File: example3.mod

package info (click to toggle)
dynare 6.5-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 67,796 kB
  • sloc: cpp: 79,110; ansic: 28,917; objc: 12,445; yacc: 4,537; pascal: 1,993; lex: 1,441; sh: 1,132; python: 634; makefile: 628; lisp: 163; xml: 18
file content (138 lines) | stat: -rw-r--r-- 5,113 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/*
 * Example 1 from F. Collard (2001): "Stochastic simulations with DYNARE:
 * A practical guide" (see "guide.pdf" in the documentation directory).
 * 
 * This file uses the steady_state_model-block to provide analytical steady state values.
 * To do so, the equations of the model have been transformed into a non-linear equation in 
 * labor h. Within the steady_state_model-block, a helper function is called that uses fsolve
 * to solve this non-linear equation. The use of the helper function is necessary to avoid 
 * interference of the MATLAB syntax with Dynare's preprocessor. A more complicated alternative 
 * that provides more flexibility in the type of commands executed and functions called is the use 
 * of an explicit steady state file. See the NK_baseline.mod in the Examples Folder.
 * 
 * This mod-file also shows how to use Dynare's capacities to generate TeX-files of the model equations. 
 * If you want to see the model equations belonging to this mod-file, run it using Dynare 
 * and then use a TeX-editor to compile the TeX-files generated.
 */

/*
 * Copyright © 2013 Dynare Team
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <https://www.gnu.org/licenses/>.
 */

@#define unit_root_var=0

var y, c, k, a, h, b
@#if unit_root_var==1
    , unit_root
@#endif
;
varexo e, u;

parameters beta $\beta$
     rho $\rho$
     alpha $\alpha$
     delta $\delta$
     theta $\theta$
     psi $\psi$
     tau $\tau$;

alpha = 0.36;
rho   = 0.95;
tau   = 0.025;
beta  = 0.99;
delta = 0.025;
psi   = 0;
theta = 2.95;

phi   = 0.1;

model;
c*theta*h^(1+psi)=(1-alpha)*y;
k = beta*(((exp(b)*c)/(exp(b(+1))*c(+1)))
    *(exp(b(+1))*alpha*y(+1)+(1-delta)*k));
y = exp(a)*(k(-1)^alpha)*(h^(1-alpha));
k = exp(b)*(y-c)+(1-delta)*k(-1);
a = rho*a(-1)+tau*b(-1) + e;
b = tau*a(-1)+rho*b(-1) + u;
@#if unit_root_var==1
    unit_root=unit_root(-1)+e;
@#endif
end;

steady_state_model;
h=example3_steady_state_helper(alpha,beta,delta,psi,theta);
k=((1/beta-(1-delta))/alpha)^(1/(alpha-1))*h;
y = k^alpha*h^(1-alpha);
c=(1-alpha)*y/(theta*h^(1+psi));
a=0;
b=0;
end;

shocks;
var e; stderr 0.009;
var u; stderr 0.009;
var e, u = phi*0.009*0.009;
end;

stoch_simul(irf=0,conditional_variance_decomposition=[1,4,40],pruning,order=1);
oo1_=oo_;
stoch_simul(irf=0,conditional_variance_decomposition=[1,4,40],pruning,order=1) y k;
oo2_=oo_;
stoch_simul(irf=0,conditional_variance_decomposition=[1,4,40],pruning,order=2) y k ;
oo3_=oo_;
stoch_simul(irf=0,conditional_variance_decomposition=[1,4,40],pruning,order=2);
oo4_=oo_;

if max(max(abs(oo1_.variance_decomposition-oo4_.variance_decomposition)))>1e-8 || max(max(abs(oo2_.variance_decomposition-oo3_.variance_decomposition)))>1e-8
    error('Unconditional variance decomposition does not match.')
end

if max(max(max(abs(oo1_.conditional_variance_decomposition-oo4_.conditional_variance_decomposition))))>1e-8 || max(max(max(abs(oo2_.conditional_variance_decomposition-oo3_.conditional_variance_decomposition)))) >1e-8
    error('Conditional variance decomposition does not match.')
end

varobs y;
shocks;
var y; stderr 0.01;
end;

stoch_simul(irf=0,conditional_variance_decomposition=[1,4,40],pruning,order=1);
oo1_=oo_;
stoch_simul(irf=0,conditional_variance_decomposition=[1,4,40],pruning,order=1) y k;
oo2_=oo_;
stoch_simul(irf=0,conditional_variance_decomposition=[1,4,40],pruning,order=2) y k ;
oo3_=oo_;
stoch_simul(irf=0,conditional_variance_decomposition=[1,4,40],pruning,order=2);
oo4_=oo_;


if max(max(abs(oo1_.variance_decomposition-oo4_.variance_decomposition)))>1e-8 || max(max(abs(oo2_.variance_decomposition-oo3_.variance_decomposition)))>1e-8
    error('Unconditional variance decomposition does not match.')
end

if max(max(max(abs(oo1_.conditional_variance_decomposition-oo4_.conditional_variance_decomposition))))>1e-8 || max(max(max(abs(oo2_.conditional_variance_decomposition-oo3_.conditional_variance_decomposition)))) >1e-8
    error('Conditional variance decomposition does not match.')
end

if max(max(abs(oo1_.variance_decomposition_ME-oo4_.variance_decomposition_ME)))>1e-2 || max(max(abs(oo2_.variance_decomposition_ME-oo3_.variance_decomposition_ME)))>1e-2
    error('Unconditional variance decomposition with ME does not match.')
end

if max(max(max(abs(oo1_.conditional_variance_decomposition_ME-oo4_.conditional_variance_decomposition_ME))))>1e-8 || max(max(max(abs(oo2_.conditional_variance_decomposition_ME-oo3_.conditional_variance_decomposition_ME))))>1e-8
    error('Conditional variance decomposition with ME does not match.')
end