File: example4_loglinear_histval.mod

package info (click to toggle)
dynare 6.5-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 67,796 kB
  • sloc: cpp: 79,110; ansic: 28,917; objc: 12,445; yacc: 4,537; pascal: 1,993; lex: 1,441; sh: 1,132; python: 634; makefile: 628; lisp: 163; xml: 18
file content (124 lines) | stat: -rw-r--r-- 3,547 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
/*
 * Example 1 from F. Collard (2001): "Stochastic simulations with DYNARE:
 * A practical guide" (see "guide.pdf" in the documentation directory).
 */

/*
 * Copyright © 2001-2022 Dynare Team
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <https://www.gnu.org/licenses/>.
 */


var y, c, k, a, h, b;
varexo e, u;

parameters beta, rho, alpha, delta, theta, psi, tau;

alpha = 0.36;
rho   = 0.95;
tau   = 0.025;
beta  = 0.99;
delta = 0.025;
psi   = 0;
theta = 2.95;

phi   = 0.1;

model;
c*theta*h^(1+psi)=(1-alpha)*y;
k = beta*(((b*c)/(b(+1)*c(+1)))
    *(b(+1)*alpha*y(+1)+(1-delta)*k));
y = a*(k(-1)^alpha)*(h^(1-alpha));
k = b*(y-c)+(1-delta)*k(-1);
log(a) = rho*log(a(-1))+tau*log(b(-1)) + e;
log(b) = tau*log(a(-1))+rho*log(b(-1)) + u;
end;

initval;
y = 1.08068253095672;
c = 0.80359242014163;
h = 0.29175631001732;
k = 11.08360443260358;
a = 1;
b = 1;
end;

resid;
shocks;
var e; stderr 0.009;
var u; stderr 0.009;
var e, u = phi*0.009*0.009;
end;

histval;
k(0) = 11.08;
a(0) = 1.2;
b(0) = 1;
end;

stoch_simul(loglinear,order=1,periods=1000);
forecast;

load results_exp_histval;
if max(max(abs(oo_.dr.ghx-oo_exp.dr.ghx)))>1e-10
    error('Option loglinear wrong, ghx not equal')
end
if max(max(abs(oo_.dr.ghu-oo_exp.dr.ghu)))>1e-10
    error('Option loglinear wrong, ghu not equal')
end
if max(max(abs(oo_.irfs.y_e-oo_exp.irfs.y_e)))>1e-10
    error('Option loglinear wrong, IRFs not equal')
end
if max(max(abs(oo_.irfs.y_u-oo_exp.irfs.y_u)))>1e-10
    error('Option loglinear wrong, ghu not equal')
end
if max(max(abs(oo_.mean-oo_exp.mean)))>1e-10
    error('Option loglinear wrong, mean not equal')
end
if max(max(abs(oo_.dr.ys-oo_exp.dr.ys)))>1e-10
    error('Option loglinear wrong, ys not equal')
end
if max(max(abs(oo_.steady_state-oo_exp.steady_state)))>1e-10
    error('Option loglinear wrong, steady_state not equal')
end

if max(max(abs(struct2array(oo_.forecast.Mean)-struct2array(oo_exp.forecast.Mean))))>1e-10 || ...
    max(max(abs(struct2array(oo_.forecast.HPDinf)-struct2array(oo_exp.forecast.HPDinf))))>1e-10 || ...
    max(max(abs(struct2array(oo_.forecast.HPDsup)-struct2array(oo_exp.forecast.HPDsup))))>1e-10
    error('Option loglinear wrong, forecast not equal')
end

conditional_forecast_paths;
var a;
periods  1  2  ;
values   0.01 -0.02;
var b;
periods 1 2;
values  0.05 0;
end;

conditional_forecast(parameter_set=calibration, controlled_varexo=(u,e));


forecasts=oo_.conditional_forecast;

if max(max(abs(struct2array(forecasts.cond.Mean)-struct2array(conditional_forecasts_exp.cond.Mean))))>1e-10 || ...
    max(max(abs(struct2array(forecasts.cond.ci)-struct2array(conditional_forecasts_exp.cond.ci))))>1e-10 || ...
    max(max(abs(struct2array(forecasts.uncond.Mean)-struct2array(conditional_forecasts_exp.uncond.Mean))))>1e-10 || ...
    max(max(abs(struct2array(forecasts.uncond.ci)-struct2array(conditional_forecasts_exp.uncond.ci))))>1e-10 
    error('Option loglinear wrong, conditional forecast not equal')
end