1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
/* Copyright (c) 2020, Dyssol Development Team. All rights reserved. This file is part of Dyssol. See LICENSE file for license information. */
#include "Topology.h"
#include "DyssolUtilities.h"
#include "ContainerFunctions.h"
CTopology::CTopology(size_t _nVertices)
{
m_vAdjList.resize(_nVertices);
}
void CTopology::SetVertices(size_t _nVertices)
{
m_vAdjList.clear();
m_vAdjList.resize(_nVertices);
}
void CTopology::AddEdge(size_t _nV1, size_t _nV2)
{
if (_nV1 < m_vAdjList.size())
if (!VectorContains(m_vAdjList[_nV1], _nV2))
m_vAdjList[_nV1].push_back(_nV2);
}
size_t CTopology::VerticesNum() const
{
return m_vAdjList.size();
}
size_t CTopology::EdgesNum() const
{
size_t cnt = 0;
for (const auto& v : m_vAdjList)
cnt += v.size();
return cnt;
}
bool CTopology::Analyse(u_matr_t& _vOrder, std::vector<u_pair_vect_t>& _vTears) const
{
_vOrder = StronglyConnectedComponents(); // get partitions and basic order
_vTears.clear();
_vTears.resize(_vOrder.size());
u_matr_t vTearStreams = GetTearStreams(_vOrder); // get list of tear streams
for (size_t i = 0; i < _vOrder.size(); ++i) // get order for each partition
{
if (_vOrder[i].size() > 1) // partition with cycle
{
u_matr_t vSubGraph(_vOrder[i].size()); // graph
u_vect_t iDir = _vOrder[i]; // vector of to translate indices reduced -> main
u_vect_t iInv(VerticesNum(), _vOrder[i].size()); // vector of to translate indices main -> reduced
for (size_t j = 0; j < iDir.size(); ++j)
iInv[iDir[j]] = j;
// build reduced graph for this partition
for (size_t j = 0; j < _vOrder[i].size(); ++j)
{
const size_t v = _vOrder[i][j];
for (size_t k = 0; k < m_vAdjList[v].size(); ++k)
{
const size_t w = m_vAdjList[v][k];
if (VectorContains(_vOrder[i], w))
vSubGraph[iInv[v]].push_back(iInv[w]);
}
}
// remove tear streams from reduced graph
for (size_t v = 0; v < vTearStreams.size(); ++v)
{
for (size_t w = 0; w < vTearStreams[v].size(); ++w)
{
const size_t v_new = iInv[v];
size_t tear_new = iInv[vTearStreams[v][w]];
if (v_new >= _vOrder[i].size() || tear_new >= _vOrder[i].size())
continue;
auto it = std::find(vSubGraph[v_new].begin(), vSubGraph[v_new].end(), tear_new);
if (it != vSubGraph[v_new].end())
{
vSubGraph[v_new].erase(it);
_vTears[i].push_back(u_pair_t(v, vTearStreams[v][w])); // set tear stream to its position
}
}
}
if (_vTears[i].empty()) return false; // cannot perform topological sort for cyclic graph
// sort reduced graph
u_vect_t vNewOrder = TopologicalSort(vSubGraph);
for (size_t j = 0; j < vNewOrder.size(); ++j)
_vOrder[i][j] = iDir[vNewOrder[j]];
}
}
// checks
size_t cnt1 = 0;
for (auto& tear : _vTears)
cnt1 += tear.size();
size_t cnt2 = 0;
for (auto& tearStream : vTearStreams)
cnt2 += tearStream.size();
const bool bRes1 = cnt1 == cnt2;
bool bRes2 = true;
for (size_t i = 0; i < _vOrder.size(); ++i)
if (_vOrder[i].size() <= 1 && !_vTears[i].empty() || _vOrder[i].size() > 1 && _vTears[i].empty())
bRes2 = false;
// combine
for (size_t i = 0; _vTears.size() > 1 && i < _vTears.size() - 1;)
{
if (_vTears[i].empty() && _vTears[i + 1].empty())
{
_vOrder[i].push_back(_vOrder[i + 1].front());
_vOrder.erase(_vOrder.begin() + i + 1);
_vTears.erase(_vTears.begin() + i + 1);
}
else
++i;
}
return bRes1 && bRes2;
}
bool CTopology::DeepFirstSearch(const u_matr_t& _graph, size_t _v, size_t _w)
{
b_vect_t vVisited(_graph.size(), false);
return DeepFirstSearchUtil(_graph, _v, _w, vVisited);
}
bool CTopology::DeepFirstSearchUtil(const u_matr_t& _graph, size_t _v, size_t _w, b_vect_t& _visited)
{
_visited[_v] = true;
for (size_t i = 0; i < _graph[_v].size(); ++i)
if (!_visited[_graph[_v][i]])
{
if (_graph[_v][i] == _w) return true;
if (DeepFirstSearchUtil(_graph, _graph[_v][i], _w, _visited)) return true;
}
return false;
}
CTopology::u_matr_t CTopology::GetInvAdjList(const u_matr_t& _list) const
{
u_matr_t vIAL(VerticesNum());
for (size_t i = 0; i < _list.size(); ++i)
for (size_t j = 0; j < _list[i].size(); ++j)
if (!VectorContains(vIAL[_list[i][j]], i))
vIAL[_list[i][j]].push_back(i);
return vIAL;
}
CTopology::u_matr_t CTopology::GetWeightedAdjMatrix(const u_matr_t& _SCC) const
{
// remove edges, connecting strongly connected components (partitions), from adjacency list
u_matr_t reducedList(VerticesNum()); // reduced adjacency list, containing only edges within partitions
for (size_t iSrc = 0; iSrc < m_vAdjList.size(); ++iSrc) // for all src nodes
for (size_t iDst : m_vAdjList[iSrc]) // for all dst nodes, connected to src node
for (const auto& k : _SCC) // for all partitions
if(VectorContains(k, iSrc) && VectorContains(k, iDst)) // both src ans dst are in partition
reducedList[iSrc].push_back(iDst); // put it into reduces list
// weighted adjacency matrix; weights depend on the number of inlet and outlet streams, connected to the issuing unit
// in the simplest case: weight = 10 * in_number + (max_out_number + 1 - out_number)
u_matr_t vWAdjMatr(VerticesNum(), u_vect_t(VerticesNum(), 0));
// inverted adjacency list
u_matr_t vIAL = GetInvAdjList(reducedList);
// calculate coefficients
size_t kLo = 1; // lower coefficient
for (auto& v : reducedList)
kLo = std::max(kLo, v.size());
++kLo;
const auto kHi = size_t(std::pow(10., int(std::floor(std::log10(double(kLo)))) + 1)); // higher coefficient
// hi weights
for (size_t i = 0; i < reducedList.size(); ++i)
for (size_t j = 0; j < reducedList[i].size(); ++j)
vWAdjMatr[i][reducedList[i][j]] = kLo - reducedList[i].size();
// low weights
for (size_t i = 0; i < vIAL.size(); ++i)
for (size_t j = 0; j < reducedList[i].size(); ++j)
vWAdjMatr[i][reducedList[i][j]] += kHi * vIAL[i].size();
// set some minimum weight for all edges, which connect partitions
for (size_t i = 0; i < m_vAdjList.size(); ++i)
for (size_t j = 0; j < m_vAdjList[i].size(); ++j)
if (!vWAdjMatr[i][m_vAdjList[i][j]])
vWAdjMatr[i][m_vAdjList[i][j]] = 1;
return vWAdjMatr;
}
CTopology::u_matr_t CTopology::StronglyConnectedComponents() const
{
u_matr_t vSCC;
u_vect_t vInd(m_vAdjList.size(), -1);
u_vect_t vLow(m_vAdjList.size(), -1);
u_vect_t vStack;
size_t nIndex = 0;
for (size_t i = 0; i < vInd.size(); ++i)
if (vInd[i] == size_t(-1))
StronglyConnectedComponentsUtil(i, nIndex, vInd, vLow, vStack, vSCC);
std::reverse(vSCC.begin(), vSCC.end());
return vSCC;
}
void CTopology::StronglyConnectedComponentsUtil(size_t _nV, size_t& _nIndex, u_vect_t& _vInd, u_vect_t& _vLow, u_vect_t& _vStack, u_matr_t& _vSCC) const
{
_vInd[_nV] = _nIndex;
_vLow[_nV] = _nIndex;
_nIndex++;
_vStack.push_back(_nV);
for (size_t i = 0; i < m_vAdjList[_nV].size(); ++i)
{
const size_t nW = m_vAdjList[_nV][i];
if (_vInd[nW] == size_t(-1))
{
StronglyConnectedComponentsUtil(nW, _nIndex, _vInd, _vLow, _vStack, _vSCC);
_vLow[_nV] = std::min(_vLow[_nV], _vLow[nW]);
}
else if (VectorContains(_vStack, nW))
_vLow[_nV] = std::min(_vLow[_nV], _vInd[nW]);
}
if (_vLow[_nV] == _vInd[_nV])
{
_vSCC.push_back(u_vect_t());
for (;;)
{
size_t nW = _vStack.back();
_vStack.pop_back();
_vSCC.back().push_back(nW);
if (nW == _nV)
break;
}
}
}
CTopology::u_vect_t CTopology::TopologicalSort(const u_matr_t& _graph)
{
b_vect_t vVisited(_graph.size(), false);
u_vect_t vOrder;
for (size_t i = 0; i < vVisited.size(); ++i)
if (!vVisited[i])
TopologicalSortUtil(_graph, i, vVisited, vOrder);
std::reverse(vOrder.begin(), vOrder.end());
return vOrder;
}
void CTopology::TopologicalSortUtil(const u_matr_t& _graph, size_t _v, b_vect_t& _vVisited, u_vect_t& _vOrder)
{
_vVisited[_v] = true;
for (size_t i = 0; i < _graph[_v].size(); ++i)
{
const size_t w = _graph[_v][i];
if (!_vVisited[w])
TopologicalSortUtil(_graph, w, _vVisited, _vOrder);
}
_vOrder.push_back(_v);
}
// TODO: replace with Edmonds' algorithm to get the proper order
CTopology::u_matr_t CTopology::MinSpanningTree(const u_matr_t& _vWeights)
{
if (_vWeights.empty()) return {};
u_vect_t vMST(_vWeights.size(), -1); // minimum spanning tree
u_vect_t vWeight(_vWeights.size(), std::numeric_limits<size_t>::max()); // array of minimum weights
b_vect_t vIncluded(_vWeights.size(), false); // vertices already included in MST
vWeight[0] = 0; // 1st vertex as root
for (size_t i = 0; i < _vWeights.size(); ++i)
{
// find min not included weight
size_t min = std::numeric_limits<size_t>::max();
size_t v = -1;
for (size_t j = 0; j < _vWeights.size(); ++j)
if (!vIncluded[j] && vWeight[j] < min)
min = vWeight[j], v = j;
if(v == size_t(-1)) return u_matr_t(); // graph is not connected
vIncluded[v] = true; // add vertex to the MST
// update weights and MST
for (size_t w = 0; w < _vWeights.size(); w++)
{
if (_vWeights[v][w] && !vIncluded[w] && _vWeights[v][w] < vWeight[w])
{
vMST[w] = v;
vWeight[w] = _vWeights[v][w];
}
if (_vWeights[w][v] && !vIncluded[w] && _vWeights[w][v] < vWeight[w])
{
vMST[w] = v;
vWeight[w] = _vWeights[w][v];
}
}
}
u_matr_t vRet(vMST.size());
for (size_t i = 0; i < vMST.size(); ++i)
if (vMST[i] != size_t(-1))
{
if (_vWeights[i][vMST[i]])
vRet[i].push_back(vMST[i]);
else
vRet[vMST[i]].push_back(i);
}
return vRet;
}
CTopology::u_matr_t CTopology::FindAdjacentNodeLoops(const u_matr_t& _weights)
{
u_matr_t vANL(_weights.size());
for (size_t i = 0; i < _weights.size(); ++i)
for (size_t j = i; j < _weights[i].size(); ++j)
if (_weights[i][j] && _weights[j][i])
{
if (_weights[i][j] >= _weights[j][i] && !VectorContains(vANL[i], j))
vANL[i].push_back(j);
else if (!VectorContains(vANL[j], i))
vANL[j].push_back(i);
}
return vANL;
}
CTopology::u_matr_t CTopology::GetTearStreams(const u_matr_t& _SCC) const
{
u_matr_t vWeights = GetWeightedAdjMatrix(_SCC);
u_matr_t vLoops = FindAdjacentNodeLoops(vWeights); // find bi-directionally coupled nodes
//remove torn streams
for (size_t i = 0; i < vLoops.size(); ++i)
for (size_t j = 0; j < vLoops[i].size(); ++j)
vWeights[i][vLoops[i][j]] = 0;
u_matr_t vInDAG = MinSpanningTree(vWeights); // edges in directed acyclic graph
if(vInDAG.empty()) return u_matr_t(); // cannot find minimum spanning tree for this graph
std::multimap<size_t, u_pair_t> vOutDAG; // edges outside the DAG
// copy all which are not in InDAG and Loops
for (size_t i = 0; i < m_vAdjList.size(); ++i)
for (size_t j = 0; j < m_vAdjList[i].size(); ++j)
if (!VectorContains(vInDAG[i], m_vAdjList[i][j]) && !VectorContains(vLoops[i], m_vAdjList[i][j]))
vOutDAG.insert(std::pair<size_t, u_pair_t>(vWeights[i][m_vAdjList[i][j]], u_pair_t(i, m_vAdjList[i][j])));
for (auto it = vOutDAG.begin(); it != vOutDAG.end();)
{
const size_t v = (*it).second.first;
const size_t w = (*it).second.second;
vInDAG[v].push_back(w);
if (DeepFirstSearch(vInDAG, w, v)) // check for cycle
{
vInDAG[v].pop_back();
++it;
}
else
vOutDAG.erase(it++);
}
for (auto& it : vOutDAG)
vLoops[it.second.first].push_back(it.second.second);
return vLoops;
}
|