File: bkk.mod

package info (click to toggle)
dynare 6.5-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 67,796 kB
  • sloc: cpp: 79,110; ansic: 28,917; objc: 12,445; yacc: 4,537; pascal: 1,993; lex: 1,441; sh: 1,132; python: 634; makefile: 628; lisp: 163; xml: 18
file content (173 lines) | stat: -rw-r--r-- 5,188 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/*
 * This file implements the multi-country RBC model with time to build,
 * described in Backus, Kehoe and Kydland (1992): "International Real Business
 * Cycles", Journal of Political Economy, 100(4), 745-775.
 *
 * The notation for the variable names are the same in this file than in the paper.
 * However the timing convention is different: we had to taken into account the
 * fact that in Dynare, if a variable is denoted at the current period, then
 * this variable must be also decided at the current period.
 * Concretely, here are the differences between the paper and the model file:
 * - z_t in the model file is equal to z_{t+1} in the paper
 * - k_t in the model file is equal to k_{t+J} in the paper
 * - s_t in the model file is equal to s_{J,t}=s_{J-1,t+1}=...=s_{1,t+J-1} in the paper
 *
 * The macroprocessor is used in this file to create a loop over countries.
 * Only two countries are used here (as in the paper), but it is easy to add
 * new countries in the corresponding macro-variable and completing the
 * calibration.
 *
 * The calibration is the same than in the paper. The results in terms of
 * moments of variables are very close to that of the paper (but not equal
 * since the authors a different solution method).
 *
 * This implementation was written by Sebastien Villemot. Please note that the
 * following copyright notice only applies to this Dynare implementation of the
 * model.
 */

/*
 * Copyright © 2010 Dynare Team
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <https://www.gnu.org/licenses/>.
 */

@#define countries = [ "H", "F" ]
@#define J = 4

@#for co in countries
var C_@{co} L_@{co} N_@{co} A_@{co} K_@{co} Z_@{co} X_@{co} LAMBDA_@{co} S_@{co} NX_@{co} Y_@{co};

varexo E_@{co};

parameters beta_@{co} alpha_@{co} eta_@{co} mu_@{co} gamma_@{co} theta_@{co} nu_@{co} sigma_@{co} delta_@{co} phi_@{co} psi_@{co} rho_@{co}_@{co};
@#endfor

// Lagrange multiplier of aggregate constraint
var LGM;

parameters rho_@{countries[1]}_@{countries[2]} rho_@{countries[2]}_@{countries[1]};

model;
@#for co in countries

Y_@{co} = ((LAMBDA_@{co}*K_@{co}(-@{J})^theta_@{co}*N_@{co}^(1-theta_@{co}))^(-nu_@{co}) + sigma_@{co}*Z_@{co}(-1)^(-nu_@{co}))^(-1/nu_@{co});
K_@{co} = (1-delta_@{co})*K_@{co}(-1) + S_@{co};
X_@{co} =
@# for lag in (-J+1):0
          + phi_@{co}*S_@{co}(@{lag})
@# endfor
;

A_@{co} = (1-eta_@{co})*A_@{co}(-1) + N_@{co};
L_@{co} = 1 - alpha_@{co}*N_@{co} - (1-alpha_@{co})*eta_@{co}*A_@{co}(-1);

// Utility multiplied by gamma
# U_@{co} = (C_@{co}^mu_@{co}*L_@{co}^(1-mu_@{co}))^gamma_@{co};

// FOC with respect to consumption
psi_@{co}*mu_@{co}/C_@{co}*U_@{co} = LGM;

// FOC with respect to labor
// NOTE: this condition is only valid for alpha = 1
psi_@{co}*(1-mu_@{co})/L_@{co}*U_@{co}*(-alpha_@{co}) = - LGM * (1-theta_@{co})/N_@{co}*(LAMBDA_@{co}*K_@{co}(-@{J})^theta_@{co}*N_@{co}^(1-theta_@{co}))^(-nu_@{co})*Y_@{co}^(1+nu_@{co});

// FOC with respect to capital
@# for lag in 0:(J-1)
 +beta_@{co}^@{lag}*LGM(+@{lag})*phi_@{co}
@# endfor
@# for lag in 1:J
 -beta_@{co}^@{lag}*LGM(+@{lag})*phi_@{co}*(1-delta_@{co})
@# endfor
 = beta_@{co}^@{J}*LGM(+@{J})*theta_@{co}/K_@{co}*(LAMBDA_@{co}(+@{J})*K_@{co}^theta_@{co}*N_@{co}(+@{J})^(1-theta_@{co}))^(-nu_@{co})*Y_@{co}(+@{J})^(1+nu_@{co});

// FOC with respect to stock of inventories
 LGM=beta_@{co}*LGM(+1)*(1+sigma_@{co}*Z_@{co}^(-nu_@{co}-1)*Y_@{co}(+1)^(1+nu_@{co}));

// Shock process
@# if co == countries[1]
@#  define alt_co = countries[2]
@# else
@#  define alt_co = countries[1]
@# endif
 (LAMBDA_@{co}-1) = rho_@{co}_@{co}*(LAMBDA_@{co}(-1)-1) + rho_@{co}_@{alt_co}*(LAMBDA_@{alt_co}(-1)-1) + E_@{co};


NX_@{co} = (Y_@{co} - (C_@{co} + X_@{co} + Z_@{co} - Z_@{co}(-1)))/Y_@{co};

@#endfor

// World ressource constraint
@#for co in countries
  +C_@{co} + X_@{co} + Z_@{co} - Z_@{co}(-1)
@#endfor
    =
@#for co in countries
  +Y_@{co}
@#endfor
    ;

end;

@#for co in countries
beta_@{co} = 0.99;
mu_@{co} = 0.34;
gamma_@{co} = -1.0;
alpha_@{co} = 1;
eta_@{co} = 0.5; // Irrelevant when alpha=1
theta_@{co} = 0.36;
nu_@{co} = 3;
sigma_@{co} = 0.01;
delta_@{co} = 0.025;
phi_@{co} = 1/@{J};
psi_@{co} = 0.5;
@#endfor

rho_H_H = 0.906;
rho_F_F = 0.906;
rho_H_F = 0.088;
rho_F_H = 0.088;

initval;
@#for co in countries
LAMBDA_@{co} = 1;
NX_@{co} = 0;
Z_@{co} = 1;
A_@{co} = 1;
L_@{co} = 0.5;
N_@{co} = 0.5;
Y_@{co} = 1;
K_@{co} = 1;
C_@{co} = 1;
S_@{co} = 1;
X_@{co} = 1;

E_@{co} = 0;
@#endfor

LGM = 1;
end;

shocks;
var E_H; stderr 0.00852;
var E_F; stderr 0.00852;
corr E_H, E_F = 0.258;
end;

steady;
check;

stoch_simul(order=1, hp_filter=1600, nograph);