1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
/*
* This file implements the multi-country RBC model with time to build,
* described in Backus, Kehoe and Kydland (1992): "International Real Business
* Cycles", Journal of Political Economy, 100(4), 745-775.
*
* The notation for the variable names are the same in this file than in the paper.
* However the timing convention is different: we had to taken into account the
* fact that in Dynare, if a variable is denoted at the current period, then
* this variable must be also decided at the current period.
* Concretely, here are the differences between the paper and the model file:
* - z_t in the model file is equal to z_{t+1} in the paper
* - k_t in the model file is equal to k_{t+J} in the paper
* - s_t in the model file is equal to s_{J,t}=s_{J-1,t+1}=...=s_{1,t+J-1} in the paper
*
* The macroprocessor is used in this file to create a loop over countries.
* Only two countries are used here (as in the paper), but it is easy to add
* new countries in the corresponding macro-variable and completing the
* calibration.
*
* The calibration is the same than in the paper. The results in terms of
* moments of variables are very close to that of the paper (but not equal
* since the authors a different solution method).
*
* This implementation was written by Sebastien Villemot. Please note that the
* following copyright notice only applies to this Dynare implementation of the
* model.
*/
/*
* Copyright © 2010 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
@#define countries = [ "H", "F" ]
@#define J = 4
@#for co in countries
var C_@{co} L_@{co} N_@{co} A_@{co} K_@{co} Z_@{co} X_@{co} LAMBDA_@{co} S_@{co} NX_@{co} Y_@{co};
varexo E_@{co};
parameters beta_@{co} alpha_@{co} eta_@{co} mu_@{co} gamma_@{co} theta_@{co} nu_@{co} sigma_@{co} delta_@{co} phi_@{co} psi_@{co} rho_@{co}_@{co};
@#endfor
// Lagrange multiplier of aggregate constraint
var LGM;
parameters rho_@{countries[1]}_@{countries[2]} rho_@{countries[2]}_@{countries[1]};
model;
@#for co in countries
Y_@{co} = ((LAMBDA_@{co}*K_@{co}(-@{J})^theta_@{co}*N_@{co}^(1-theta_@{co}))^(-nu_@{co}) + sigma_@{co}*Z_@{co}(-1)^(-nu_@{co}))^(-1/nu_@{co});
K_@{co} = (1-delta_@{co})*K_@{co}(-1) + S_@{co};
X_@{co} =
@# for lag in (-J+1):0
+ phi_@{co}*S_@{co}(@{lag})
@# endfor
;
A_@{co} = (1-eta_@{co})*A_@{co}(-1) + N_@{co};
L_@{co} = 1 - alpha_@{co}*N_@{co} - (1-alpha_@{co})*eta_@{co}*A_@{co}(-1);
// Utility multiplied by gamma
# U_@{co} = (C_@{co}^mu_@{co}*L_@{co}^(1-mu_@{co}))^gamma_@{co};
// FOC with respect to consumption
psi_@{co}*mu_@{co}/C_@{co}*U_@{co} = LGM;
// FOC with respect to labor
// NOTE: this condition is only valid for alpha = 1
psi_@{co}*(1-mu_@{co})/L_@{co}*U_@{co}*(-alpha_@{co}) = - LGM * (1-theta_@{co})/N_@{co}*(LAMBDA_@{co}*K_@{co}(-@{J})^theta_@{co}*N_@{co}^(1-theta_@{co}))^(-nu_@{co})*Y_@{co}^(1+nu_@{co});
// FOC with respect to capital
@# for lag in 0:(J-1)
+beta_@{co}^@{lag}*LGM(+@{lag})*phi_@{co}
@# endfor
@# for lag in 1:J
-beta_@{co}^@{lag}*LGM(+@{lag})*phi_@{co}*(1-delta_@{co})
@# endfor
= beta_@{co}^@{J}*LGM(+@{J})*theta_@{co}/K_@{co}*(LAMBDA_@{co}(+@{J})*K_@{co}^theta_@{co}*N_@{co}(+@{J})^(1-theta_@{co}))^(-nu_@{co})*Y_@{co}(+@{J})^(1+nu_@{co});
// FOC with respect to stock of inventories
LGM=beta_@{co}*LGM(+1)*(1+sigma_@{co}*Z_@{co}^(-nu_@{co}-1)*Y_@{co}(+1)^(1+nu_@{co}));
// Shock process
@# if co == countries[1]
@# define alt_co = countries[2]
@# else
@# define alt_co = countries[1]
@# endif
(LAMBDA_@{co}-1) = rho_@{co}_@{co}*(LAMBDA_@{co}(-1)-1) + rho_@{co}_@{alt_co}*(LAMBDA_@{alt_co}(-1)-1) + E_@{co};
NX_@{co} = (Y_@{co} - (C_@{co} + X_@{co} + Z_@{co} - Z_@{co}(-1)))/Y_@{co};
@#endfor
// World ressource constraint
@#for co in countries
+C_@{co} + X_@{co} + Z_@{co} - Z_@{co}(-1)
@#endfor
=
@#for co in countries
+Y_@{co}
@#endfor
;
end;
@#for co in countries
beta_@{co} = 0.99;
mu_@{co} = 0.34;
gamma_@{co} = -1.0;
alpha_@{co} = 1;
eta_@{co} = 0.5; // Irrelevant when alpha=1
theta_@{co} = 0.36;
nu_@{co} = 3;
sigma_@{co} = 0.01;
delta_@{co} = 0.025;
phi_@{co} = 1/@{J};
psi_@{co} = 0.5;
@#endfor
rho_H_H = 0.906;
rho_F_F = 0.906;
rho_H_F = 0.088;
rho_F_H = 0.088;
initval;
@#for co in countries
LAMBDA_@{co} = 1;
NX_@{co} = 0;
Z_@{co} = 1;
A_@{co} = 1;
L_@{co} = 0.5;
N_@{co} = 0.5;
Y_@{co} = 1;
K_@{co} = 1;
C_@{co} = 1;
S_@{co} = 1;
X_@{co} = 1;
E_@{co} = 0;
@#endfor
LGM = 1;
end;
shocks;
var E_H; stderr 0.00852;
var E_F; stderr 0.00852;
corr E_H, E_F = 0.258;
end;
steady;
check;
stoch_simul(order=1, hp_filter=1600, nograph);
|