1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
/*
* This file replicates the model studied in:
* Aguiar, Mark and Gopinath, Gita (2004): “Emerging Market Business Cycles:
* The Cycle is the Trend” (NBER WP 10734). It is different from version published
* in the Journal of Political Economy.
*
* This model file is intended to show the capabilities of the Dynare macro
* languange. It is not intended to provide a full replication of the original
* paper due to some differences in model calibration. In
* particular, this mod-file does not calibrate the share of debt to GDP
* to 0.1 as this would require the use of a steady state file. Rather, the
* absolute value of debt is set to 0.1. Given that output is close to 1 in
* the benchmark specification, this results in only a small difference to
* the working paper.
* The mod-file reproduces Figure 4 of the working paper, which displays the
* model response to 1 percent shock to trend and cyclical TFP.
*
* This implementation was written by Sébastien Villemot and Johannes Pfeifer.
* Please note that the following copyright notice only applies to this Dynare
* implementation of the model.
*/
/*
* Copyright © 2012-13 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
// Set the following variable to 0 to get Cobb-Douglas utility
@#define ghh = 1
// Set the following variable to 0 to get the calibration for Canada
@#define mexico = 1
var c k y b q g l u z uc ul f c_y tb_y i_y;
varexo eps_z eps_g;
parameters mu_g sigma rho_g sigma_g delta phi psi b_star alpha rho_z sigma_z r_star beta;
// Benchmark parameter values (table 3)
@#if ghh == 1
parameters tau nu;
tau = 1.4;
nu = 1.6;
@#else
parameters gamma;
gamma = 0.36;
@#endif
alpha = 0.68;
sigma = 2;
delta = 0.03;
beta = 0.98;
psi = 0.001;
b_star = 0.1; //taken here as the steady state value of debt; in the original paper, this is the share of debt to GDP
// Estimated parameters (table 4)
@#if mexico == 1
@# if ghh == 1
mu_g = 1.006;
sigma_z = 0.0041;
rho_z = 0.94;
sigma_g = 0.0109;
rho_g = 0.72;
phi = 3.79;
@# else
mu_g = 1.005;
sigma_z = 0.0046;
rho_z = 0.94;
sigma_g = 0.025;
rho_g = 0.06;
phi = 2.82;
@# endif
@#else
// Canada
@# if ghh == 1
mu_g = 1.007;
sigma_z = 0.0057;
rho_z = 0.88;
sigma_g = 0.0014;
rho_g = 0.94;
phi = 2.63;
@# else
mu_g = 1.007;
sigma_z = 0.0072;
rho_z = 0.96;
sigma_g = 0.0044;
rho_g = 0.50;
phi = 3.76;
@# endif
@#endif
@#if ghh == 1
r_star = mu_g^sigma/beta - 1;
@#else
r_star = mu_g^(1-gamma*(1-sigma))/beta - 1;
@#endif
model; //equation numbers refer to numbers in the working paper version
y=exp(z)*k(-1)^(1-alpha)*(g*l)^alpha; // Production technology (1)
z = rho_z*z(-1)+sigma_z*eps_z; // Transitory shock (2)
log(g) = (1-rho_g)*log(mu_g)+rho_g*log(g(-1))+sigma_g*eps_g; // Trend shock
@#if ghh == 1
u = (c-tau*l^nu)^(1-sigma)/(1-sigma); // GHH utility (3)
uc = (c - tau*l^nu)^(-sigma);
ul = -tau*nu*l^(nu-1)*(c - tau*l^nu)^(-sigma);
f = beta*g^(1-sigma);
@#else
u = (c^gamma*(1-l)^(1-gamma))^(1-sigma)/(1-sigma); // Cobb-Douglas utility (4)
uc = gamma*u/c*(1-sigma);
ul = -(1-gamma)*u/(1-l)*(1-sigma);
f = beta*g^(gamma*(1-sigma));
@#endif
c+g*k=y+(1-delta)*k(-1)-phi/2*(g*k/k(-1)-mu_g)^2*k(-1)-b(-1)+q*g*b; // Resource constraint (5)
1/q = 1+r_star+psi*(exp(b-b_star)-1); // Price of debt (6)
uc*(1+phi*(g*k/k(-1)-mu_g))*g=f*uc(+1)*(1-delta+(1-alpha)*y(+1)/k+phi/2*(g(+1)*k(+1)/k-mu_g)*(g(+1)*k(+1)/k+mu_g)); // FOC wrt to capital (10) with envelope condition plugged in
ul+uc*alpha*y/l=0; // Leisure-consumption arbitrage (11)
uc*g*q=f*uc(+1); // Euler equation (12)
//definition of auxilary variables to be plotted
tb_y = (b(-1)-g*q*b)/y; // Trade balance to GDP ratio, not logged as it can be negative
c_y = log(c/y); // Consumption to GDP ratio, logged to be in percent
i_y = log((g*k-(1-delta)*k(-1)+phi/2*(g*k/k(-1)-mu_g)^2*k(-1))/y); // Investment to GDP ratio, logged to be in percent
end;
initval;
q = 1/(1+r_star);
b = b_star;
z = 0;
g = mu_g;
c = 0.583095;
k = 4.02387;
y = 0.721195;
l = 0.321155;
@#if ghh == 1
u = (c-tau*l^nu)^(1-sigma)/(1-sigma);
uc = (c - tau*l^nu)^(-sigma);
ul = -tau*nu*l^(nu-1)*(c - tau*l)^(-sigma);
f = beta*g^(1-sigma);
@#else
u = (c^gamma*(1-l)^(1-gamma))^(1-sigma)/(1-sigma);
uc = gamma*u/c*(1-sigma);
ul = -(1-gamma)*u/(1-l)*(1-sigma);
f = beta*g^(gamma*(1-sigma));
@#endif
tb_y = (b-g*q*b)/y;
c_y = c/y;
i_y = (g*k-(1-delta)*k)/y;
end;
shocks;
var eps_g; stderr 1/sigma_g/100; // use a 1 percent shock
var eps_z; stderr 1/sigma_z/100; // use a 1 percent shock
end;
steady;
check;
// Plot impulse response functions (Figure 4)
stoch_simul(order=1) tb_y c_y i_y;
|