variables']);
        end
        yidx(j, i) = M_.lead_lag_incidence(ridx, cidx);
    end
end
yidx = yidx(:);

% then for order > 2
if var_model_order > 2
    y1idx = zeros((var_model_order - 2)*nvars, var_model_order - 2);
    for i=3:var_model_order
        for j=1:nvars
            idx = find(strcmp(strtrim(M_.var.(var_model_name).var_list_(j,:)), M_.endo_names));
            if ~any(idx)
                error([strtrim(M_.var.(var_model_name).var_list_(j,:)) ' not found in the list of endogenous variables']);
            end
            varidx = [M_.aux_vars.orig_index] == idx & [M_.aux_vars.orig_lead_lag] == -i;
            cidx = [M_.aux_vars.endo_index];
            cidx = cidx(varidx);
            y1idx(j, i-2) = M_.lead_lag_incidence(2, cidx);
        end
    end
    yidx = [yidx ; y1idx(:)];
end

if any(yidx == 0)
    fprintf(fid, 'y = [');
    for i = 1:length(yidx)
        if i ~= 1
            fprintf(fid, '; ');
        end
        if yidx(i) == 0
            fprintf(fid, '0');
        else
            fprintf(fid, 'y(%d)', yidx(i));
        end
    end
    fprintf(fid, '];\n');
else
    fprintf(fid, 'y = y([');
    fprintf(fid, '%d ', yidx);
    fprintf(fid, ']);\n');
end

lm = length(mu);
lc = length(autoregressive_matrices);
assert(lc == var_model_order);

A = zeros(lm*lc, lm*lc);
for i=1:lc
    if any([lm lm] ~= size(autoregressive_matrices{i}))
        error(['The dimensions of mu and autoregressive_matrices for ' var_model_name ' are off']);
    end
    col = lm*(i-1)+1:lm*i;
    A(1:lm, col) = autoregressive_matrices{i};
    if i ~= lc
        A(lm*i+1:lm*i+lm, col) = eye(lm, lm);
    end
end
if var_model_order > 1
    mu = [mu; zeros(lm*var_model_order-lm, 1)];
end
fprintf(fid, '\n%%%% Calculate %d-step-ahead forecast for VAR(%d) written as VAR(1)\n', max(horizon), var_model_order);
fprintf(fid, '%%  Follows Lütkepohl (2005) pg 15 & 34\n');
if max(horizon) == 1
    printInsideOfLoop(fid, mu, A, false);
    fprintf(fid, 'ret(1, :) = y(1:%d);\n', lm);
else
    if length(horizon) ~= 1
        fprintf(fid, 'retidx = 1;\n');
        fprintf(fid, 'ret = zeros(%d, %d);\n', length(horizon), lm);
    end

    fprintf(fid, 'for i=1:%d\n', max(horizon));
    printInsideOfLoop(fid, mu, A, true);
    if length(horizon) ~= 1
        fprintf(fid, '    if any([');
        fprintf(fid, '%d ', horizon);
        fprintf(fid, '] == i)\n');
        fprintf(fid, '        %% If we want a forecast at more than one\n');
        fprintf(fid, '        %% horizon save it in ''ret'' when encountered\n');
        fprintf(fid, '        ret(retidx, :) = y(1:%d);\n', lm);
        fprintf(fid, '        retidx = retidx + 1;\n');
        fprintf(fid, '    end\n');
    end

    fprintf(fid, 'end\n');

    if length(horizon) == 1
        fprintf(fid, 'ret(1, :) = y(1:%d);\n', lm);
    end
end

%% close file
fprintf(fid, 'end\n');
fclose(fid);
end

function printInsideOfLoop(fid, mu, A, inloop)
if inloop
    fs = '    ';
    ns = '       ';
    spaces = '        ';
else
    fs = '';
    ns = '   ';
    spaces = '    ';
end
fprintf(fid, '%sy = ...\n%s[ ... %% intercept\n%s', fs, spaces, ns);
    fprintf(fid, [repmat('% f ', 1, size(mu, 2)) '; ...\n' ns], mu');
fprintf(fid, ' ] + ...\n%s[ ... %% autoregressive matrices\n%s', spaces, ns);
    fprintf(fid, [repmat('% f ', 1, size(A, 2)) '; ...\n' ns], A');
fprintf(fid, ' ] * y;\n');
end