1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
|
/* Copyright (c) 2020, Dyssol Development Team. All rights reserved. This file is part of Dyssol. See LICENSE file for license information. */
#include "Simulator.h"
#include "Flowsheet.h"
#include "ParametersHolder.h"
#include "Stream.h"
#include "Phase.h"
#include "UnitContainer.h"
#include "DynamicUnit.h"
#include "DyssolStringConstants.h"
#include "ContainerFunctions.h"
#include "DyssolUtilities.h"
CSimulator::CSimulator()
{
ClearLogState();
m_pFlowsheet = nullptr;
m_pParams = nullptr;
m_nCurrentStatus = ESimulatorState::IDLE;
}
void CSimulator::SetFlowsheet(CFlowsheet* _pFlowsheet)
{
m_pFlowsheet = _pFlowsheet;
m_pSequence = m_pFlowsheet->GetCalculationSequence();
m_pParams = m_pFlowsheet->GetParameters();
m_hasError = false;
}
void CSimulator::SetCurrentStatus(ESimulatorState _nStatus)
{
m_nCurrentStatus = _nStatus;
}
ESimulatorState CSimulator::GetCurrentStatus() const
{
return m_nCurrentStatus;
}
bool CSimulator::HasError() const
{
return m_hasError;
}
CSimulator::SPartitionStatus CSimulator::GetCurrentPartitionStatus() const
{
if (m_iCurrentPartition >= m_partitionsStatus.size()) return {};
return m_partitionsStatus[m_iCurrentPartition];
}
void CSimulator::Simulate()
{
m_nCurrentStatus = ESimulatorState::RUNNING;
m_hasError = false;
// Prepare
SetupConvergenceMethod();
ClearLogState();
m_hasError = false;
InitializePartitionsStatus();
// Clear initialization flags
m_vInitialized.clear();
for (const auto& partition : m_pSequence->Partitions())
for (const auto& model : partition.models)
m_vInitialized[model->GetKey()] = false;
// run logger updater
m_logUpdater.Run();
// set initial values to tear streams
m_pFlowsheet->GetCalculationSequence()->CopyInitToTearStreams(m_pParams->initTimeWindow);
// Simulate all units
const auto partitions = m_pSequence->Partitions();
// TODO: work only with partition index, when getting a partition data by index will be a fast operation
for (size_t iPart = 0; iPart < partitions.size(); ++iPart)
{
m_iCurrentPartition = iPart;
SimulateUntilEndSimulationTime(iPart, partitions[iPart]);
if (m_nCurrentStatus == ESimulatorState::TO_BE_STOPPED) break;
// remove excessive data
ReduceData(partitions[iPart], m_pParams->startSimulationTime, m_pParams->endSimulationTime);
// Finalize all units within partition
for (auto& model : partitions[iPart].models)
{
m_log.WriteInfo(StrConst::Sim_InfoUnitFinalization(model->GetName(), model->GetModel()->GetUnitName()));
model->GetModel()->DoFinalizeUnit();
}
}
// Save new initial values of tear streams
if(m_pParams->initializeTearStreamsAutoFlag)
{
m_log.WriteInfo(StrConst::Sim_InfoSaveInitTearStreams);
m_pFlowsheet->GetCalculationSequence()->CopyTearToInitStreams(m_pParams->initTimeWindow);
}
// remove buffer streams
for (size_t i = 0; i < m_partitionsStatus.size(); ++i)
for (size_t j = 0; j < m_partitionsStatus[i].vRecyclesPrev.size(); ++j)
{
delete m_partitionsStatus[i].vRecyclesPrev[j];
delete m_partitionsStatus[i].vRecyclesPrevPrev[j];
}
m_log.WriteInfo("");
// stop logger updater
m_logUpdater.Stop();
m_nCurrentStatus = ESimulatorState::IDLE;
}
void CSimulator::Stop()
{
if (GetCurrentStatus() != ESimulatorState::IDLE)
SetCurrentStatus(ESimulatorState::TO_BE_STOPPED);
}
void CSimulator::InitializePartitionsStatus()
{
m_partitionsStatus.clear();
for (const auto& partition : m_pSequence->Partitions())
{
SPartitionStatus& status = m_partitionsStatus.emplace_back();
// create and initialize structure of buffer streams
const std::vector<CStream*>& vRecycles = partition.tearStreams;
status.vRecyclesPrev = std::vector<CStream*>(vRecycles.size()); // previous state of recycles
status.vRecyclesPrevPrev = std::vector<CStream*>(vRecycles.size()); // pre-previous state of recycles
for (size_t i = 0; i < vRecycles.size(); ++i)
{
status.vRecyclesPrev[i] = new CStream(*vRecycles[i]);
status.vRecyclesPrev[i]->RemoveAllTimePoints();
status.vRecyclesPrevPrev[i] = new CStream(*vRecycles[i]);
status.vRecyclesPrevPrev[i]->RemoveAllTimePoints();
}
}
}
void CSimulator::SimulateUntilEndSimulationTime(size_t _iPartition, const CCalculationSequence::SPartition& _partition)
{
if (_partition.tearStreams.empty()) // step without cycles
SimulateUnits(_partition, m_pParams->startSimulationTime, m_pParams->endSimulationTime); // simulation on time interval itself
else // step with recycles
SimulateUnitsWithRecycles(_iPartition, _partition, m_pParams->startSimulationTime, m_pParams->endSimulationTime); // waveform relaxation on time interval
}
void CSimulator::SimulateUnitsWithRecycles(size_t _iPartition, const CCalculationSequence::SPartition& _partition, double _t1, double _t2)
{
const std::vector<CStream*>& vRecycles = _partition.tearStreams;
// initialize simulation's parameters
SPartitionStatus& partVars = m_partitionsStatus[_iPartition];
if (_t1 == 0)
{
// check whether initial values were set to recycle streams
partVars.bTearStreamsFromInit = false; // will be true if data from m_vvInitTearStreams were used to initialize tear streams
for (auto recycle : vRecycles)
partVars.bTearStreamsFromInit |= !recycle->GetTimePoints(0, m_pParams->initTimeWindow).empty();
partVars.dTWLength = m_pParams->initTimeWindow;
}
partVars.dTWStart = _t1;
partVars.dTWEnd = std::min(partVars.dTWStart + partVars.dTWLength, _t2);
// main calculation sequence
while (partVars.dTWStart < _t2)
{
if (partVars.dTWLength < m_pParams->minTimeWindow)
RaiseError(StrConst::Sim_ErrMinTWLength);
if (partVars.iTWIterationFull == m_pParams->maxItersNumber)
RaiseError(StrConst::Sim_ErrMaxTWIterations);
if (m_nCurrentStatus == ESimulatorState::TO_BE_STOPPED)
break;
// write log
m_log.WriteInfo(StrConst::Sim_InfoRecycleStreamCalculating(partVars.iWindowNumber, partVars.iTWIterationFull, partVars.dTWStart, partVars.dTWEnd), true);
// save copies of streams
for (size_t j = 0; j < vRecycles.size(); ++j)
{
partVars.vRecyclesPrevPrev[j]->CopyFromStream(partVars.dTWStartPrev, partVars.dTWEnd, partVars.vRecyclesPrev[j]);
partVars.vRecyclesPrev[j]->CopyFromStream(partVars.dTWStartPrev, partVars.dTWEnd, vRecycles[j]);
}
// load units state
for (auto& model : _partition.models)
model->GetModel()->DoLoadStateUnit();
// simulation itself
SimulateUnits(_partition, partVars.dTWStart, partVars.dTWEnd);
partVars.iTWIterationFull++;
partVars.iTWIterationCurr++;
// check convergence
if (!CheckConvergence(vRecycles, partVars.vRecyclesPrev, partVars.dTWStart, partVars.dTWEnd))
{
// cannot converge with automatic defined initial conditions in tear streams. set defaults and try again
if (partVars.dTWStart == 0 && partVars.iTWIterationCurr > m_pParams->iters1stUpperLimit && m_pParams->initializeTearStreamsAutoFlag && partVars.bTearStreamsFromInit)
{
m_log.WriteInfo(StrConst::Sim_InfoFalseInitTearStreams, true); // warn the user
for (auto& stream : vRecycles) stream->RemoveAllTimePoints(); // clear recycle streams
for (auto& stream : partVars.vRecyclesPrev) stream->RemoveAllTimePoints(); // clear previous state of recycles
for (auto& stream : partVars.vRecyclesPrevPrev) stream->RemoveAllTimePoints(); // clear pre-previous state of recycles
for (auto& stream : vRecycles) // make sure, there is at least one time point in the stream
if (stream->GetAllTimePoints().empty())
stream->AddTimePoint(0.0);
partVars.bTearStreamsFromInit = false; // turn off the control flag to prevent a repeated reset
partVars.iTWIterationFull = 0; // reset iteration number
partVars.iTWIterationCurr = 0; // reset iteration number
continue; // repeat calculations
}
// apply chosen convergence method
if (partVars.iTWIterationFull > 2)
ApplyConvergenceMethod(vRecycles, partVars.vRecyclesPrev, partVars.vRecyclesPrevPrev, partVars.dTWStart, partVars.dTWEnd);
// reduce time window if necessary
if (((partVars.dTWStart == 0) && (partVars.iTWIterationCurr > m_pParams->iters1stUpperLimit)) || // for the first window
((partVars.dTWStart != 0) && (partVars.iTWIterationCurr > m_pParams->itersUpperLimit))) // for other windows
{
partVars.dTWLength /= m_pParams->magnificationRatio;
partVars.dTWEnd = std::min(partVars.dTWStart + partVars.dTWLength, _t2);
partVars.iTWIterationCurr = 0;
}
continue; // repeat calculations on time window
}
// first time window && converged in the first iteration -> proper initial values -> no parameters have been changed from the previous run ->
// use old initial values instead of calculated ones to maintain the consistency of the results in consecutive simulations of the same flowsheet
if (partVars.dTWStart == 0 && partVars.iTWIterationFull == 1)
for (size_t i = 0; i < vRecycles.size(); ++i)
vRecycles[i]->CopyFromStream(partVars.dTWStartPrev, partVars.dTWEnd, partVars.vRecyclesPrev[i]);
// save units state
for (auto& model : _partition.models)
model->GetModel()->DoSaveStateUnit(partVars.dTWStart, partVars.dTWEnd);
if (partVars.dTWEnd < _t2)
{
// recalculate time window if necessary
if (partVars.iTWIterationCurr < m_pParams->itersLowerLimit)
partVars.dTWLength *= m_pParams->magnificationRatio; // increase time window
else if (partVars.iTWIterationCurr > m_pParams->itersUpperLimit)
partVars.dTWLength /= m_pParams->magnificationRatio; // decrease time window
if (partVars.dTWLength > m_pParams->maxTimeWindow)
partVars.dTWLength = m_pParams->maxTimeWindow; // set maximum time window
// setup simulation's parameters and move to the next time window
partVars.iTWIterationCurr = 0;
partVars.iTWIterationFull = 0;
partVars.iWindowNumber++;
partVars.dTWStartPrev = partVars.dTWStart;
partVars.dTWStart = partVars.dTWEnd;
partVars.dTWEnd = std::min(partVars.dTWEnd + partVars.dTWLength, _t2);
// make prediction
ApplyExtrapolationMethod(vRecycles, partVars.dTWStartPrev, partVars.dTWStart, partVars.dTWEnd);
}
else
{
// finish simulation of the partition
break;
}
}
}
void CSimulator::SimulateUnits(const CCalculationSequence::SPartition& _partition, double _t1, double _t2)
{
for (auto& model : _partition.models)
{
// current model
m_unitName = model->GetName();
// copy output streams to input streams and convert grids if necessary
m_pFlowsheet->PrepareInputStreams(model, _t1, _t2);
// initialize unit if not yet initialized
if (!m_vInitialized[model->GetKey()])
{
InitializeUnit(*model, _t1);
m_vInitialized[model->GetKey()] = true;
}
// check for stopping flag
if (m_nCurrentStatus == ESimulatorState::TO_BE_STOPPED) break;
// write log
m_log.WriteInfo(StrConst::Sim_InfoUnitSimulation(m_unitName, model->GetModel()->GetUnitName(), _t1, _t2));
// clean output streams
for (auto& port : model->GetModel()->GetPortsManager().GetAllOutputPorts())
port->GetStream()->RemoveTimePointsAfter(_t1);
// simulate
if (dynamic_cast<CDynamicUnit*>(model->GetModel())) // for dynamic units
{
// simulate
SimulateUnit(*model, _t1, _t2);
}
else // for steady-state units
{
// get all time points in current window + _dEndTime
std::vector<double> vTimePoints = model->GetModel()->GetAllTimePoints(_t1, _t2);
if (vTimePoints.empty() || std::fabs(vTimePoints.back() - _t2) > 16 * std::numeric_limits<double>::epsilon())
vTimePoints.push_back(_t2);
if (vTimePoints.size() != 1 && vTimePoints.front() != 0.0)
vTimePoints.erase(vTimePoints.begin()); // already calculated on previous time window
// for each time point
for (auto t : vTimePoints)
{
// check for stopping flag
if (m_nCurrentStatus == ESimulatorState::TO_BE_STOPPED) break;
// simulate
SimulateUnit(*model, t);
}
}
}
}
void CSimulator::SimulateUnit(CUnitContainer& _unit, double _t1, double _t2 /*= -1*/)
{
auto* model = _unit.GetModel();
m_logUpdater.SetModel(model);
// simulate
try {
if(dynamic_cast<CDynamicUnit*>(model))
model->Simulate(_t1, _t2);
else
model->Simulate(_t1);
}
catch (const std::logic_error& e) {
RaiseError(e.what());
}
m_logUpdater.ReleaseModel();
// check for errors
if (model->HasError())
RaiseError(model->PopErrorMessage());
}
void CSimulator::InitializeUnit(CUnitContainer& _unit, double _t)
{
auto* model = _unit.GetModel();
// write log
m_log.WriteInfo(StrConst::Sim_InfoUnitInitialization(m_unitName, model->GetUnitName()));
//CLogUpdater logUpdater{ &m_log, model };
try {
model->DoInitializeUnit();
}
catch (const std::logic_error& e) {
RaiseError(e.what());
}
//logUpdater.Release();
if (model->HasError())
RaiseError(model->GetErrorMessage());
// check unit parameters
for (const CBaseUnitParameter* param : model->GetUnitParametersManager().GetParameters())
if (!param->IsInBounds())
m_log.WriteWarning(StrConst::Sim_WarningParamOutOfRange(model->GetUnitName(), m_unitName, param->GetName()));
}
bool CSimulator::CheckConvergence(const std::vector<CStream*>& _vStreams1, const std::vector<CStream*>& _vStreams2, double _t1, double _t2) const
{
for (size_t i = 0; i < _vStreams1.size(); ++i)
{
if (!CompareStreams(*_vStreams1[i], *_vStreams2[i], _t1, _t2))
{
return false;
}
}
return true;
}
bool CSimulator::CompareStreams(const CStream& _str1, const CStream& _str2, double _t1, double _t2) const
{
// get all time points
std::vector<double> timePoints = VectorsUnionSorted(_str1.GetTimePoints(_t1, _t2), _str2.GetTimePoints(_t1, _t2));
if (timePoints.empty())
return true;
// remove the first time point as it was analyzed on the previous time window
if (timePoints.front() != 0.0)
timePoints.erase(timePoints.begin());
// compare
return std::all_of(timePoints.begin(), timePoints.end(), [&](double t)
{
return CStream::AreEqual(t, _str1, _str2);
});
}
void CSimulator::RaiseError(const std::string& _sError)
{
m_log.WriteError(_sError);
m_nCurrentStatus = ESimulatorState::TO_BE_STOPPED;
m_hasError = true;
}
void CSimulator::ClearLogState()
{
m_unitName.clear();
m_log.Clear();
}
void CSimulator::ApplyExtrapolationMethod(const std::vector<CStream*>& _streams, double _t1, double _t2, double _tExtra) const
{
switch (static_cast<EExtrapolationMethod>(m_pParams->extrapolationMethod))
{
case EExtrapolationMethod::LINEAR: for (auto& str : _streams) str->Extrapolate(_tExtra, _t1, _t2); break;
case EExtrapolationMethod::SPLINE: for (auto& str : _streams) str->Extrapolate(_tExtra, _t1, (_t2 + _t1) / 2, _t2); break;
case EExtrapolationMethod::NEAREST: for (auto& str : _streams) str->Extrapolate(_tExtra, _t2); break;
}
}
void CSimulator::SetupConvergenceMethod()
{
m_bSteffensenTrigger = true;
}
void CSimulator::ApplyConvergenceMethod(const std::vector<CStream*>& _s3, std::vector<CStream*>& _s2, std::vector<CStream*>& _s1, double _t1, double _t2)
{
if (static_cast<EConvergenceMethod>(m_pParams->convergenceMethod) == EConvergenceMethod::DIRECT_SUBSTITUTION && m_pParams->relaxationParam == 1.)
return;
if (static_cast<EConvergenceMethod>(m_pParams->convergenceMethod) == EConvergenceMethod::STEFFENSEN)
{
m_bSteffensenTrigger = !m_bSteffensenTrigger;
if (m_bSteffensenTrigger)
return;
}
for (size_t i = 0; i < _s3.size(); ++i)
for (auto time : _s3[i]->GetTimePoints(_t1, _t2))
{
// TODO: go over all defined properties
_s3[i]->SetOverallProperty(time, EOverall::OVERALL_MASS, PredictValues(_s3[i]->GetOverallProperty(time, EOverall::OVERALL_MASS), _s2[i]->GetOverallProperty(time, EOverall::OVERALL_MASS), _s1[i]->GetOverallProperty(time, EOverall::OVERALL_MASS)));
_s3[i]->SetOverallProperty(time, EOverall::OVERALL_TEMPERATURE, PredictValues(_s3[i]->GetOverallProperty(time, EOverall::OVERALL_TEMPERATURE), _s2[i]->GetOverallProperty(time, EOverall::OVERALL_TEMPERATURE), _s1[i]->GetOverallProperty(time, EOverall::OVERALL_TEMPERATURE)));
_s3[i]->SetOverallProperty(time, EOverall::OVERALL_PRESSURE, PredictValues(_s3[i]->GetOverallProperty(time, EOverall::OVERALL_PRESSURE), _s2[i]->GetOverallProperty(time, EOverall::OVERALL_PRESSURE), _s1[i]->GetOverallProperty(time, EOverall::OVERALL_PRESSURE)));
for (const auto& phase : m_pFlowsheet->GetPhases())
{
_s3[i]->SetPhaseFraction(time, phase.state, PredictValues(_s3[i]->GetPhaseFraction(time, phase.state), _s2[i]->GetPhaseFraction(time, phase.state), _s1[i]->GetPhaseFraction(time, phase.state)));
if (phase.state == EPhase::SOLID) // all distributed parameters
_s3[i]->SetDistribution(time, PredictValues(_s3[i]->GetDistribution(time, _s3[i]->GetGrid().GetDimensionsTypes()), _s2[i]->GetDistribution(time, _s2[i]->GetGrid().GetDimensionsTypes()), _s1[i]->GetDistribution(time, _s1[i]->GetGrid().GetDimensionsTypes())));
else // only distribution by compounds
_s3[i]->SetCompoundsFractions(time, phase.state, PredictValues(_s3[i]->GetCompoundsFractions(time, phase.state), _s2[i]->GetCompoundsFractions(time, phase.state), _s1[i]->GetCompoundsFractions(time, phase.state)));
}
}
}
double CSimulator::PredictValues(double _d3, double _d2, double _d1) const
{
double res;
PredictValues(1, &_d3, &_d2, &_d1, &res);
return res;
}
std::vector<double> CSimulator::PredictValues(const std::vector<double>& _v3, const std::vector<double>& _v2, const std::vector<double>& _v1) const
{
std::vector<double> res(_v3.size());
PredictValues(_v3.size(), _v3.data(), _v2.data(), _v1.data(), res.data());
return res;
}
CDenseMDMatrix CSimulator::PredictValues(const CDenseMDMatrix& _m3, const CDenseMDMatrix& _m2, const CDenseMDMatrix& _m1) const
{
CDenseMDMatrix res(_m3.GetDimensions(), _m3.GetClasses());
PredictValues(_m3.GetDataLength(), _m3.GetDataPtr(), _m2.GetDataPtr(), _m1.GetDataPtr(), res.GetDataPtr());
return res;
}
void CSimulator::PredictValues(size_t _len, const double* _v3, const double* _v2, const double* _v1, double* _res) const
{
switch (static_cast<EConvergenceMethod>(m_pParams->convergenceMethod))
{
case EConvergenceMethod::DIRECT_SUBSTITUTION:
for (size_t i = 0; i < _len; ++i)
_res[i] = PredictRelaxation(_v3[i], _v2[i]);
break;
case EConvergenceMethod::WEGSTEIN:
for (size_t i = 0; i < _len; ++i)
_res[i] = PredictWegstein(_v3[i], _v2[i], _v2[i], _v1[i]);
break;
case EConvergenceMethod::STEFFENSEN:
for (size_t i = 0; i < _len; ++i)
_res[i] = PredictSteffensen(_v3[i], _v2[i], _v1[i]);
break;
}
}
double CSimulator::PredictRelaxation(double F2, double F1) const
{
return (1 - m_pParams->relaxationParam)*F1 + m_pParams->relaxationParam*F2;
}
double CSimulator::PredictWegstein(double F2, double F1, double X2, double X1) const
{
if (std::fabs(X2 - X1) <= (std::fabs(X2)*m_pParams->relTol + m_pParams->absTol))
return F2;
const double s = ( F2 - F1 ) / ( X2 - X1 );
double q = s / ( s - 1 );
if (q < -5)
q = -5;
else if (q > m_pParams->wegsteinAccelParam)
q = m_pParams->wegsteinAccelParam;
return q*X2 + (1 - q)*F2;
}
double CSimulator::PredictSteffensen(double F3, double F2, double F1) const
{
const double tmp = F3 - 2 * F2 + F1;
if (std::fabs(tmp) <= (std::fabs(tmp)*m_pParams->relTol + m_pParams->absTol))
return F3;
return F1 - std::pow((F2 - F1), 2.) / tmp;
}
void CSimulator::ReduceData(const CCalculationSequence::SPartition& _partition, double _t1, double _t2) const
{
if (m_pParams->saveTimeStep > 0.)
{
const double dStart = std::max(std::min(_t1, _t2 - 2 * m_pParams->saveTimeStep), 0.0);
for (auto* model : _partition.models)
if (model->GetModel()->GetStreamsManager().GetFeedsInit().empty()) // TODO: proper check for feed unit
{
for (auto& p : model->GetModel()->GetPortsManager().GetAllInputPorts())
p->GetStream()->ReduceTimePoints(dStart, _t2, m_pParams->saveTimeStep);
if (m_pParams->saveTimeStepFlagHoldups)
model->GetModel()->ReduceTimePoints(dStart, _t2, m_pParams->saveTimeStep);
}
}
}
EPhase CSimulator::PhaseSOA2EPhase(unsigned _soa)
{
switch (_soa)
{
case SOA_SOLID: return EPhase::SOLID;
case SOA_LIQUID: return EPhase::LIQUID;
case SOA_VAPOR: return EPhase::VAPOR;
default: return EPhase::UNDEFINED;
}
}
|