1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
|
/* Copyright (c) 2020, Dyssol Development Team. All rights reserved. This file is part of Dyssol. See LICENSE file for license information. */
#include "Flowsheet.h"
#include "BaseUnit.h"
#include "Topology.h"
#include "MaterialsDatabase.h"
#include "ContainerFunctions.h"
#include "DyssolStringConstants.h"
#include "DyssolUtilities.h"
CFlowsheet::CFlowsheet(CModelsManager* _modelsManager, const CMaterialsDatabase* _materialsDB)
: m_materialsDB{ _materialsDB }
, m_modelsManager{ _modelsManager }
{
Create();
}
CFlowsheet::CFlowsheet(const CFlowsheet& _other)
: m_fileName{ _other.m_fileName }
, m_materialsDB{ _other.m_materialsDB }
, m_modelsManager{ _other.m_modelsManager }
, m_parameters{ _other.m_parameters }
, m_mainGrid{ _other.m_mainGrid }
, m_overall{ _other.m_overall }
, m_phases{ _other.m_phases }
, m_cacheStreams{ _other.m_cacheStreams }
, m_cacheHoldups{ _other.m_cacheHoldups }
, m_tolerance{ _other.m_tolerance }
, m_thermodynamics{ _other.m_thermodynamics }
, m_units{ DeepCopy(_other.m_units) }
, m_streams{ DeepCopy(_other.m_streams) }
, m_streamsI{ DeepCopy(_other.m_streamsI) }
, m_calculationSequence{ _other.m_calculationSequence }
, m_topologyModified{ _other.m_topologyModified }
{
m_calculationSequence.SetPointers(&m_units, &m_streams);
}
CFlowsheet::CFlowsheet(CFlowsheet&& _other) noexcept
{
swap(*this, _other);
}
CFlowsheet& CFlowsheet::operator=(CFlowsheet _other)
{
swap(*this, _other);
return *this;
}
CFlowsheet& CFlowsheet::operator=(CFlowsheet&& _other) noexcept
{
CFlowsheet tmp{ std::move(_other) };
swap(*this, tmp);
return *this;
}
void swap(CFlowsheet& _first, CFlowsheet& _second) noexcept
{
using std::swap;
swap(_first.m_fileName , _second.m_fileName);
swap(_first.m_materialsDB , _second.m_materialsDB);
swap(_first.m_modelsManager , _second.m_modelsManager);
swap(_first.m_parameters , _second.m_parameters);
swap(_first.m_mainGrid , _second.m_mainGrid);
swap(_first.m_overall , _second.m_overall);
swap(_first.m_phases , _second.m_phases);
swap(_first.m_cacheStreams , _second.m_cacheStreams);
swap(_first.m_cacheHoldups , _second.m_cacheHoldups);
swap(_first.m_tolerance , _second.m_tolerance);
swap(_first.m_thermodynamics , _second.m_thermodynamics);
swap(_first.m_units , _second.m_units);
swap(_first.m_streams , _second.m_streams);
swap(_first.m_streamsI , _second.m_streamsI);
swap(_first.m_calculationSequence, _second.m_calculationSequence);
swap(_first.m_topologyModified , _second.m_topologyModified);
}
void CFlowsheet::SetFileName(const std::filesystem::path& _path)
{
m_fileName = _path;
}
std::filesystem::path CFlowsheet::GetFileName() const
{
return m_fileName;
}
void CFlowsheet::Create()
{
m_mainGrid.AddSymbolicDimension(DISTR_COMPOUNDS);
m_overall.emplace_back(SOverallDescriptor{ EOverall::OVERALL_MASS, "Mass flow" , "kg/s" });
// TODO: remove when added by user
m_overall.emplace_back(SOverallDescriptor{ EOverall::OVERALL_TEMPERATURE, "Temperature" , "K" });
m_overall.emplace_back(SOverallDescriptor{ EOverall::OVERALL_PRESSURE, "Pressure" , "Pa" });
m_calculationSequence.SetPointers(&m_units, &m_streams);
}
void CFlowsheet::Clear()
{
// clear all data
m_units.clear();
m_streams.clear();
m_streamsI.clear();
m_calculationSequence.Clear();
m_overall.clear();
m_phases.clear();
m_mainGrid.Clear();
// set parameters to default
m_parameters.SetDefaultValues();
// set the topology is modified
SetTopologyModified(true);
// clear file name
m_fileName.clear();
// initialize flowsheet with default structure
Create();
}
bool CFlowsheet::IsEmpty() const
{
return m_units.empty()
&& m_streams.empty()
&& m_calculationSequence.IsEmpty()
&& m_overall.size() <= 1
&& m_phases.empty()
&& m_mainGrid.GetDimensionsNumber() <= 1;
}
size_t CFlowsheet::GetUnitsNumber() const
{
return m_units.size();
}
CUnitContainer* CFlowsheet::AddUnit(const std::string& _key)
{
const std::string uniqueID = StringFunctions::GenerateUniqueKey(_key, GetAllUnitsKeys());
auto* unit = new CUnitContainer(uniqueID, m_modelsManager, m_materialsDB, &m_mainGrid, &m_overall, &m_phases, &m_cacheHoldups, &m_tolerance, &m_thermodynamics);
m_units.emplace_back(unit);
SetTopologyModified(true);
return unit;
}
void CFlowsheet::DeleteUnit(const std::string& _key)
{
// check if it exists
if (!GetUnit(_key)) return;
// remove unit from the calculation sequence
m_calculationSequence.DeleteModel(_key);
SetTopologyModified(true);
// delete unit
VectorDelete(m_units, [&](const auto& u) { return u->GetKey() == _key; });
}
void CFlowsheet::ShiftUnit(const std::string& _key, EDirection _direction)
{
const size_t index = VectorFind(m_units, [&](const auto& u) { return u->GetKey() == _key; });
if (index == static_cast<size_t>(-1)) return;
switch (_direction)
{
case EDirection::UP:
if (index < m_units.size() && index != 0)
std::iter_swap(m_units.begin() + index, m_units.begin() + index - 1);
break;
case EDirection::DOWN:
if (index < m_units.size() && index != m_units.size() - 1)
std::iter_swap(m_units.begin() + index, m_units.begin() + index + 1);
break;
}
SetTopologyModified(true);
}
const CUnitContainer* CFlowsheet::GetUnit(size_t _index) const
{
if (_index >= m_units.size()) return nullptr;
return m_units[_index].get();
}
CUnitContainer* CFlowsheet::GetUnit(size_t _index)
{
return const_cast<CUnitContainer*>(static_cast<const CFlowsheet&>(*this).GetUnit(_index));
}
const CUnitContainer* CFlowsheet::GetUnit(const std::string& _key) const
{
for (const auto& unit : m_units)
if (unit->GetKey() == _key)
return unit.get();
return nullptr;
}
CUnitContainer* CFlowsheet::GetUnit(const std::string& _key)
{
return const_cast<CUnitContainer*>(static_cast<const CFlowsheet&>(*this).GetUnit(_key));
}
const CUnitContainer* CFlowsheet::GetUnitByName(const std::string& _name) const
{
for (const auto& unit : m_units)
if (unit->GetName() == _name)
return unit.get();
return nullptr;
}
CUnitContainer* CFlowsheet::GetUnitByName(const std::string& _name)
{
return const_cast<CUnitContainer*>(static_cast<const CFlowsheet&>(*this).GetUnitByName(_name));
}
std::vector<const CUnitContainer*> CFlowsheet::GetAllUnits() const
{
auto res = ReservedVector<const CUnitContainer*>(m_units.size());
for (const auto& unit : m_units)
res.push_back(unit.get());
return res;
}
std::vector<CUnitContainer*> CFlowsheet::GetAllUnits()
{
auto res = ReservedVector<CUnitContainer*>(m_units.size());
for (const auto& unit : m_units)
res.push_back(unit.get());
return res;
}
void CFlowsheet::PrepareInputStreams(const CUnitContainer* _unit, double _timeBeg, double _timeEnd) const
{
for (const auto& port : _unit->GetModel()->GetPortsManager().GetAllInputPorts())
{
auto* streamI = DoGetStream(port->GetStreamKey(), m_streamsI);
auto* streamO = DoGetStream(port->GetStreamKey(), m_streams);
if (streamI != streamO)
streamI->CopyFromStream(_timeBeg, _timeEnd, streamO);
}
}
size_t CFlowsheet::GetStreamsNumber() const
{
return m_streams.size();
}
CStream* CFlowsheet::AddStream(const std::string& _key)
{
const std::string uniqueID = StringFunctions::GenerateUniqueKey(_key, GetAllStreamsKeys());
auto* stream = new CStream(uniqueID, m_materialsDB, m_mainGrid, &m_overall, &m_phases, &m_cacheStreams, &m_tolerance, &m_thermodynamics);
m_streams.emplace_back(stream);
SetTopologyModified(true);
return stream;
}
void CFlowsheet::DeleteStream(const std::string& _key)
{
// check if it exists
if (!GetStream(_key)) return;
// remove stream from the calculation sequence
m_calculationSequence.DeleteStream(_key);
SetTopologyModified(true);
// delete stream
VectorDelete(m_streams, [&](const auto& s) { return s->GetKey() == _key; });
}
void CFlowsheet::ShiftStream(const std::string& _key, EDirection _direction)
{
const size_t index = VectorFind(m_streams, [&](const auto& s) { return s->GetKey() == _key; });
if (index == static_cast<size_t>(-1)) return;
VectorShift(m_streams, index, _direction);
SetTopologyModified(true);
}
const CStream* CFlowsheet::GetStream(size_t _index) const
{
if (_index >= m_streams.size()) return nullptr;
return m_streams[_index].get();
}
CStream* CFlowsheet::GetStream(size_t _index)
{
return const_cast<CStream*>(static_cast<const CFlowsheet&>(*this).GetStream(_index));
}
const CStream* CFlowsheet::GetStream(const std::string& _key) const
{
return DoGetStream(_key, m_streams);
}
CStream* CFlowsheet::GetStream(const std::string& _key)
{
return const_cast<CStream*>(static_cast<const CFlowsheet&>(*this).GetStream(_key));
}
const CStream* CFlowsheet::GetStreamByName(const std::string& _name) const
{
for (const auto& stream : m_streams)
if (stream->GetName() == _name)
return stream.get();
return nullptr;
}
CStream* CFlowsheet::GetStreamByName(const std::string& _name)
{
return const_cast<CStream*>(static_cast<const CFlowsheet&>(*this).GetStreamByName(_name));
}
std::vector<const CStream*> CFlowsheet::GetAllStreams() const
{
auto res = ReservedVector<const CStream*>(m_streams.size());
for (const auto& stream : m_streams)
res.push_back(stream.get());
return res;
}
std::vector<CStream*> CFlowsheet::GetAllStreams()
{
auto res = ReservedVector<CStream*>(m_streams.size());
for (const auto& stream : m_streams)
res.push_back(stream.get());
return res;
}
bool CFlowsheet::DetermineCalculationSequence()
{
// TODO: move the whole function into CalculationSequence
// returns unique key of a stream connecting two units
const auto ConnectionStreamKey = [&](size_t _iSrcUnit, size_t _iDstUnit) -> std::string
{
for (const auto& srcPort : m_units[_iSrcUnit]->GetModel()->GetPortsManager().GetAllPorts())
for (const auto& dstPort : m_units[_iDstUnit]->GetModel()->GetPortsManager().GetAllPorts())
if (srcPort->GetStreamKey() == dstPort->GetStreamKey())
return srcPort->GetStream()->GetKey();
return {};
};
// build a topology graph
CTopology top(m_units.size());
for (size_t iSrc = 0; iSrc < m_units.size(); ++iSrc)
for (const auto& srcPort : m_units[iSrc]->GetModel()->GetPortsManager().GetAllOutputPorts())
for (size_t iDst = 0; iDst < m_units.size(); ++iDst)
for (const auto& dstPort : m_units[iDst]->GetModel()->GetPortsManager().GetAllInputPorts())
if (dstPort->GetStreamKey() == srcPort->GetStreamKey())
top.AddEdge(iSrc, iDst);
// analyze topology
std::vector<std::vector<size_t>> iUnits; // indices of units for each partition
std::vector<std::vector<std::pair<size_t, size_t>>> iUnitsConnections; // indices of units connected by tear streams for each partition
const bool res = top.Analyse(iUnits, iUnitsConnections);
// gather keys of units in each partition
std::vector<std::vector<std::string>> unitsKeys; // keys of units for each partition
for (auto& partition : iUnits)
{
unitsKeys.emplace_back();
for (size_t i : partition)
unitsKeys.back().push_back(m_units[i]->GetKey());
}
// gather keys of tear streams in each partition
std::vector<std::vector<std::string>> streamsKeys; // keys of tear streams for each partition
for (auto& partition : iUnitsConnections)
{
streamsKeys.emplace_back();
for (auto& [iSrc, iDst] : partition)
streamsKeys.back().push_back(ConnectionStreamKey(iSrc, iDst));
}
// set final calculation sequence
m_calculationSequence.SetSequence(unitsKeys, streamsKeys);
return res;
}
void CFlowsheet::SetTopologyModified(bool _flag)
{
m_topologyModified = _flag;
}
const CCalculationSequence* CFlowsheet::GetCalculationSequence() const
{
return &m_calculationSequence;
}
CCalculationSequence* CFlowsheet::GetCalculationSequence()
{
return &m_calculationSequence;
}
std::vector<SFlowsheetConnection> CFlowsheet::GenerateConnectionsDescription() const
{
std::vector<SFlowsheetConnection> res;
// iterate all units
for (const auto& u : GetAllUnits())
{
if (!u->GetModel()) continue;
const auto& ports = u->GetModel()->GetPortsManager();
// iterate all input ports of the unit
for (const auto& p : ports.GetAllInputPorts())
{
// find connected stream in the results
const auto stream = p->GetStreamKey();
if (stream.empty()) continue;
const size_t i = VectorFind(res, [&](const SFlowsheetConnection& c) { return c.unitI.empty() && c.stream == stream; });
// a new stream - add it and fill its inlet port and unit
if (i == static_cast<size_t>(-1))
res.emplace_back(stream, "", "", u->GetKey(), p->GetName());
// the stream is already added - fill its inlet port and unit
else
{
res[i].unitI = u->GetKey();
res[i].portI = p->GetName();
}
}
// iterate all output ports of the unit
for (const auto& p : ports.GetAllOutputPorts())
{
// find connected stream in the results
const auto stream = p->GetStreamKey();
const size_t i = VectorFind(res, [&](const SFlowsheetConnection& c) { return c.unitO.empty() && c.stream == stream; });
// a new stream - add it and fill its outlet port and unit
if (i == static_cast<size_t>(-1))
res.emplace_back(stream, u->GetKey(), p->GetName(), "", "");
// the stream is already added - fill its outlet port and unit
else
{
res[i].unitO = u->GetKey();
res[i].portO = p->GetName();
}
}
}
return res;
}
size_t CFlowsheet::GetCompoundsNumber() const
{
if (!m_mainGrid.HasDimension(DISTR_COMPOUNDS)) return 0;
return m_mainGrid.GetGridDimension(DISTR_COMPOUNDS)->ClassesNumber();
}
void CFlowsheet::AddCompound(const std::string& _key)
{
// check if already exists
if (VectorContains(GetCompounds(), _key)) return;
// add to streams
for (auto& stream : m_streams)
stream->AddCompound(_key);
// add to units
for (auto& unit : m_units)
if (auto* model = unit->GetModel())
model->AddCompound(_key);
// add to the grid
m_mainGrid.GetGridDimensionSymbolic(DISTR_COMPOUNDS)->AddClass(_key);
// update initial tear streams according to new settings
m_calculationSequence.UpdateInitialStreams();
}
void CFlowsheet::RemoveCompound(const std::string& _key)
{
// check if exists
if (!VectorContains(GetCompounds(), _key)) return;
// remove from streams
for (auto& stream : m_streams)
stream->RemoveCompound(_key);
// remove from units
for (auto& unit : m_units)
if (auto* model = unit->GetModel())
model->RemoveCompound(_key);
// remove from the grid
m_mainGrid.GetGridDimensionSymbolic(DISTR_COMPOUNDS)->RemoveClass(_key);
// update initial tear streams according to new settings
m_calculationSequence.UpdateInitialStreams();
}
void CFlowsheet::SetCompounds(const std::vector<std::string>& _keys)
{
if (GetCompounds() == _keys) return;
// TODO: do not clean, just add/remove required and sort properly
// remove all current compounds
for (const auto& c : GetCompounds())
RemoveCompound(c);
// add new compounds
for (const auto& c : _keys)
AddCompound(c);
}
std::vector<std::string> CFlowsheet::GetCompounds() const
{
return m_mainGrid.GetSymbolicGrid(DISTR_COMPOUNDS);
}
size_t CFlowsheet::GetOverallPropertiesNumber() const
{
return m_overall.size();
}
void CFlowsheet::AddOverallProperty(EOverall _property, const std::string& _name, const std::string& _units)
{
// check if already exists
if (HasOverallProperty(_property)) return;
// add to the list of overall properties
m_overall.push_back({ _property, _name, _units });
// add to streams
for (auto& stream : m_streams)
stream->AddOverallProperty(_property, _name, _units);
// adds to units
for (auto& unit : m_units)
if (auto* model = unit->GetModel())
model->AddOverallProperty(_property, _name, _units);
// update initial tear streams according to new settings
m_calculationSequence.UpdateInitialStreams();
}
void CFlowsheet::RemoveOverallProperty(EOverall _property)
{
// check if exists
if (!HasOverallProperty(_property)) return;
// remove from streams
for (auto& stream : m_streams)
stream->RemoveOverallProperty(_property);
// remove from units
for (auto& unit : m_units)
if (auto* model = unit->GetModel())
model->RemoveOverallProperty(_property);
// update initial tear streams according to new settings
m_calculationSequence.UpdateInitialStreams();
// remove from the list of overall properties
VectorDelete(m_overall, [&](const auto& o) { return o.type == _property; });
}
std::vector<SOverallDescriptor> CFlowsheet::GetOverallProperties() const
{
return m_overall;
}
bool CFlowsheet::HasOverallProperty(EOverall _property) const
{
return VectorContains(m_overall, [&](const auto& o) { return o.type == _property; });
}
size_t CFlowsheet::GetPhasesNumber() const
{
return m_phases.size();
}
void CFlowsheet::AddPhase(EPhase _phase, const std::string& _name)
{
// check if already exists
if (VectorContains(m_phases, [&](const auto& p) { return p.state == _phase; })) return;
// add to the list of overall properties
m_phases.push_back({ _phase, _name });
// add to streams
for (auto& stream : m_streams)
stream->AddPhase(_phase, _name);
// adds to units
for (auto& unit : m_units)
if (auto* model = unit->GetModel())
model->AddPhase(_phase, _name);
// update initial tear streams according to new settings
m_calculationSequence.UpdateInitialStreams();
}
void CFlowsheet::RemovePhase(EPhase _phase)
{
// check if exists
if (!VectorContains(m_phases, [&](const auto& p) { return p.state == _phase; })) return;
// remove from streams
for (auto& stream : m_streams)
stream->RemovePhase(_phase);
// remove from units
for (auto& unit : m_units)
if (auto* model = unit->GetModel())
model->RemovePhase(_phase);
// update initial tear streams according to new settings
m_calculationSequence.UpdateInitialStreams();
// remove from the list of overall properties
VectorDelete(m_phases, [&](const auto& p) { return p.state == _phase; });
}
void CFlowsheet::SetPhases(const std::vector<SPhaseDescriptor>& _phases)
{
if (GetPhases() == _phases) return;
// TODO: do not clean, just add/remove required and sort properly
// remove all current phases
for (const auto& p : GetPhases())
RemovePhase(p.state);
// add new phases
for (const auto& p : _phases)
AddPhase(p.state, p.name);
}
std::vector<SPhaseDescriptor> CFlowsheet::GetPhases() const
{
return m_phases;
}
std::vector<EPhase> CFlowsheet::GetPhaseTypes() const
{
auto res = ReservedVector<EPhase>(m_phases);
for (const auto& p : m_phases)
res.push_back(p.state);
return res;
}
std::vector<std::string> CFlowsheet::GetPhaseNames() const
{
auto res = ReservedVector<std::string>(m_phases);
for (const auto& p : m_phases)
res.push_back(p.name);
return res;
}
bool CFlowsheet::HasPhase(EPhase _phase)
{
return VectorContains(m_phases, [&](const auto& p) { return p.state == _phase; });
}
std::string CFlowsheet::Initialize()
{
// clear previous results
ClearSimulationResults();
// check that all units have assigned models
for (const auto& unit : m_units)
if (!unit->GetModel())
return StrConst::Flow_ErrEmptyUnit(unit->GetName());
// set pointers to the streams into the corresponding unit's ports
SetStreamsToPorts();
// check that all ports and streams are properly connected
std::string err = CheckPortsConnections();
if (!err.empty()) return err;
// determine and check calculation sequence
err = m_calculationSequence.Check();
if (!err.empty() || m_topologyModified)
{
DetermineCalculationSequence();
err = m_calculationSequence.Check();
if (!err.empty()) return err;
}
SetTopologyModified(false);
// load and check external solvers in units
for (auto& unit : m_units)
{
err = unit->InitializeExternalSolvers();
if (!err.empty()) return err;
}
// check compounds
if (m_materialsDB->CompoundsNumber() == 0)
return StrConst::Flow_ErrEmptyMDB;
if (GetCompounds().empty())
return StrConst::Flow_ErrNoCompounds;
for (const auto& key : GetCompounds())
if (!m_materialsDB->GetCompound(key))
return StrConst::Flow_ErrWrongCompound(key);
for (const auto& unit : m_units)
for (const auto& param : unit->GetModel()->GetUnitParametersManager().GetAllCompoundParameters())
if (!m_materialsDB->GetCompound(param->GetCompound()))
return StrConst::Flow_ErrWrongCompoundParam(unit->GetName(), param->GetName(), param->GetCompound());
// check phases
if (m_phases.empty())
return StrConst::Flow_ErrNoPhases;
// check for empty feeds and holdups
for (const auto& unit : m_units)
for (const auto& h : unit->GetModel()->GetStreamsManager().GetAllInit())
if (h->GetAllTimePoints().empty())
return StrConst::Flow_ErrEmptyHoldup(unit->GetName(), h->GetName());
// check that mass fractions in feeds and holdups add to 1
for (const auto& unit : m_units)
for (const auto& h : unit->GetModel()->GetStreamsManager().GetAllInit())
for (double t : h->GetAllTimePoints())
{
if (h->GetMass(t) == 0.0) continue;
// check phase fractions
const double phaseSum = std::accumulate(m_phases.begin(), m_phases.end(), 0.0, [&](double a, const auto& p) { return a + h->GetPhaseFraction(t, p.state); });
if (std::fabs(phaseSum - 1.0) > 1e-10)
return StrConst::Flow_ErrPhaseFractions(unit->GetName(), h->GetName(), t);
// check compound fractions
const auto& compounds = GetCompounds();
for (const auto& p : m_phases)
{
if (h->GetPhaseMass(t, p.state) == 0.0) // fractions are not important if the phase is empty
continue;
const double compSum = std::accumulate(compounds.begin(), compounds.end(), 0.0, [&](double a, const auto& c) { return a + h->GetCompoundFraction(t, c, p.state); });
if (std::fabs(compSum - 1.0) > 1e-10)
return StrConst::Flow_ErrCompoundFractions(unit->GetName(), h->GetName(), p.name, t);
}
}
return {};
}
void CFlowsheet::SetStreamsToPorts()
{
// setup output streams with proper grids
for (const auto& unit : m_units)
for (const auto* port : unit->GetModel()->GetPortsManager().GetAllOutputPorts())
if (auto* str = DoGetStream(port->GetStreamKey(), m_streams))
str->SetGrid(unit->GetModel()->GetGrid());
// create input streams with proper grids
m_streamsI = m_streams; // copy pointers to main (output) streams
for (const auto& unit : m_units)
for (const auto* port : unit->GetModel()->GetPortsManager().GetAllInputPorts())
{
// find the corresponding stream in the list
const size_t index = VectorFind(m_streamsI, [&](auto& s) { return s->GetKey() == port->GetStreamKey(); });
if (index < m_streamsI.size() && unit->GetModel()->GetGrid() != m_streamsI[index]->GetGrid()) // separate input stream is needed
// create new with proper grid
m_streamsI[index] = std::make_shared<CStream>(m_streamsI[index]->GetKey(), m_materialsDB, unit->GetModel()->GetGrid(), &m_overall, &m_phases, &m_cacheStreams, &m_tolerance, &m_thermodynamics);
}
// set stream pointers to ports
for (const auto& unit : m_units)
{
for (auto* port : unit->GetModel()->GetPortsManager().GetAllInputPorts())
if (auto* str = DoGetStream(port->GetStreamKey(), m_streamsI))
port->SetStream(str);
for (auto* port : unit->GetModel()->GetPortsManager().GetAllOutputPorts())
if (auto* str = DoGetStream(port->GetStreamKey(), m_streams))
port->SetStream(str);
}
}
std::string CFlowsheet::CheckPortsConnections()
{
// check that all ports have connected stream
for (const auto& unit : m_units)
for (const auto& port : unit->GetModel()->GetPortsManager().GetAllPorts())
if (!port->GetStream())
return StrConst::Flow_ErrUnconnectedPorts(unit->GetName(), port->GetName());
// check that each stream is connected either to only one input and one output port or not connected at all
for (const auto& stream : m_streams)
{
size_t nPortsI = 0, nPortsO = 0;
for (const auto& unit : m_units)
{
for (const auto& port : unit->GetModel()->GetPortsManager().GetAllInputPorts())
if (port->GetStreamKey() == stream->GetKey())
++nPortsI;
for (const auto& port : unit->GetModel()->GetPortsManager().GetAllOutputPorts())
if (port->GetStreamKey() == stream->GetKey())
++nPortsO;
}
if (nPortsI != nPortsO || nPortsI != 1 && nPortsI != 0)
return StrConst::Flow_ErrWrongStreams(stream->GetName());
}
return {};
}
void CFlowsheet::ClearSimulationResults()
{
for (auto& stream : m_streams)
stream->RemoveAllTimePoints();
m_streamsI.clear();
for (auto& unit : m_units)
if (auto* model = unit->GetModel())
model->ClearSimulationResults();
}
void CFlowsheet::SetMainGrid(const CMultidimensionalGrid& _grid)
{
for (auto& unit : m_units)
if (unit->GetModel() && unit->GetModel()->GetGrid() == m_mainGrid)
unit->GetModel()->SetGrid(_grid);
for (auto& stream : m_streams)
if (stream->GetGrid() == m_mainGrid)
stream->SetGrid(_grid);
m_mainGrid = _grid;
m_calculationSequence.UpdateInitialStreams();
}
void CFlowsheet::UpdateGrids()
{
std::vector<std::string> updated;
// update in connected streams
for (auto& unit : m_units)
if (unit->GetModel())
for (const auto& port : unit->GetModel()->GetPortsManager().GetAllOutputPorts())
if (auto* stream = DoGetStream(port->GetStreamKey(), m_streams))
{
stream->SetGrid(unit->GetModel()->GetGrid());
updated.push_back(stream->GetKey());
}
// update in the rest streams
for (auto& key : VectorDifference(GetAllStreamsKeys(), updated))
GetStream(key)->SetGrid(m_mainGrid);
// update initial tear streams
m_calculationSequence.UpdateInitialStreams();
}
void CFlowsheet::UpdateCacheSettings()
{
m_cacheStreams = { m_parameters.cacheFlagStreams, m_parameters.cacheWindow, m_parameters.cachePath };
m_cacheHoldups = { m_parameters.cacheFlagHoldups, m_parameters.cacheWindow, m_parameters.cachePath };
for (auto& stream : m_streams)
stream->SetCacheSettings(m_cacheStreams);
for (auto& unit : m_units)
if (auto* model = unit->GetModel())
model->UpdateCacheSettings();
m_calculationSequence.UpdateCacheSettings(m_cacheStreams);
}
void CFlowsheet::UpdateToleranceSettings()
{
m_tolerance = { m_parameters.absTol, m_parameters.relTol, m_parameters.minFraction };
for (auto& stream : m_streams)
stream->SetToleranceSettings(m_tolerance);
for (auto& unit : m_units)
if (auto* model = unit->GetModel())
model->UpdateToleranceSettings();
m_calculationSequence.UpdateToleranceSettings(m_tolerance);
}
void CFlowsheet::UpdateThermodynamicsSettings()
{
m_thermodynamics = { { m_parameters.enthalpyMinT, m_parameters.enthalpyMaxT }, m_parameters.enthalpyInt };
for (auto& stream : m_streams)
stream->SetThermodynamicsSettings(m_thermodynamics);
for (auto& unit : m_units)
if (auto* model = unit->GetModel())
model->UpdateThermodynamicsSettings();
m_calculationSequence.UpdateThermodynamicsSettings(m_thermodynamics);
}
void CFlowsheet::SetMaterialDatabase(const CMaterialsDatabase* _materialsDB)
{
m_materialsDB = _materialsDB;
for (size_t i = 0; i < m_units.size(); i++)
m_units[i]->SetMaterialsDatabase(m_materialsDB);
for (size_t i = 0; i < m_streams.size(); i++)
m_streams[i]->SetMaterialsDatabase(m_materialsDB);
for (size_t i = 0; i < m_streamsI.size(); i++)
m_streamsI[i]->SetMaterialsDatabase(m_materialsDB);
}
const CMultidimensionalGrid& CFlowsheet::GetGrid() const
{
return m_mainGrid;
}
const CMaterialsDatabase& CFlowsheet::GetMaterialsDatabase() const
{
return *m_materialsDB;
}
void CFlowsheet::SetMaterialsDatabase(const CMaterialsDatabase* _materialsDB)
{
m_materialsDB = _materialsDB;
for (const auto& unit : m_units)
unit->SetMaterialsDatabase(m_materialsDB);
for (const auto& stream : m_streams)
stream->SetMaterialsDatabase(m_materialsDB);
for (const auto& stream : m_streamsI)
stream->SetMaterialsDatabase(m_materialsDB);
}
const CParametersHolder* CFlowsheet::GetParameters() const
{
return &m_parameters;
}
CParametersHolder* CFlowsheet::GetParameters()
{
return &m_parameters;
}
bool CFlowsheet::SaveToFile(CH5Handler& _h5File, const std::string& _path)
{
// current version of save procedure
_h5File.WriteAttribute(_path, StrConst::H5AttrSaveVersion, m_saveVersion);
// units
_h5File.WriteAttribute(_path, StrConst::Flow_H5AttrUnitsNum, static_cast<int>(m_units.size()));
const std::string unitsGroup = _h5File.CreateGroup(_path, StrConst::Flow_H5GroupUnits);
for (size_t i = 0; i < m_units.size(); ++i)
m_units[i]->SaveToFile(_h5File, _h5File.CreateGroup(unitsGroup, StrConst::Flow_H5GroupUnitName + std::to_string(i)));
// streams
_h5File.WriteAttribute(_path, StrConst::Flow_H5AttrStreamsNum, static_cast<int>(m_streams.size()));
const std::string streamsGroup = _h5File.CreateGroup(_path, StrConst::Flow_H5GroupStreams);
for (size_t i = 0; i < m_streams.size(); ++i)
m_streams[i]->SaveToFile(_h5File, _h5File.CreateGroup(streamsGroup, StrConst::Flow_H5GroupStreamName + std::to_string(i)));
// calculation sequence
m_calculationSequence.SaveToFile(_h5File, _h5File.CreateGroup(_path, StrConst::Flow_H5GroupCalcSeq));
// distributions grid
m_mainGrid.SaveToFile(_h5File, _h5File.CreateGroup(_path, StrConst::H5GroupDistrGrid));
// overall properties
const std::string overallGroup = _h5File.CreateGroup(_path, StrConst::Flow_H5GroupOveralls);
_h5File.WriteAttribute(overallGroup, StrConst::Flow_H5AttrOverallsNum, static_cast<int>(m_overall.size()));
for (size_t i = 0; i < m_overall.size(); ++i)
{
const std::string group = _h5File.CreateGroup(overallGroup, StrConst::Flow_H5GroupOverallName + std::to_string(i));
_h5File.WriteData(group, StrConst::Flow_H5OverallType, E2I(m_overall[i].type));
_h5File.WriteData(group, StrConst::Flow_H5OverallName, m_overall[i].name);
_h5File.WriteData(group, StrConst::Flow_H5OverallUnits, m_overall[i].units);
}
// phases
const std::string phasesGroup = _h5File.CreateGroup(_path, StrConst::Flow_H5GroupPhases);
_h5File.WriteAttribute(phasesGroup, StrConst::Flow_H5AttrPhasesNum, static_cast<int>(m_phases.size()));
for (size_t i = 0; i < m_phases.size(); ++i)
{
const std::string group = _h5File.CreateGroup(phasesGroup, StrConst::Flow_H5GroupPhaseName + std::to_string(i));
_h5File.WriteData(group, StrConst::Flow_H5PhaseType, E2I(m_phases[i].state));
_h5File.WriteData(group, StrConst::Flow_H5PhaseName, m_phases[i].name);
}
// parameters
m_parameters.SaveToFile(_h5File, _h5File.CreateGroup(_path, StrConst::Flow_H5GroupOptions));
return true;
}
bool CFlowsheet::LoadFromFile(CH5Handler& _h5File, const std::string& _path)
{
Clear();
// version of save procedure
const int version = _h5File.ReadAttribute(_path, StrConst::H5AttrSaveVersion);
if (version < 4)
{
return LoadFromFile_v3(_h5File, _path);
}
// parameters
m_parameters.LoadFromFile(_h5File, _path + "/" + StrConst::Flow_H5GroupOptions);
UpdateToleranceSettings(); // needed to fill global tolerance structure with possibly updated data
UpdateCacheSettings(); // needed to fill global cache structure with possibly updated data
UpdateThermodynamicsSettings(); // needed to fill global thermodynamics structure with possibly updated data
// distributions grid
m_mainGrid.LoadFromFile(_h5File, _path + "/" + StrConst::H5GroupDistrGrid);
if (version < 5)
{
// replace compound names with keys
std::vector<std::string> keys;
_h5File.ReadData(_path + "/", StrConst::Flow_H5Compounds, keys);
m_mainGrid.GetGridDimensionSymbolic(DISTR_COMPOUNDS)->SetGrid(keys);
}
// overall properties
const std::string overallsGroup = _path + "/" + StrConst::Flow_H5GroupOveralls;
const int nOverallProperties = _h5File.ReadAttribute(overallsGroup, StrConst::Flow_H5AttrOverallsNum);
m_overall.resize(nOverallProperties);
for (size_t i = 0; i < m_overall.size(); ++i)
{
const std::string group = overallsGroup + "/" + StrConst::Flow_H5GroupOverallName + std::to_string(i);
uint32_t type;
_h5File.ReadData(group, StrConst::Flow_H5OverallType, type);
m_overall[i].type = static_cast<EOverall>(type);
_h5File.ReadData(group, StrConst::Flow_H5OverallName, m_overall[i].name);
_h5File.ReadData(group, StrConst::Flow_H5OverallUnits, m_overall[i].units);
}
// phases
const std::string phasesGroup = _path + "/" + StrConst::Flow_H5GroupPhases;
const int nPhases = _h5File.ReadAttribute(phasesGroup, StrConst::Flow_H5AttrPhasesNum);
m_phases.resize(nPhases);
for (size_t i = 0; i < m_phases.size(); ++i)
{
const std::string group = phasesGroup + "/" + StrConst::Flow_H5GroupPhaseName + std::to_string(i);
uint32_t type;
_h5File.ReadData(group, StrConst::Flow_H5PhaseType, type);
m_phases[i].state = static_cast<EPhase>(type);
_h5File.ReadData(group, StrConst::Flow_H5PhaseName, m_phases[i].name);
}
// streams
const size_t nStreams = static_cast<size_t>(_h5File.ReadAttribute(_path + "/", StrConst::Flow_H5AttrStreamsNum));
for (size_t i = 0; i < nStreams; ++i)
AddStream()->LoadFromFile(_h5File, _path + "/" + StrConst::Flow_H5GroupStreams + "/" + StrConst::Flow_H5GroupStreamName + std::to_string(i));
// models
const size_t nUnits = static_cast<size_t>(_h5File.ReadAttribute(_path + "/", StrConst::Flow_H5AttrUnitsNum));
for (size_t i = 0; i < nUnits; ++i)
AddUnit()->LoadFromFile(_h5File, _path + "/" + StrConst::Flow_H5GroupUnits + "/" + StrConst::Flow_H5GroupUnitName + std::to_string(i));
// calculation sequence
m_calculationSequence.LoadFromFile(_h5File, _path + "/" + StrConst::Flow_H5GroupCalcSeq);
SetTopologyModified(false);
return true;
}
bool CFlowsheet::LoadFromFile_v3(CH5Handler& _h5File, const std::string& _path)
{
const std::string root = "/";
// parameters
m_parameters.LoadFromFile(_h5File, root + StrConst::Flow_H5GroupOptions);
UpdateToleranceSettings(); // needed to fill global tolerance structure with possibly updated data
UpdateCacheSettings(); // needed to fill global cache structure with possibly updated data
// distributions grid
m_mainGrid.LoadFromFile(_h5File, root + StrConst::H5GroupDistrGrid);
// replace compound names with keys
std::vector<std::string> keys;
_h5File.ReadData(root, StrConst::Flow_H5Compounds, keys);
m_mainGrid.GetGridDimensionSymbolic(DISTR_COMPOUNDS)->SetGrid(keys);
// overall properties
AddOverallProperty(EOverall::OVERALL_MASS, "Mass flow", "kg/s");
AddOverallProperty(EOverall::OVERALL_TEMPERATURE, "Temperature", "K");
AddOverallProperty(EOverall::OVERALL_PRESSURE, "Pressure", "Pa");
// phases
const auto& PhaseSOA2EPhase = [](uint32_t _soa)
{
switch (_soa)
{
case SOA_SOLID: return EPhase::SOLID;
case SOA_LIQUID: return EPhase::LIQUID;
case SOA_VAPOR: return EPhase::VAPOR;
default: return EPhase::UNDEFINED;
}
};
std::vector<std::string> names;
std::vector<uint32_t> states;
_h5File.ReadData(root + StrConst::Flow_H5GroupPhases, StrConst::Flow_H5PhasesNames, names);
_h5File.ReadData(root + StrConst::Flow_H5GroupPhases, StrConst::Flow_H5PhasesSOA, states);
for (size_t i = 0; i < names.size(); ++i)
AddPhase(PhaseSOA2EPhase(states[i]), names[i]);
// streams
const size_t nStreams = static_cast<size_t>(_h5File.ReadAttribute(root, StrConst::Flow_H5AttrStreamsNum));
for (size_t i = 0; i < nStreams; ++i)
AddStream()->LoadFromFile(_h5File, root + StrConst::Flow_H5GroupStreams + "/" + StrConst::Flow_H5GroupStreamName + std::to_string(i));
// ensure stream keys are unique
for (size_t i = 0; i < m_streams.size(); ++i)
for (size_t j = i + 1; j < m_streams.size(); ++j)
if (m_streams[i]->GetKey() == m_streams[j]->GetKey())
m_streams[j]->SetKey(StringFunctions::GenerateUniqueKey(GetAllStreamsKeys()));
// load models
const size_t nUnits = static_cast<size_t>(_h5File.ReadAttribute(root, StrConst::Flow_H5AttrUnitsNum));
for (size_t i = 0; i < nUnits; ++i)
AddUnit()->LoadFromFile(_h5File, root + StrConst::Flow_H5GroupUnits + "/" + StrConst::Flow_H5GroupUnitName + std::to_string(i));
// ensure unit keys are unique
for (size_t i = 0; i < m_units.size(); ++i)
for (size_t j = i + 1; j < m_units.size(); ++j)
if (m_units[i]->GetKey() == m_units[j]->GetKey())
m_units[j]->SetKey(StringFunctions::GenerateUniqueKey(GetAllUnitsKeys()));
// calculation sequence
m_calculationSequence.LoadFromFile(_h5File, root + StrConst::Flow_H5GroupCalcSeq);
SetTopologyModified(false);
return true;
}
CStream* CFlowsheet::DoGetStream(const std::string& _key, const std::vector<std::shared_ptr<CStream>>& _streams)
{
for (auto& stream : _streams)
if (stream->GetKey() == _key)
return stream.get();
return nullptr;
}
std::vector<std::string> CFlowsheet::GetAllUnitsKeys() const
{
std::vector<std::string> keys;
for (const auto& unit : m_units)
keys.push_back(unit->GetKey());
return keys;
}
std::vector<std::string> CFlowsheet::GetAllStreamsKeys() const
{
std::vector<std::string> keys;
for (const auto& unit : m_streams)
keys.push_back(unit->GetKey());
return keys;
}
|