File: Simulator.cpp

package info (click to toggle)
dyssol 1.4.0-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 18,188 kB
  • sloc: cpp: 53,643; sh: 85; python: 55; makefile: 12
file content (558 lines) | stat: -rw-r--r-- 20,272 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
/* Copyright (c) 2020, Dyssol Development Team. All rights reserved. This file is part of Dyssol. See LICENSE file for license information. */

#include "Simulator.h"
#include "Flowsheet.h"
#include "ParametersHolder.h"
#include "Stream.h"
#include "Phase.h"
#include "UnitContainer.h"
#include "DynamicUnit.h"
#include "DyssolStringConstants.h"
#include "ContainerFunctions.h"
#include "DyssolUtilities.h"

CSimulator::CSimulator()
{
	ClearLogState();
	m_pFlowsheet = nullptr;
	m_pParams = nullptr;
	m_nCurrentStatus = ESimulatorState::IDLE;
}

void CSimulator::SetFlowsheet(CFlowsheet* _pFlowsheet)
{
	m_pFlowsheet = _pFlowsheet;
	m_pSequence = m_pFlowsheet->GetCalculationSequence();
	m_pParams = m_pFlowsheet->GetParameters();
	m_hasError = false;
}

void CSimulator::SetCurrentStatus(ESimulatorState _nStatus)
{
	m_nCurrentStatus = _nStatus;
}

ESimulatorState CSimulator::GetCurrentStatus() const
{
	return m_nCurrentStatus;
}

bool CSimulator::HasError() const
{
	return m_hasError;
}

CSimulator::SPartitionStatus CSimulator::GetCurrentPartitionStatus() const
{
	if (m_iCurrentPartition >= m_partitionsStatus.size()) return {};
	return m_partitionsStatus[m_iCurrentPartition];
}

void CSimulator::Simulate()
{
	m_nCurrentStatus = ESimulatorState::RUNNING;
	m_hasError = false;

	// Prepare
	SetupConvergenceMethod();
	ClearLogState();

	m_hasError = false;
	InitializePartitionsStatus();

	// Clear initialization flags
	m_vInitialized.clear();
	for (const auto& partition : m_pSequence->Partitions())
		for (const auto& model : partition.models)
			m_vInitialized[model->GetKey()] = false;

	// run logger updater
	m_logUpdater.Run();

	// set initial values to tear streams
	m_pFlowsheet->GetCalculationSequence()->CopyInitToTearStreams(m_pParams->initTimeWindow);

	// Simulate all units
	const auto partitions = m_pSequence->Partitions();
	// TODO: work only with partition index, when getting a partition data by index will be a fast operation
	for (size_t iPart = 0; iPart < partitions.size(); ++iPart)
	{
		m_iCurrentPartition = iPart;
		SimulateUntilEndSimulationTime(iPart, partitions[iPart]);

		if (m_nCurrentStatus == ESimulatorState::TO_BE_STOPPED) break;

		// remove excessive data
		ReduceData(partitions[iPart], m_pParams->startSimulationTime, m_pParams->endSimulationTime);

		// Finalize all units within partition
		for (auto& model : partitions[iPart].models)
		{
			m_log.WriteInfo(StrConst::Sim_InfoUnitFinalization(model->GetName(), model->GetModel()->GetUnitName()));
			model->GetModel()->DoFinalizeUnit();
		}
	}

	// Save new initial values of tear streams
	if(m_pParams->initializeTearStreamsAutoFlag)
	{
		m_log.WriteInfo(StrConst::Sim_InfoSaveInitTearStreams);
		m_pFlowsheet->GetCalculationSequence()->CopyTearToInitStreams(m_pParams->initTimeWindow);
	}

	// remove buffer streams
	for (size_t i = 0; i < m_partitionsStatus.size(); ++i)
		for (size_t j = 0; j < m_partitionsStatus[i].vRecyclesPrev.size(); ++j)
		{
			delete m_partitionsStatus[i].vRecyclesPrev[j];
			delete m_partitionsStatus[i].vRecyclesPrevPrev[j];
		}

	m_log.WriteInfo("");

	// stop logger updater
	m_logUpdater.Stop();
	m_nCurrentStatus = ESimulatorState::IDLE;
}

void CSimulator::Stop()
{
	if (GetCurrentStatus() != ESimulatorState::IDLE)
		SetCurrentStatus(ESimulatorState::TO_BE_STOPPED);
}

void CSimulator::InitializePartitionsStatus()
{
	m_partitionsStatus.clear();
	for (const auto& partition : m_pSequence->Partitions())
	{
		SPartitionStatus& status = m_partitionsStatus.emplace_back();

		// create and initialize structure of buffer streams
		const std::vector<CStream*>& vRecycles = partition.tearStreams;
		status.vRecyclesPrev = std::vector<CStream*>(vRecycles.size());			// previous state of recycles
		status.vRecyclesPrevPrev = std::vector<CStream*>(vRecycles.size());		// pre-previous state of recycles
		for (size_t i = 0; i < vRecycles.size(); ++i)
		{
			status.vRecyclesPrev[i] = new CStream(*vRecycles[i]);
			status.vRecyclesPrev[i]->RemoveAllTimePoints();
			status.vRecyclesPrevPrev[i] = new CStream(*vRecycles[i]);
			status.vRecyclesPrevPrev[i]->RemoveAllTimePoints();
		}
	}
}

void CSimulator::SimulateUntilEndSimulationTime(size_t _iPartition, const CCalculationSequence::SPartition& _partition)
{
	if (_partition.tearStreams.empty())	// step without cycles
		SimulateUnits(_partition, m_pParams->startSimulationTime, m_pParams->endSimulationTime);		// simulation on time interval itself
	else															// step with recycles
		SimulateUnitsWithRecycles(_iPartition, _partition, m_pParams->startSimulationTime, m_pParams->endSimulationTime);		// waveform relaxation on time interval
}

void CSimulator::SimulateUnitsWithRecycles(size_t _iPartition, const CCalculationSequence::SPartition& _partition, double _t1, double _t2)
{
	const std::vector<CStream*>& vRecycles = _partition.tearStreams;

	// initialize simulation's parameters
	SPartitionStatus& partVars = m_partitionsStatus[_iPartition];

	if (_t1 == 0)
	{
		// check whether initial values were set to recycle streams
		partVars.bTearStreamsFromInit = false; // will be true if data from m_vvInitTearStreams were used to initialize tear streams
		for (auto recycle : vRecycles)
			partVars.bTearStreamsFromInit |= !recycle->GetTimePoints(0, m_pParams->initTimeWindow).empty();

		partVars.dTWLength = m_pParams->initTimeWindow;
	}

	partVars.dTWStart = _t1;
	partVars.dTWEnd = std::min(partVars.dTWStart + partVars.dTWLength, _t2);

	// main calculation sequence
	while (partVars.dTWStart < _t2)
	{
		if (partVars.dTWLength < m_pParams->minTimeWindow)
			RaiseError(StrConst::Sim_ErrMinTWLength);
		if (partVars.iTWIterationFull == m_pParams->maxItersNumber)
			RaiseError(StrConst::Sim_ErrMaxTWIterations);
		if (m_nCurrentStatus == ESimulatorState::TO_BE_STOPPED)
			break;

		// write log
		m_log.WriteInfo(StrConst::Sim_InfoRecycleStreamCalculating(partVars.iWindowNumber, partVars.iTWIterationFull, partVars.dTWStart, partVars.dTWEnd), true);

		// save copies of streams
		for (size_t j = 0; j < vRecycles.size(); ++j)
		{
			partVars.vRecyclesPrevPrev[j]->CopyFromStream(partVars.dTWStartPrev, partVars.dTWEnd, partVars.vRecyclesPrev[j]);
			partVars.vRecyclesPrev[j]->CopyFromStream(partVars.dTWStartPrev, partVars.dTWEnd, vRecycles[j]);
		}

		// load units state
		for (auto& model : _partition.models)
			model->GetModel()->DoLoadStateUnit();

		// simulation itself
		SimulateUnits(_partition, partVars.dTWStart, partVars.dTWEnd);

		partVars.iTWIterationFull++;
		partVars.iTWIterationCurr++;

		// check convergence
		if (!CheckConvergence(vRecycles, partVars.vRecyclesPrev, partVars.dTWStart, partVars.dTWEnd))
		{
			// cannot converge with automatic defined initial conditions in tear streams. set defaults and try again
			if (partVars.dTWStart == 0 && partVars.iTWIterationCurr > m_pParams->iters1stUpperLimit && m_pParams->initializeTearStreamsAutoFlag && partVars.bTearStreamsFromInit)
			{
				m_log.WriteInfo(StrConst::Sim_InfoFalseInitTearStreams, true);					// warn the user
				for (auto& stream : vRecycles)					stream->RemoveAllTimePoints();			// clear recycle streams
				for (auto& stream : partVars.vRecyclesPrev)		stream->RemoveAllTimePoints();			// clear previous state of recycles
				for (auto& stream : partVars.vRecyclesPrevPrev)	stream->RemoveAllTimePoints();			// clear pre-previous state of recycles
				for (auto& stream : vRecycles)													// make sure, there is at least one time point in the stream
					if (stream->GetAllTimePoints().empty())
						stream->AddTimePoint(0.0);
				partVars.bTearStreamsFromInit = false;											// turn off the control flag to prevent a repeated reset
				partVars.iTWIterationFull = 0;													// reset iteration number
				partVars.iTWIterationCurr = 0;													// reset iteration number
				continue;																		// repeat calculations
			}

			// apply chosen convergence method
			if (partVars.iTWIterationFull > 2)
				ApplyConvergenceMethod(vRecycles, partVars.vRecyclesPrev, partVars.vRecyclesPrevPrev, partVars.dTWStart, partVars.dTWEnd);

			// reduce time window if necessary
			if (((partVars.dTWStart == 0) && (partVars.iTWIterationCurr > m_pParams->iters1stUpperLimit)) ||	// for the first window
				((partVars.dTWStart != 0) && (partVars.iTWIterationCurr > m_pParams->itersUpperLimit)))		// for other windows
			{
				partVars.dTWLength /= m_pParams->magnificationRatio;
				partVars.dTWEnd = std::min(partVars.dTWStart + partVars.dTWLength, _t2);
				partVars.iTWIterationCurr = 0;
			}

			continue; // repeat calculations on time window
		}

		// first time window && converged in the first iteration -> proper initial values -> no parameters have been changed from the previous run ->
		// use old initial values instead of calculated ones to maintain the consistency of the results in consecutive simulations of the same flowsheet
		if (partVars.dTWStart == 0 && partVars.iTWIterationFull == 1)
			for (size_t i = 0; i < vRecycles.size(); ++i)
				vRecycles[i]->CopyFromStream(partVars.dTWStartPrev, partVars.dTWEnd, partVars.vRecyclesPrev[i]);

		// save units state
		for (auto& model : _partition.models)
			model->GetModel()->DoSaveStateUnit(partVars.dTWStart, partVars.dTWEnd);

		if (partVars.dTWEnd < _t2)
		{
			// recalculate time window if necessary
			if (partVars.iTWIterationCurr < m_pParams->itersLowerLimit)
				partVars.dTWLength *= m_pParams->magnificationRatio;	// increase time window
			else if (partVars.iTWIterationCurr > m_pParams->itersUpperLimit)
				partVars.dTWLength /= m_pParams->magnificationRatio;	// decrease time window
			if (partVars.dTWLength > m_pParams->maxTimeWindow)
				partVars.dTWLength = m_pParams->maxTimeWindow;			// set maximum time window

			// setup simulation's parameters and move to the next time window
			partVars.iTWIterationCurr = 0;
			partVars.iTWIterationFull = 0;
			partVars.iWindowNumber++;
			partVars.dTWStartPrev = partVars.dTWStart;
			partVars.dTWStart = partVars.dTWEnd;
			partVars.dTWEnd = std::min(partVars.dTWEnd + partVars.dTWLength, _t2);

			// make prediction
			ApplyExtrapolationMethod(vRecycles, partVars.dTWStartPrev, partVars.dTWStart, partVars.dTWEnd);
		}
		else
		{
			// finish simulation of the partition
			break;
		}
	}
}

void CSimulator::SimulateUnits(const CCalculationSequence::SPartition& _partition, double _t1, double _t2)
{
	for (auto& model : _partition.models)
	{
		// current model
		m_unitName = model->GetName();

		// copy output streams to input streams and convert grids if necessary
		m_pFlowsheet->PrepareInputStreams(model, _t1, _t2);

		// initialize unit if not yet initialized
		if (!m_vInitialized[model->GetKey()])
		{
			InitializeUnit(*model, _t1);
			m_vInitialized[model->GetKey()] = true;
		}

		// check for stopping flag
		if (m_nCurrentStatus == ESimulatorState::TO_BE_STOPPED) break;

		// write log
		m_log.WriteInfo(StrConst::Sim_InfoUnitSimulation(m_unitName, model->GetModel()->GetUnitName(), _t1, _t2));

		// clean output streams
		for (auto& port : model->GetModel()->GetPortsManager().GetAllOutputPorts())
			port->GetStream()->RemoveTimePointsAfter(_t1);

		// simulate
		if (dynamic_cast<CDynamicUnit*>(model->GetModel()))	// for dynamic units
		{
			// simulate
			SimulateUnit(*model, _t1, _t2);
		}
		else	// for steady-state units
		{
			// get all time points in current window + _dEndTime
			std::vector<double> vTimePoints = model->GetModel()->GetAllTimePoints(_t1, _t2);
			if (vTimePoints.empty() || std::fabs(vTimePoints.back() - _t2) > 16 * std::numeric_limits<double>::epsilon())
				vTimePoints.push_back(_t2);
			if (vTimePoints.size() != 1 && vTimePoints.front() != 0.0)
				vTimePoints.erase(vTimePoints.begin()); // already calculated on previous time window

			// for each time point
			for (auto t : vTimePoints)
			{
				// check for stopping flag
				if (m_nCurrentStatus == ESimulatorState::TO_BE_STOPPED) break;
				// simulate
				SimulateUnit(*model, t);
			}
		}
	}
}

void CSimulator::SimulateUnit(CUnitContainer& _unit, double _t1, double _t2 /*= -1*/)
{
	auto* model = _unit.GetModel();

	m_logUpdater.SetModel(model);

	// simulate
	try {
		if(dynamic_cast<CDynamicUnit*>(model))
			model->Simulate(_t1, _t2);
		else
			model->Simulate(_t1);
	}
	catch (const std::logic_error& e) {
		RaiseError(e.what());
	}

	m_logUpdater.ReleaseModel();

	// check for errors
	if (model->HasError())
		RaiseError(model->PopErrorMessage());
}

void CSimulator::InitializeUnit(CUnitContainer& _unit, double _t)
{
	auto* model = _unit.GetModel();

	// write log
	m_log.WriteInfo(StrConst::Sim_InfoUnitInitialization(m_unitName, model->GetUnitName()));
	//CLogUpdater logUpdater{ &m_log, model };
	try {
		model->DoInitializeUnit();
	}
	catch (const std::logic_error& e) {
		RaiseError(e.what());
	}
	//logUpdater.Release();

	if (model->HasError())
		RaiseError(model->GetErrorMessage());

	// check unit parameters
	for (const CBaseUnitParameter* param : model->GetUnitParametersManager().GetParameters())
		if (!param->IsInBounds())
			m_log.WriteWarning(StrConst::Sim_WarningParamOutOfRange(model->GetUnitName(), m_unitName, param->GetName()));
}

bool CSimulator::CheckConvergence(const std::vector<CStream*>& _vStreams1, const std::vector<CStream*>& _vStreams2, double _t1, double _t2) const
{
	for (size_t i = 0; i < _vStreams1.size(); ++i)
	{
		if (!CompareStreams(*_vStreams1[i], *_vStreams2[i], _t1, _t2))
		{
			return false;
		}
	}
	return true;
}

bool CSimulator::CompareStreams(const CStream& _str1, const CStream& _str2, double _t1, double _t2) const
{
	// get all time points
	std::vector<double> timePoints = VectorsUnionSorted(_str1.GetTimePoints(_t1, _t2), _str2.GetTimePoints(_t1, _t2));
	if (timePoints.empty())
		return true;

	// remove the first time point as it was analyzed on the previous time window
	if (timePoints.front() != 0.0)
		timePoints.erase(timePoints.begin());

	// compare
	return std::all_of(timePoints.begin(), timePoints.end(), [&](double t)
	{
		return CStream::AreEqual(t, _str1, _str2);
	});
}

void CSimulator::RaiseError(const std::string& _sError)
{
	m_log.WriteError(_sError);
	m_nCurrentStatus = ESimulatorState::TO_BE_STOPPED;
	m_hasError = true;
}

void CSimulator::ClearLogState()
{
	m_unitName.clear();
	m_log.Clear();
}

void CSimulator::ApplyExtrapolationMethod(const std::vector<CStream*>& _streams, double _t1, double _t2, double _tExtra) const
{
	switch (static_cast<EExtrapolationMethod>(m_pParams->extrapolationMethod))
	{
	case EExtrapolationMethod::LINEAR:	for (auto& str : _streams) str->Extrapolate(_tExtra, _t1, _t2);						break;
	case EExtrapolationMethod::SPLINE:	for (auto& str : _streams) str->Extrapolate(_tExtra, _t1, (_t2 + _t1) / 2, _t2);	break;
	case EExtrapolationMethod::NEAREST:	for (auto& str : _streams) str->Extrapolate(_tExtra, _t2);							break;
	}
}

void CSimulator::SetupConvergenceMethod()
{
	m_bSteffensenTrigger = true;
}

void CSimulator::ApplyConvergenceMethod(const std::vector<CStream*>& _s3, std::vector<CStream*>& _s2, std::vector<CStream*>& _s1, double _t1, double _t2)
{
	if (static_cast<EConvergenceMethod>(m_pParams->convergenceMethod) == EConvergenceMethod::DIRECT_SUBSTITUTION && m_pParams->relaxationParam == 1.)
		return;
	if (static_cast<EConvergenceMethod>(m_pParams->convergenceMethod) == EConvergenceMethod::STEFFENSEN)
	{
		m_bSteffensenTrigger = !m_bSteffensenTrigger;
		if (m_bSteffensenTrigger)
			return;
	}

	for (size_t i = 0; i < _s3.size(); ++i)
		for (auto time : _s3[i]->GetTimePoints(_t1, _t2))
		{
			// TODO: go over all defined properties
			_s3[i]->SetOverallProperty(time, EOverall::OVERALL_MASS, PredictValues(_s3[i]->GetOverallProperty(time, EOverall::OVERALL_MASS), _s2[i]->GetOverallProperty(time, EOverall::OVERALL_MASS), _s1[i]->GetOverallProperty(time, EOverall::OVERALL_MASS)));
			_s3[i]->SetOverallProperty(time, EOverall::OVERALL_TEMPERATURE, PredictValues(_s3[i]->GetOverallProperty(time, EOverall::OVERALL_TEMPERATURE), _s2[i]->GetOverallProperty(time, EOverall::OVERALL_TEMPERATURE), _s1[i]->GetOverallProperty(time, EOverall::OVERALL_TEMPERATURE)));
			_s3[i]->SetOverallProperty(time, EOverall::OVERALL_PRESSURE, PredictValues(_s3[i]->GetOverallProperty(time, EOverall::OVERALL_PRESSURE), _s2[i]->GetOverallProperty(time, EOverall::OVERALL_PRESSURE), _s1[i]->GetOverallProperty(time, EOverall::OVERALL_PRESSURE)));
			for (const auto& phase : m_pFlowsheet->GetPhases())
			{
				_s3[i]->SetPhaseFraction(time, phase.state, PredictValues(_s3[i]->GetPhaseFraction(time, phase.state), _s2[i]->GetPhaseFraction(time, phase.state), _s1[i]->GetPhaseFraction(time, phase.state)));
				if (phase.state == EPhase::SOLID) // all distributed parameters
					_s3[i]->SetDistribution(time, PredictValues(_s3[i]->GetDistribution(time, _s3[i]->GetGrid().GetDimensionsTypes()), _s2[i]->GetDistribution(time, _s2[i]->GetGrid().GetDimensionsTypes()), _s1[i]->GetDistribution(time, _s1[i]->GetGrid().GetDimensionsTypes())));
				else				// only distribution by compounds
					_s3[i]->SetCompoundsFractions(time, phase.state, PredictValues(_s3[i]->GetCompoundsFractions(time, phase.state), _s2[i]->GetCompoundsFractions(time, phase.state), _s1[i]->GetCompoundsFractions(time, phase.state)));
			}
		}
}

double CSimulator::PredictValues(double _d3, double _d2, double _d1) const
{
	double res;
	PredictValues(1, &_d3, &_d2, &_d1, &res);
	return res;

}

std::vector<double> CSimulator::PredictValues(const std::vector<double>& _v3, const std::vector<double>& _v2, const std::vector<double>& _v1) const
{
	std::vector<double> res(_v3.size());
	PredictValues(_v3.size(), _v3.data(), _v2.data(), _v1.data(), res.data());
	return res;
}

CDenseMDMatrix CSimulator::PredictValues(const CDenseMDMatrix& _m3, const CDenseMDMatrix& _m2, const CDenseMDMatrix& _m1) const
{
	CDenseMDMatrix res(_m3.GetDimensions(), _m3.GetClasses());
	PredictValues(_m3.GetDataLength(), _m3.GetDataPtr(), _m2.GetDataPtr(), _m1.GetDataPtr(), res.GetDataPtr());
	return res;
}

void CSimulator::PredictValues(size_t _len, const double* _v3, const double* _v2, const double* _v1, double* _res) const
{
	switch (static_cast<EConvergenceMethod>(m_pParams->convergenceMethod))
	{
	case EConvergenceMethod::DIRECT_SUBSTITUTION:
		for (size_t i = 0; i < _len; ++i)
			_res[i] = PredictRelaxation(_v3[i], _v2[i]);
		break;
	case EConvergenceMethod::WEGSTEIN:
		for (size_t i = 0; i < _len; ++i)
			_res[i] = PredictWegstein(_v3[i], _v2[i], _v2[i], _v1[i]);
		break;
	case EConvergenceMethod::STEFFENSEN:
		for (size_t i = 0; i < _len; ++i)
			_res[i] = PredictSteffensen(_v3[i], _v2[i], _v1[i]);
		break;
	}
}

double CSimulator::PredictRelaxation(double F2, double F1) const
{
	return (1 - m_pParams->relaxationParam)*F1 + m_pParams->relaxationParam*F2;
}

double CSimulator::PredictWegstein(double F2, double F1, double X2, double X1) const
{
	if (std::fabs(X2 - X1) <= (std::fabs(X2)*m_pParams->relTol + m_pParams->absTol))
		return F2;
	const double s = ( F2 - F1 ) / ( X2 - X1 );
	double q = s / ( s - 1 );
	if (q < -5)
		q = -5;
	else if (q > m_pParams->wegsteinAccelParam)
		q = m_pParams->wegsteinAccelParam;
	return q*X2 + (1 - q)*F2;
}

double CSimulator::PredictSteffensen(double F3, double F2, double F1) const
{
	const double tmp = F3 - 2 * F2 + F1;
	if (std::fabs(tmp) <= (std::fabs(tmp)*m_pParams->relTol + m_pParams->absTol))
		return F3;
	return F1 - std::pow((F2 - F1), 2.) / tmp;
}

void CSimulator::ReduceData(const CCalculationSequence::SPartition& _partition, double _t1, double _t2) const
{
	if (m_pParams->saveTimeStep > 0.)
	{
		const double dStart = std::max(std::min(_t1, _t2 - 2 * m_pParams->saveTimeStep), 0.0);
		for (auto* model : _partition.models)
			if (model->GetModel()->GetStreamsManager().GetFeedsInit().empty()) // TODO: proper check for feed unit
			{
				for (auto& p : model->GetModel()->GetPortsManager().GetAllInputPorts())
					p->GetStream()->ReduceTimePoints(dStart, _t2, m_pParams->saveTimeStep);
				if (m_pParams->saveTimeStepFlagHoldups)
					model->GetModel()->ReduceTimePoints(dStart, _t2, m_pParams->saveTimeStep);
			}
	}
}

EPhase CSimulator::PhaseSOA2EPhase(unsigned _soa)
{
	switch (_soa)
	{
	case SOA_SOLID:		return EPhase::SOLID;
	case SOA_LIQUID:	return EPhase::LIQUID;
	case SOA_VAPOR:		return EPhase::VAPOR;
	default:			return EPhase::UNDEFINED;
	}
}