1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
function [expression, growthneutralitycorrection] = write_expectations(expectationmodelname, expectationmodelkind, iscrlf, aggregate)
% Prints the exansion of the VAR_EXPECTATION or PAC_EXPECTATION term in files.
%
% INPUTS
% - epxpectationmodelname [string] Name of the expectation model.
% - expectationmodelkind [string] Kind of the expectation model ('var' or 'pac').
% - iscrlf [string] Adds carriage return after each additive term if true.
%
% OUTPUTS
% - expression [string] Unrolled expectation expression.
% - growthneutralitycorrection [string]
% Copyright © 2019-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
global M_
if ismember(expectationmodelkind, {'var', 'pac'})
if isequal(expectationmodelkind, 'var')
expectationmodelfield = 'var_expectation';
else
expectationmodelfield = 'pac';
end
else
error('Value of third input argument must be ''var'' or ''pac''.')
end
expectationmodel = M_.(expectationmodelfield).(expectationmodelname);
if isfield(expectationmodel, 'model_consistent_expectations') && expectationmodel.model_consistent_expectations
expression = '';
if nargout>1
growthneutralitycorrection = 0;
end
return
end
if nargout>1 && isequal(expectationmodelkind, 'var')
error('Cannot return more than one argument if the expectation model is a VAR.')
end
if nargin<3
iscrlf = false;
aggregate = true;
end
if nargin<4
aggregate = true;
end
if isfield(expectationmodel, 'h_param_indices')
% Disaggregation requires components...
aggregate = true;
end
% Get the name of the associated VAR model and test its existence.
if ~isfield(M_.(expectationmodel.auxiliary_model_type), expectationmodel.auxiliary_model_name)
switch expectationmodelkind
case 'var-expectations'
error('Unknown VAR/TREND_COMPONENT model (%s) in VAR_EXPECTATION_MODEL (%s)!', expectationmodel.auxiliary_model_name, expectationmodelname)
case 'pac-expectations'
error('Unknown VAR/TREND_COMPONENT model (%s) in PAC_EXPECTATION_MODEL (%s)!', expectationmodel.auxiliary_model_name, expectationmodelname)
otherwise
end
end
auxmodel = M_.(expectationmodel.auxiliary_model_type).(expectationmodel.auxiliary_model_name);
maxlag = max(auxmodel.max_lag);
if isequal(expectationmodel.auxiliary_model_type, 'trend_component')
% Need to add a lag since the error correction equations are rewritten in levels.
maxlag = maxlag+1;
end
id = 0;
if isequal(expectationmodelkind, 'var')
timeindices = (0:(maxlag-1))+abs(expectationmodel.time_shift);
end
if isequal(expectationmodelkind, 'var') && isequal(expectationmodel.auxiliary_model_type, 'var')
id = id+1;
expression = sprintf('%s', M_.param_names{expectationmodel.param_indices(id)});
end
if isequal(expectationmodelkind, 'pac') && isequal(expectationmodel.auxiliary_model_type, 'var')
id = id+1;
if isfield(expectationmodel, 'h_param_indices')
expression = sprintf('%s', M_.param_names{expectationmodel.h_param_indices(id)});
else
if aggregate
if isequal(expectationmodel.components(1).coeff_str, '1')
expression = sprintf('%s', M_.param_names{expectationmodel.components(1).h_param_indices(id)});
else
expression = sprintf('%s*%s', expectationmodel.components(1).coeff_str, M_.param_names{expectationmodel.components(1).h_param_indices(id)});
end
for i=2:length(expectationmodel.components)
if isequal(expectationmodel.components(i).coeff_str, '1')
expression = sprintf('%s+%s', expression, M_.param_names{expectationmodel.components(i).h_param_indices(id)});
else
expression = sprintf('%s+%s*%s', expression, expectationmodel.components(i).coeff_str, M_.param_names{expectationmodel.components(i).h_param_indices(id)});
end
end
else
expression = cell(length(expectationmodel.components), 1);
for i=1:length(expectationmodel.components)
expression(i) = {M_.param_names{expectationmodel.components(i).h_param_indices(id)}};
end
end
end
end
for i=1:maxlag
for j=1:length(auxmodel.list_of_variables_in_companion_var)
id = id+1;
variable = auxmodel.list_of_variables_in_companion_var{j};
transformations = {};
ida = get_aux_variable_id(variable);
op = 0;
while ida
op = op+1;
if isequal(M_.aux_vars(ida).type, 8)
transformations(op) = {'diff'};
variable = M_.endo_names{M_.aux_vars(ida).orig_index};
ida = get_aux_variable_id(variable);
elseif isequal(M_.aux_vars(ida).type, 10)
transformations(op) = {M_.aux_vars(ida).unary_op};
variable = M_.endo_names{M_.aux_vars(ida).orig_index};
ida = get_aux_variable_id(variable);
else
error('This case is not implemented.')
end
end
switch expectationmodelkind
case 'var'
parameter = M_.param_names{expectationmodel.param_indices(id)};
case 'pac'
if isfield(expectationmodel, 'h_param_indices')
parameter = M_.param_names{expectationmodel.h_param_indices(id)};
else
if aggregate
% TODO Check if we can have parameters entering with a minus sign in the linear combination defining the target.
if isequal(expectationmodel.components(1).coeff_str, '1')
parameter = M_.param_names{expectationmodel.components(1).h_param_indices(id)};
else
parameter = sprintf('%s*%s', expectationmodel.components(1).coeff_str, M_.param_names{expectationmodel.components(1).h_param_indices(id)});
end
for k=2:length(expectationmodel.components)
if isequal(expectationmodel.components(k).coeff_str, '1')
parameter = sprintf('%s+%s', parameter, M_.param_names{expectationmodel.components(k).h_param_indices(id)});
else
parameter = sprintf('%s+%s*%s', parameter, expectationmodel.components(k).coeff_str, M_.param_names{expectationmodel.components(k).h_param_indices(id)});
end
end
parameter = sprintf('(%s)', parameter);
else
parameter = cell(length(expectationmodel.components), 1);
for k=1:length(expectationmodel.components)
parameter(k) = {M_.param_names{expectationmodel.components(k).h_param_indices(id)}};
end
end
end
otherwise
end
switch expectationmodelkind
case 'var'
if timeindices(i)
variable = sprintf('%s(-%d)', variable, timeindices(i));
end
case 'pac'
variable = sprintf('%s(-%d)', variable, i);
otherwise
end
if ~isempty(transformations)
for k=length(transformations):-1:1
variable = sprintf('%s(%s)', transformations{k}, variable);
end
end
if isequal(id, 1)
if aggregate
if iscrlf
expression = sprintf('%s*%s\n', parameter, variable);
else
expression = sprintf('%s*%s', parameter, variable);
end
else
for k=1:length(expectationmodel.components)
if iscrlf
expression(k) = {sprintf('%s*%s\n', parameter{k}, variable)};
else
expression(k) = {sprintf('%s*%s', parameter{k}, variable)};
end
end
end
else
if aggregate
if iscrlf
expression = sprintf('%s + %s*%s\n', expression, parameter, variable);
else
expression = sprintf('%s + %s*%s', expression, parameter, variable);
end
else
for k=1:length(expectationmodel.components)
if iscrlf
expression(k) = {sprintf('%s + %s*%s\n', expression{k}, parameter{k}, variable)};
else
expression(k) = {sprintf('%s + %s*%s', expression{k}, parameter{k}, variable)};
end
end
end
end
end
end
if aggregate
growthneutralitycorrection = '';
else
growthneutralitycorrection = {};
end
if isfield(expectationmodel, 'growth_neutrality_param_index')
if numel(expectationmodel.growth_linear_comb) == 1
growthneutralitycorrection = sprintf('%s*%s', M_.param_names{expectationmodel.growth_neutrality_param_index}, expectationmodel.growth_str);
else
growthneutralitycorrection = sprintf('%s*(%s)', M_.param_names{expectationmodel.growth_neutrality_param_index}, expectationmodel.growth_str);
end
else
if isfield(expectationmodel, 'components')
if aggregate
growthneutralitycorrection = '';
for i=1:length(expectationmodel.components)
if ~isequal(expectationmodel.components(i).kind, 'll')
if isfield(expectationmodel.components(i), 'growth_neutrality_param_index')
if isempty(growthneutralitycorrection)
if ~isempty(expectationmodel.components(i).growth_str)
if isequal(expectationmodel.components(i).coeff_str, '1')
if numel(expectationmodel.components(i).growth_linear_comb) == 1
growthneutralitycorrection = sprintf('%s*%s', M_.param_names{expectationmodel.components(i).growth_neutrality_param_index}, expectationmodel.components(i).growth_str);
else
growthneutralitycorrection = sprintf('%s*(%s)', M_.param_names{expectationmodel.components(i).growth_neutrality_param_index}, expectationmodel.components(i).growth_str);
end
else
if numel(expectationmodel.components(i).growth_linear_comb) == 1
growthneutralitycorrection = sprintf('%s*%s*%s', expectationmodel.components(i).coeff_str, M_.param_names{expectationmodel.components(i).growth_neutrality_param_index}, expectationmodel.components(i).growth_str);
else
growthneutralitycorrection = sprintf('%s*%s*(%s)', expectationmodel.components(i).coeff_str, M_.param_names{expectationmodel.components(i).growth_neutrality_param_index}, expectationmodel.components(i).growth_str);
end
end
end
else
if ~isempty(expectationmodel.components(i).growth_str)
if isequal(expectationmodel.components(i).coeff_str, '1')
if numel(expectationmodel.components(i).growth_linear_comb) == 1
growthneutralitycorrection = sprintf('%s+%s*%s', growthneutralitycorrection, M_.param_names{expectationmodel.components(i).growth_neutrality_param_index}, expectationmodel.components(i).growth_str);
else
growthneutralitycorrection = sprintf('%s+%s*(%s)', growthneutralitycorrection, M_.param_names{expectationmodel.components(i).growth_neutrality_param_index}, expectationmodel.components(i).growth_str);
end
else
if numel(expectationmodel.components(i).growth_linear_comb) == 1
growthneutralitycorrection = sprintf('%s+%s*%s*%s', growthneutralitycorrection, expectationmodel.components(i).coeff_str, M_.param_names{expectationmodel.components(i).growth_neutrality_param_index}, expectationmodel.components(i).growth_str);
else
growthneutralitycorrection = sprintf('%s+%s*%s*(%s)', growthneutralitycorrection, expectationmodel.components(i).coeff_str, M_.param_names{expectationmodel.components(i).growth_neutrality_param_index}, expectationmodel.components(i).growth_str);
end
end
end
end
end % if growth neutrality correction for this component
end % if non stationary component
end
else
growthneutralitycorrection = repmat({''}, length(expectationmodel.components), 1);
for i=1:length(growthneutralitycorrection)
if ~isequal(expectationmodel.components(i).kind, 'll')
if isfield(expectationmodel.components(i), 'growth_neutrality_param_index')
if ~isempty(expectationmodel.components(i).growth_str)
if numel(expectationmodel.components(i).growth_linear_comb) == 1
growthneutralitycorrection(i) = {sprintf('%s*%s', M_.param_names{expectationmodel.components(i).growth_neutrality_param_index}, expectationmodel.components(i).growth_str)};
else
growthneutralitycorrection(i) = {sprintf('%s*(%s)', M_.param_names{expectationmodel.components(i).growth_neutrality_param_index}, expectationmodel.components(i).growth_str)};
end
end
end % if growth neutrality correction for this component
end % if non stationary component
end
end % if aggregate
end
end
if nargout==1 && ~isempty(growthneutralitycorrection)
expression = sprintf('%s + %s', expression, growthneutralitycorrection);
end
|