1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
/*
* This file replicates the estimation of the cash in advance model (termed M1
* in the paper) described in Frank Schorfheide (2000): "Loss function-based
* evaluation of DSGE models", Journal of Applied Econometrics, 15(6), 645-670.
*
* The data are taken from the replication package at
* http://dx.doi.org/10.15456/jae.2022314.0708799949
*
* The prior distribution follows the one originally specified in Schorfheide's
* paper. Note that the elicited beta prior for rho in the paper
* implies an asymptote and corresponding prior mode at 0. It is generally
* recommended to avoid this extreme type of prior.
*
* Because the data are already logged and we use the loglinear option to conduct
* a full log-linearization, we need to use the logdata option.
*
* The equations are taken from J. Nason and T. Cogley (1994): "Testing the
* implications of long-run neutrality for monetary business cycle models",
* Journal of Applied Econometrics, 9, S37-S70, NC in the following.
* Note that there is an initial minus sign missing in equation (A1), p. S63.
*
* This implementation was originally written by Michel Juillard. Please note that the
* following copyright notice only applies to this Dynare implementation of the
* model.
*/
/*
* Copyright © 2004-2023 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
var m ${m}$ (long_name='money growth')
P ${P}$ (long_name='Price level')
c ${c}$ (long_name='consumption')
e ${e}$ (long_name='capital stock')
W ${W}$ (long_name='Wage rate')
R ${R}$ (long_name='interest rate')
k ${k}$ (long_name='capital stock')
d ${d}$ (long_name='dividends')
n ${n}$ (long_name='labor')
l ${l}$ (long_name='loans')
gy_obs ${\Delta \ln GDP}$ (long_name='detrended capital stock')
gp_obs ${\Delta \ln P}$ (long_name='detrended capital stock')
y ${y}$ (long_name='detrended output')
dA ${\Delta A}$ (long_name='TFP growth')
;
varexo e_a ${\epsilon_A}$ (long_name='TFP shock')
e_m ${\epsilon_M}$ (long_name='Money growth shock')
;
parameters alp ${\alpha}$ (long_name='capital share')
bet ${\beta}$ (long_name='discount factor')
gam ${\gamma}$ (long_name='long-run TFP growth')
logmst ${\log(m^*)}$ (long_name='long-run money growth')
rho ${\rho}$ (long_name='autocorrelation money growth')
phi ${\phi}$ (long_name='labor weight in consumption')
del ${\delta}$ (long_name='depreciation rate')
;
% roughly picked values to allow simulating the model before estimation
alp = 0.33;
bet = 0.99;
gam = 0.003;
logmst = log(1.011);
rho = 0.7;
phi = 0.787;
del = 0.02;
model;
[name='NC before eq. (1), TFP growth equation']
dA = exp(gam+e_a);
[name='NC eq. (2), money growth rate']
log(m) = (1-rho)*logmst + rho*log(m(-1))+e_m;
[name='NC eq. (A1), Euler equation']
-P/(c(+1)*P(+1)*m)+bet*P(+1)*(alp*exp(-alp*(gam+log(e(+1))))*k^(alp-1)*n(+1)^(1-alp)+(1-del)*exp(-(gam+log(e(+1)))))/(c(+2)*P(+2)*m(+1))=0;
[name='NC below eq. (A1), firm borrowing constraint']
W = l/n;
[name='NC eq. (A2), intratemporal labour market condition']
-(phi/(1-phi))*(c*P/(1-n))+l/n = 0;
[name='NC below eq. (A2), credit market clearing']
R = P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(-alp)/W;
[name='NC eq. (A3), credit market optimality']
1/(c*P)-bet*P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)/(m*l*c(+1)*P(+1)) = 0;
[name='NC eq. (18), aggregate resource constraint']
c+k = exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)+(1-del)*exp(-(gam+e_a))*k(-1);
[name='NC eq. (19), money market condition']
P*c = m;
[name='NC eq. (20), credit market equilibrium condition']
m-1+d = l;
[name='Definition TFP shock']
e = exp(e_a);
[name='Implied by NC eq. (18), production function']
y = k(-1)^alp*n^(1-alp)*exp(-alp*(gam+e_a));
[name='Observation equation GDP growth']
gy_obs = dA*y/y(-1);
[name='Observation equation price level']
gp_obs = (P/P(-1))*m(-1)/dA;
end;
shocks;
var e_a; stderr 0.014;
var e_m; stderr 0.005;
end;
steady_state_model;
dA = exp(gam);
gst = 1/dA;
m = exp(logmst);
khst = ( (1-gst*bet*(1-del)) / (alp*gst^alp*bet) )^(1/(alp-1));
xist = ( ((khst*gst)^alp - (1-gst*(1-del))*khst)/m )^(-1);
nust = phi*m^2/( (1-alp)*(1-phi)*bet*gst^alp*khst^alp );
n = xist/(nust+xist);
P = xist + nust;
k = khst*n;
l = phi*m*n/( (1-phi)*(1-n) );
c = m/P;
d = l - m + 1;
y = k^alp*n^(1-alp)*gst^alp;
R = m/bet;
W = l/n;
ist = y-c;
q = 1 - d;
e = 1;
gp_obs = m/dA;
gy_obs = dA;
end;
steady;
check;
% Table 1 of Schorfheide (2000)
estimated_params;
alp, beta_pdf, 0.356, 0.02;
bet, beta_pdf, 0.993, 0.002;
gam, normal_pdf, 0.0085, 0.003;
logmst, normal_pdf, 0.0002, 0.007;
rho, beta_pdf, 0.129, 0.223;
phi, beta_pdf, 0.65, 0.05;
del, beta_pdf, 0.01, 0.005;
stderr e_a, inv_gamma_pdf, 0.035449, inf;
stderr e_m, inv_gamma_pdf, 0.008862, inf;
end;
varobs gp_obs gy_obs;
estimation(order=1, datafile=fs2000_data, loglinear,logdata, mode_compute=4, mh_replic=20000, nodiagnostic, mh_nblocks=2, mh_jscale=0.8, mode_check);
%uncomment the following lines to generate LaTeX-code of the model equations
%write_latex_original_model(write_equation_tags);
%collect_latex_files;
|