File: fs2000_corr_ME.mod

package info (click to toggle)
dynare 6.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,796 kB
  • sloc: cpp: 79,110; ansic: 28,917; objc: 12,445; yacc: 4,537; pascal: 1,993; lex: 1,441; sh: 1,132; python: 634; makefile: 628; lisp: 163; xml: 18
file content (192 lines) | stat: -rw-r--r-- 6,465 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/*
 * This file is based on the cash in advance model described
 * Frank Schorfheide (2000): "Loss function-based evaluation of DSGE models",
 * Journal of Applied Econometrics, 15(6), 645-670.
 *
 * The equations are taken from J. Nason and T. Cogley (1994): "Testing the
 * implications of long-run neutrality for monetary business cycle models",
 * Journal of Applied Econometrics, 9, S37-S70.
 * Note that there is an initial minus sign missing in equation (A1), p. S63.
 *
 * This implementation was written by Michel Juillard. Please note that the
 * following copyright notice only applies to this Dynare implementation of the
 * model.
 */

/*
 * Copyright © 2004-2016 Dynare Team
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <https://www.gnu.org/licenses/>.
 */

var m ${m}$ (long_name='Money Stock')
    P ${P}$ (long_name='Price Level')
    c ${c}$ (long_name='Consumption')
    e ${e}$ (long_name='exp(Tech. Shock)')
    W ${W}$ (long_name='Nominal Wage')
    R ${R}$ (long_name='Nominal Rental Rate of Capital')
    k ${k}$ (long_name='Capital')
    d ${d}$ (long_name='Deposits')
    n ${n}$ (long_name='Hours worked')
    l ${l}$ (long_name='Loans')
    gy_obs ${\Delta y^{obs}}$ (long_name='Observed growth rate of output')
    gp_obs ${\Delta m^{obs}}$ (long_name='Observed growth rate of prices')
    y  ${y}$ (long_name='Output')
    dA ${\Delta A}$ (long_name='Labor Augm. Techn. Growth Rate')
            ;
varexo e_a ${\varepsilon_a}$ (long_name='Technology shock')
    e_m ${\varepsilon_m}$ (long_name='Observed money growth rate')
        ;

parameters alp ${\alpha}$ (long_name='capital share')
        bet ${\beta}$ (long_name='discount factor')
        gam ${\gamma}$ (long_name='Average technology growth')
        mst ${\bar m}$ (long_name='Average money stock')
        rho ${\rho}$ (long_name='Autocorrelation money process')
        psi ${\psi}$ (long_name='Leisure weight in utility')
        del ${\delta}$ (long_name='depreciation')
        ;

alp = 0.33;
bet = 0.99;
gam = 0.003;
mst = 1.011;
rho = 0.7;
psi = 0.787;
del = 0.02;

model;
[name='technology growth: $\Delta A_{t}$', eq='\#1']
dA = exp(gam+e_a);
[name='money supply rule']
log(m) = (1-rho)*log(mst) + rho*log(m(-1))+e_m;
-P/(c(+1)*P(+1)*m)+bet*P(+1)*(alp*exp(-alp*(gam+log(e(+1))))*k^(alp-1)*n(+1)^(1-alp)+(1-del)*exp(-(gam+log(e(+1)))))/(c(+2)*P(+2)*m(+1))=0;
W = l/n;
-(psi/(1-psi))*(c*P/(1-n))+l/n = 0;
R = P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(-alp)/W;
1/(c*P)-bet*P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)/(m*l*c(+1)*P(+1)) = 0;
c+k = exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)+(1-del)*exp(-(gam+e_a))*k(-1);
P*c = m;
m-1+d = l;
e = exp(e_a);
[name='Production function']
y = k(-1)^alp*n^(1-alp)*exp(-alp*(gam+e_a));
[name='observed output growth']
gy_obs = dA*y/y(-1);
[name='observed inflation']
gp_obs = (P/P(-1))*m(-1)/dA;
end;

steady_state_model;
  dA = exp(gam);
  gst = 1/dA;
  m = mst;
  khst = ( (1-gst*bet*(1-del)) / (alp*gst^alp*bet) )^(1/(alp-1));
  xist = ( ((khst*gst)^alp - (1-gst*(1-del))*khst)/mst )^(-1);
  nust = psi*mst^2/( (1-alp)*(1-psi)*bet*gst^alp*khst^alp );
  n  = xist/(nust+xist);
  P  = xist + nust;
  k  = khst*n;

  l  = psi*mst*n/( (1-psi)*(1-n) );
  c  = mst/P;
  d  = l - mst + 1;
  y  = k^alp*n^(1-alp)*gst^alp;
  R  = mst/bet;
  W  = l/n;
  ist  = y-c;
  q  = 1 - d;

  e = 1;
  
  gp_obs = m/dA;
  gy_obs = dA;
end;

varobs gp_obs gy_obs;

shocks;
var e_a; stderr 0.014;
var e_m; stderr 0.005;
corr gy_obs,gp_obs = 0.5;
end;

steady;

stoch_simul(order=1,irf=20,graph_format=eps,periods=1000,contemporaneous_correlation,conditional_variance_decomposition=[1,3],tex);
options_.rplottype=0;
rplot y e_a gy_obs;
options_.rplottype=1;
rplot l e_m gp_obs;
options_.rplottype=2;
rplot n e_a e_m m;
stoch_simul(order=1,irf=20,graph_format=eps,periods=0,contemporaneous_correlation,conditional_variance_decomposition=[1,3]);

write_latex_original_model;
write_latex_static_model;
write_latex_dynamic_model(write_equation_tags);
write_latex_parameter_table;
write_latex_definitions;
write_latex_steady_state_model;

estimated_params;
alp, 0.356;
gam,  0.0085;
del, 0.01;
stderr e_a, 0.035449;
stderr e_m, 0.008862;
corr e_m, e_a, 0;
stderr gp_obs, 1;
stderr gy_obs, 1;
corr gp_obs, gy_obs,0;
end;

estimation(order=1,mode_compute=4,silent_optimizer,datafile='../fs2000/fsdat_simul',brooks_gelman_plotrows=4, mode_check,smoother,filter_covariance,filter_decomposition,forecast = 8,filtered_vars,filter_step_ahead=[1,3],irf=20,contemporaneous_correlation) m P c e W R k d y gy_obs;



estimated_params(overwrite);
//alp, beta_pdf, 0.356, 0.02;
gam, normal_pdf, 0.0085, 0.003;
//del, beta_pdf, 0.01, 0.005;
stderr e_a, inv_gamma_pdf, 0.035449, inf;
stderr e_m, inv_gamma_pdf, 0.008862, inf;
corr e_m, e_a, normal_pdf, 0, 0.2;
stderr gp_obs, inv_gamma_pdf, 0.001, inf;
stderr gy_obs, inv_gamma_pdf, 0.001, inf;
corr gp_obs, gy_obs,normal_pdf, 0, 0.2;
end;

write_latex_prior_table;

estimation(mode_compute=8,silent_optimizer,order=1,datafile='../fs2000/fsdat_simul',mode_check,smoother,filter_decomposition,mh_replic=4000, mh_nblocks=1, mh_jscale=0.8,forecast = 8,bayesian_irf,filtered_vars,filter_step_ahead=[1,3],irf=20,
        moments_varendo,contemporaneous_correlation,conditional_variance_decomposition=[1 2 4],smoothed_state_uncertainty,raftery_lewis_diagnostics) m P c e W R k d y gy_obs;

trace_plot(options_,M_,estim_params_,'PosteriorDensity',1);
trace_plot(options_,M_,estim_params_,'StructuralShock',1,'e_a')

shock_decomposition y W R;

stoch_simul(order=1,irf=20,graph_format=eps,periods=0,contemporaneous_correlation,conditional_variance_decomposition=[1,3]);

collect_latex_files;

//identification(advanced=1,max_dim_cova_group=3,prior_mc=250);
[status, cmdout]=system(['pdflatex -halt-on-error -interaction=nonstopmode ' M_.fname '_TeX_binder.tex']);
if status
    cmdout
    error('TeX-File did not compile.')
end