1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
|
/* Copyright (c) 2020, Dyssol Development Team.
* Copyright (c) 2023, DyssolTEC GmbH.
* All rights reserved. This file is part of Dyssol. See LICENSE file for license information. */
#pragma once
#include "DefinesMDB.h"
#include "MixtureEnthalpyLookup.h"
#include "MultidimensionalGrid.h"
#include <limits>
class CH5Handler;
class CDenseMDMatrix;
class CPhase;
class CTimeDependentValue;
class CMaterialsDatabase;
class CMatrix2D;
class CTransformMatrix;
class CBaseStream;
class CStream;
class CHoldup;
/**
* \brief Basic class for material flow description.
* \details This is a base class from which CStream and CHoldup are derived.
*/
class CBaseStream
{
/**
* \private
* Current version of the saving procedure.
*/
static const unsigned m_saveVersion{ 3 };
/**
* \private
* Name of the stream.
*/
std::string m_name{ "Stream" };
/**
* \private
* Unique key of the stream.
*/
std::string m_key;
protected:
// TODO: make it global and rename
/**
* \private
* Tolerance to compare doubles.
*/
inline static const double m_epsilon{ 16 * std::numeric_limits<double>::epsilon() };
/**
* \private
* Pointer to a database of materials.
*/
const CMaterialsDatabase* m_materialsDB{ nullptr };
/**
* \private
* Time points on which the stream is defined.
*/
std::vector<double> m_timePoints;
/**
* \private
* Defined distribution grid.
*/
CMultidimensionalGrid m_grid;
/**
* \private
* Defined overall properties.
*/
std::map<EOverall, std::unique_ptr<CTimeDependentValue>> m_overall;
/**
* \private
* Defined phases.
*/
std::map<EPhase, std::unique_ptr<CPhase>> m_phases;
/**
* \private
* Lookup table to calculate temperature<->enthalpy.
*/
mutable std::unique_ptr<CMixtureEnthalpyLookup> m_enthalpyCalculator;
/**
* \private
* Settings for caching in the stream.
*/
SCacheSettings m_cacheSettings;
/**
* \private
* Settings for tolerances in the stream.
*/
SToleranceSettings m_toleranceSettings;
/**
* \private
* Settings for thermodynamics in the stream.
*/
SThermodynamicsSettings m_thermodynamicsSettings;
public:
// TODO: remove empty constructor, always set pointers to MDB and grid.
/**
* \private
* \brief Basic constructor creating an empty object.
* \details Creates a stream object with a unique key and a single overall property - mass.
* If unique key is empty, it is randomly generated.
* \param _key Unique key of the stream.
*/
CBaseStream(const std::string& _key = "");
/**
* \private
* \brief Constructor configuring the whole structure.
* \details Creates a stream object with a unique key and all structural settings.
* If unique key is empty, it is randomly generated.
* \param _key Unique key of the stream.
* \param _materialsDB Pointer to materials database.
* \param _grid Multidimensional grid of distributed parameters of solids.
* \param _overall List of overall stream properties.
* \param _phases List of phases.
* \param _cache Cache settings.
* \param _tolerance Tolerance settings.
* \param _thermodynamics Thermodynamic settings.
*/
CBaseStream(const std::string& _key, const CMaterialsDatabase* _materialsDB, const CMultidimensionalGrid& _grid,
const std::vector<SOverallDescriptor>* _overall, const std::vector<SPhaseDescriptor>* _phases,
const SCacheSettings* _cache, const SToleranceSettings* _tolerance, const SThermodynamicsSettings* _thermodynamics);
/**
* \private
* \brief Copy constructor.
* \details Copies all structural parameters and settings from the source stream, including unique key and data.
* \param _other Source stream.
*/
CBaseStream(const CBaseStream& _other);
/**
* \private
* \brief Move constructor
* \details Moves all structural parameters and settings from the source stream, including unique key and data.
* \param _other Source stream.
*/
CBaseStream(CBaseStream&& _other) noexcept;
/**
* \private
* \brief Destructor
*/
virtual ~CBaseStream() = default;
CBaseStream& operator=(const CBaseStream& _other) = delete;
CBaseStream& operator=(CBaseStream&& _other) = delete;
/**
* \private
* \brief Removes all existing data from the stream.
* \details Structural data and settings are not affected.
*/
void Clear();
////////////////////////////////////////////////////////////////////////////////
// Work with structural data
//
/**
* \private
* \brief Sets up the stream structure (MD dimensions, phases, materials, etc.) the same as an in the given stream.
* \details Also removes all existing data.
* \param _other Pointer to source stream.
*/
void SetupStructure(const CBaseStream* _other);
/**
* \private
* \brief Checks whether both streams have the same overall properties.
* \details
* \param _stream1 Const reference to the first stream.
* \param _stream2 Const reference to the second stream.
* \return Whether both streams have the same overall properties.
*/
static bool HaveSameOverall(const CBaseStream& _stream1, const CBaseStream& _stream2);
/**
* \private
* \brief Checks whether both streams have the same phases.
* \details
* \param _stream1 Const reference to the first stream.
* \param _stream2 Const reference to the second stream.
* \return Whether both streams have the same phases.
*/
static bool HaveSamePhases(const CBaseStream& _stream1, const CBaseStream& _stream2);
/**
* \private
* \brief Checks whether both streams have the same grid of distributed parameters of solids.
* \details
* \param _stream1 Const reference to the first stream.
* \param _stream2 Const reference to the second stream.
* \return Whether both streams have the same grid of distributed parameters of solids.
*/
static bool HaveSameGrids(const CBaseStream& _stream1, const CBaseStream& _stream2);
/**
* \private
* \brief Checks whether both streams have the same overall properties and phases.
* \details
* \param _stream1 Const reference to the first stream.
* \param _stream2 Const reference to the second stream.
* \return Whether both streams have the same overall properties and phases.
*/
static bool HaveSameOverallAndPhases(const CBaseStream& _stream1, const CBaseStream& _stream2);
/**
* \private
* \brief Checks whether both streams have the same overall properties, phases and grids.
* \details
* \param _stream1 Const reference to the first stream.
* \param _stream2 Const reference to the second stream.
* \return Whether both streams have the same overall properties, phases and grids.
*/
static bool HaveSameStructure(const CBaseStream& _stream1, const CBaseStream& _stream2);
////////////////////////////////////////////////////////////////////////////////
// Basic stream properties
//
/**
* \brief Returns the name of the stream.
* \return Name of the stream.
*/
[[nodiscard]] std::string GetName() const;
/**
* \brief Sets new name of the stream.
* \param _name Name of the stream.
*/
void SetName(const std::string& _name);
/**
* \brief Returns unique key of the stream.
* \return Unique key of the stream.
*/
[[nodiscard]] std::string GetKey() const;
/**
* \brief Sets new unique key of the stream.
* \param _key Unique key of the stream.
*/
void SetKey(const std::string& _key);
////////////////////////////////////////////////////////////////////////////////
// Time points
//
/**
* \brief Adds a new time point.
* \details All data to the new time point are copied from the previous existing time point.
* If no other time points exist, all data are set to zero. If this time point already exists, nothing is done.
* \param _time New time point.
*/
void AddTimePoint(double _time);
/**
* \brief Copies all data from one time point to another one.
* \details If the destination time point does not yet exist, it is added.
* \param _timeDst Target time point.
* \param _timeSrc Source time point.
*/
void CopyTimePoint(double _timeDst, double _timeSrc);
/**
* \brief Removes the specified time point if it already exists.
* \param _time Time point.
*/
void RemoveTimePoint(double _time);
/**
* \brief Removes all existing time points in the specified interval.
* \details The boundaries of the interval can be included or excluded from the list of deleted time points.
* \param _timeBeg Begin of the time interval.
* \param _timeEnd End of the time interval.
* \param _inclusive Whether to include boundaries of the interval.
*/
void RemoveTimePoints(double _timeBeg, double _timeEnd, bool _inclusive = true);
/**
* \brief Removes all existing time points after the specified one.
* \details The time point itself can be included or excluded from the list of deleted time points.
* \param _time Begin of the time interval.
* \param _inclusive Whether to include boundary time point.
*/
void RemoveTimePointsAfter(double _time, bool _inclusive = false);
/**
* \brief Removes all existing time points.
*/
void RemoveAllTimePoints();
/**
* \brief Removes time points within the specified interval that are closer together than a specified step.
* \param _timeBeg Begin of the time interval.
* \param _timeEnd End of the time interval.
* \param _step Step between time points to be kept.
*/
void ReduceTimePoints(double _timeBeg, double _timeEnd, double _step);
/**
* \brief Returns all defined time points.
* \return All time points which are defined in the stream.
*/
std::vector<double> GetAllTimePoints() const;
/**
* \brief Returns all defined time points in the specified time interval.
* \param _timeBeg Begin of the time interval.
* \param _timeEnd End of the time interval.
* \return All time points which are defined in the stream within the time interval.
*/
std::vector<double> GetTimePoints(double _timeBeg, double _timeEnd) const;
/**
* \brief Returns all defined time points in the specified closed time interval
* \details Boundaries are unconditionally included into result.
* \param _timeBeg Begin of the time interval.
* \param _timeEnd End of the time interval.
* \return All time points which are defined in the stream within the time interval.
*/
std::vector<double> GetTimePointsClosed(double _timeBeg, double _timeEnd) const;
/**
* \brief Returns the last (largest) defined time point
* \details Returns zero if no time points have been defined in the stream.
* \return Last defined time point in the stream.
*/
double GetLastTimePoint() const;
/**
* \brief Returns the nearest time point before the given one.
* \details Returns zero if such time point does not exist.
* \param _time Target time point.
* \return Previous time point.
*/
double GetPreviousTimePoint(double _time) const;
////////////////////////////////////////////////////////////////////////////////
// Overall parameters
//
/**
* \brief Returns all defined overall properties.
* \return List of all defined overall properties.
*/
std::vector<EOverall> GetAllOverallProperties() const;
/**
* \private
* \brief Returns the name of the overall property.
* \param _property Type of the overall property.
* \return Name of the overall property.
*/
std::string GetOverallPropertyName(EOverall _property) const;
/**
* \private
* \brief Returns the measurement units of the overall property.
* \param _property Type of the overall property.
* \return Measurement units of the overall property.
*/
std::string GetOverallPropertyUnits(EOverall _property) const;
/**
* \private
* \brief Checks whether the specified overall property is defined in the stream.
* \param _property Identifier of time-dependent overall parameter.
* \return Whether the specified overall property is defined in the stream.
*/
bool HasOverallProperty(EOverall _property) const;
/**
* \private
* \brief Adds new overall property to the stream.
* \details If the property already exists, returns a pointer to it.
* \param _property Identifier of time-dependent overall property.
* \param _name Name of the property.
* \param _units Units of measurement for the values in this property.
* \return Pointer to the added or already existing property.
*/
CTimeDependentValue* AddOverallProperty(EOverall _property, const std::string& _name, const std::string& _units);
/**
* \private
* \brief Removes an overall property from the stream.
* \param _property Identifier of time-dependent overall property.
*/
void RemoveOverallProperty(EOverall _property);
// TODO: maybe remove
/**
* \private
* \brief Returns a pointer to an overall property.
* \details Returns nullptr if such property does not exist.
* \return Pointer to the property.
*/
CTimeDependentValue* GetOverallProperty(EOverall _property);
// TODO: maybe remove
/**
* \private
* \brief Returns a const pointer to an overall property.
* \details Returns nullptr if such property does not exist.
* \return Const pointer to the property.
*/
const CTimeDependentValue* GetOverallProperty(EOverall _property) const;
/**
* \brief Returns a value of the specified overall property at the given time point.
* \details Returns default value if such overall property has not been defined.
* \param _time Target time point.
* \param _property Identifier of time-dependent overall property.
* \return Value of the specified overall property at the given time point.
*/
double GetOverallProperty(double _time, EOverall _property) const;
/**
* \brief Returns a value of the overall mass in [kg] at the given time point.
* \details If such time point has not been defined, interpolation of data is done.
* \param _time Target time point.
* \return Value of the overall mass at the given time point.
*/
double GetMass(double _time) const;
/**
* \brief Returns a value of the overall temperature in [K] at the given time point.
* \details Returns standard condition temperature if temperature overall property has not been defined.
* \param _time Target time point.
* \return Value of the overall temperature at the given time point.
*/
double GetTemperature(double _time) const;
/**
* \brief Returns a value of the overall pressure in [Pa] at the given time point.
* \details Returns standard condition pressure if pressure overall property has not been defined.
* \param _time Target time point.
* \return Value of the overall pressure at the given time point.
*/
double GetPressure(double _time) const;
/**
* \brief Sets a value of the specified overall property at the given time point.
* \details If the specified time point does not exist, it is added to the stream.
* If this property does not exist, nothing is done.
* \param _time Target time point.
* \param _property Identifier of the time-dependent overall property.
* \param _value Value of the specified overall property.
*/
void SetOverallProperty(double _time, EOverall _property, double _value);
/**
* \brief Sets a value of the overall mass in [kg] at the given time point.
* \details If the specified time point does not exist, it is added to the stream.
* If this property does not exist, nothing is done.
* \param _time Target time point.
* \param _value Value of the overall mass.
*/
void SetMass(double _time, double _value);
/**
* \brief Sets a value of the overall temperature in [K] at the given time point.
* \details If the specified time point does not exist, it is added to the stream.
* If this property does not exist, nothing is done.
* \param _time Target time point.
* \param _value Value of the overall temperature.
*/
void SetTemperature(double _time, double _value);
/**
* \brief Sets a value of the overall pressure in [Pa] at the given time point.
* \details If the specified time point does not exist, it is added to the stream.
* If this property does not exist, nothing is done.
* \param _time Target time point.
* \param _value Value of the overall pressure.
*/
void SetPressure(double _time, double _value);
/**
* \brief Returns a value of the overall amount of substance in [mol] at the given time point.
* \details \f$m\sum_i{w_i\sum_j{\frac{f_{i,j}}{M_j}}}\f$ with
* \f$m\f$ overall mass of the stream,
* \f$w_i\f$ mass fraction of phase \f$i\f$,
* \f$f_{i,j}\f$ mass fraction of compound \f$j\f$ in phase \f$i\f$,
* \f$M_j\f$ molar mass of compound \f$j\f$.
* \param _time Target time point.
* \return Value of the overall amount of substance.
*/
double GetMol(double _time) const;
/**
* \brief Sets a value of the overall amount of substance in [mol] at the given time point.
* \details If the specified time point does not exist, it is added to the stream.
* The overall amount of substance \p _value is converted to mass as
* \f$\frac{m\cdot \_value}{\nu}\f$ with
* \f$m\f$ overall mass of the stream,
* \f$\nu\f$ overall amount of substance in [mol] as returned by CBaseStream::GetMol(double) const.
* \param _time Target time point.
* \param _value Value of the overall amount of substance.
*/
void SetMol(double _time, double _value);
////////////////////////////////////////////////////////////////////////////////
// Compounds
//
/**
* \private
* \brief Adds a compound with the specified unique key to the stream.
* \details If this compound already exists in the stream, nothing is done.
* \param _compoundKey Unique key of the new compound.
*/
void AddCompound(const std::string& _compoundKey);
/**
* \private
* \brief Removes a compound with the specified unique key from the stream.
* \details If this compound does not exist in the stream, nothing is done.
* \param _compoundKey Unique key of the compound.
*/
void RemoveCompound(const std::string& _compoundKey);
/**
* \brief Returns unique keys of all defined compounds.
* \return List of all defined compounds.
*/
std::vector<std::string> GetAllCompounds() const;
/**
* \brief Returns the number of defined compounds.
* \return Number of defined compounds.
*/
[[nodiscard]] size_t GetCompoundsNumber() const;
/**
* \brief Returns the mass fraction of the compound in the total mixture at the given time point.
* \details \f$f_j = \sum_{i} w_i f_{i,j}\f$ with
* \f$f_j\f$ mass fraction of compound \f$j\f$,
* \f$w_i\f$ mass fraction of phase \f$i\f$,
* \f$f_{i,j}\f$ mass fraction of compound \f$j\f$ in phase \f$i\f$.
* \param _time Target time point.
* \param _compoundKey Unique key of the compound.
* \return Mass fraction of the compound.
*/
double GetCompoundFraction(double _time, const std::string& _compoundKey) const;
/**
* \brief Returns the mass fraction of the compound in the specified phase at the given time point.
* \param _time Target time point.
* \param _compoundKey Unique key of the compound.
* \param _phase Phase type identifier.
* \return Mass fraction of the compound.
*/
double GetCompoundFraction(double _time, const std::string& _compoundKey, EPhase _phase) const;
/**
* \brief Returns the mass of the compound in the total mixture at the given time point.
* \details \f$m_j = m f_j\f$ with
* \f$m_j\f$ mass of compound \f$j\f$,
* \f$m\f$ overall mass of the stream,
* \f$f_j\f$ mass fraction of compound \f$j\f$.
* \param _time Target time point.
* \param _compoundKey Unique key of the compound.
* \return Mass of the compound.
*/
double GetCompoundMass(double _time, const std::string& _compoundKey) const;
/**
* \brief Returns the mass of the compound in the specified phase at the given time point.
* \details \f$m_{i,j} = m w_i f_{i,j}\f$ with
* \f$m_{i,j}\f$ mass of compound \f$j\f$ in phase \f$i\f$,
* \f$m\f$ overall mass of the stream,
* \f$w_i\f$ mass fraction of phase \f$i\f$,
* \f$f_{i,j}\f$ mass fraction of compound \f$j\f$ in phase \f$i\f$.
* \param _time Target time point.
* \param _compoundKey Unique key of the compound.
* \param _phase Phase type identifier.
* \return Mass of the compound.
*/
double GetCompoundMass(double _time, const std::string& _compoundKey, EPhase _phase) const;
/**
* \brief Returns mass fraction of all defined compounds at the given time point.
* \param _time Target time point.
* \return Mass fraction of all defined compounds.
*/
std::vector<double> GetCompoundsFractions(double _time) const;
/**
* \brief Returns mass fraction of all defined compounds in the specified phase at the given time point.
* \param _time Target time point.
* \param _phase Phase type identifier.
* \return Mass fraction of all defined compounds.
*/
std::vector<double> GetCompoundsFractions(double _time, EPhase _phase) const;
/**
* \brief Returns masses of all defined compounds at the given time point.
* \param _time Target time point.
* \return Masses of all defined compounds.
*/
std::vector<double> GetCompoundsMasses(double _time) const;
/**
* \brief Returns masses of all defined compounds in the specified phase at the given time point.
* \param _time Target time point.
* \param _phase Phase type identifier.
* \return Masses of all defined compounds.
*/
std::vector<double> GetCompoundsMasses(double _time, EPhase _phase) const;
/**
* \brief Sets mass fraction of the compound in the specified phase at the given time point.
* \details If the specified time point does not exist, it is added to the stream.
* \param _time Target time point.
* \param _compoundKey Unique key of the compound.
* \param _phase Phase type identifier.
* \param _value Value of the mass fraction of the compound.
*/
void SetCompoundFraction(double _time, const std::string& _compoundKey, EPhase _phase, double _value);
/**
* \brief Sets mass fraction of all defined compounds in all defined phases at the given time point.
* \details If the specified time point does not exist, it is added to the stream.
* \param _time Target time point.
* \param _value List of mass fractions of all defined compounds.
*/
void SetCompoundsFractions(double _time, const std::vector<double>& _value);
/**
* \brief Sets mass fraction of all defined compounds in the specified phase at the given time point.
* \details If the specified time point does not exist, it is added to the stream.
* \param _time Target time point.
* \param _phase Phase type identifier.
* \param _value List of mass fractions of all defined compounds.
*/
void SetCompoundsFractions(double _time, EPhase _phase, const std::vector<double>& _value);
/**
* \brief Sets the mass of the specified compound in the specified phase at the given time point.
* \details Total mass of the stream and of the phase are correspondingly adjusted, masses of other compounds and phases remain the same.
* \param _time Target time point.
* \param _compoundKey Unique key of the compound.
* \param _phase Phase type identifier.
* \param _value Mass of the compound.
*/
void SetCompoundMass(double _time, const std::string& _compoundKey, EPhase _phase, double _value);
/**
* \brief Returns the molar fraction of the compound in the specified phase at the given time point.
* \details \f$f_{i,j}^{mol} = f_{i,j} \frac{M_i}{M_j}\f$ with
* \f$f_{i,j}^{mol}\f$ mole fraction of compound \f$j\f$ in phase \f$i\f$,
* \f$f_{i,j}\f$ mass fraction of compound \f$j\f$ in phase \f$i\f$,
* \f$M_i\f$ molar mass of phase \f$i\f$,
* \f$M_j\f$ molar mass of compound \f$j\f$.
* \param _time Target time point.
* \param _compoundKey Unique key of the compound.
* \param _phase Phase type identifier.
* \return Molar fraction of the compound.
*/
double GetCompoundMolFraction(double _time, const std::string& _compoundKey, EPhase _phase) const;
/**
* \brief Returns the amount of substance of the compound in the specified phase at the given time point.
* \details \f$\nu_{i,j} = \frac{m w_i f_{i,j}}{M_j}\f$ with
* \f$\nu_{i,j}\f$ amount of substance of compound \f$j\f$ in phase \f$i\f$,
* \f$m\f$ overall mass of the stream,
* \f$w_i\f$ mass fraction of phase \f$i\f$,
* \f$f_{i,j}\f$ mass fraction of compound \f$j\f$ in phase \f$i\f$,
* \f$M_j\f$ molar mass of compound \f$j\f$.
* \param _time Target time point.
* \param _compoundKey Unique key of the compound.
* \param _phase Phase type identifier.
* \return Amount of substance of the compound.
*/
double GetCompoundMol(double _time, const std::string& _compoundKey, EPhase _phase) const;
/**
* \brief Sets the molar fraction of the compound in the specified phase at the given time point.
* \details If the specified time point does not exist, it is added to the stream.
* The molar fraction of the compound \p _value is converted to a mass fraction as
* \f$f_{i,j} = \f$\p _value \f$\cdot M_j \sum_j \frac{f_{i,j}}{M_j}\f$ with
* \f$f_{i,j}\f$ mass fraction of compound \f$j\f$ in phase \f$i\f$,
* \f$M_j\f$ molar mass of compound \f$j\f$.
* \param _time Target time point.
* \param _compoundKey Unique key of the compound.
* \param _phase Phase type identifier.
* \param _value Molar fraction of the compound.
*/
void SetCompoundMolFraction(double _time, const std::string& _compoundKey, EPhase _phase, double _value);
////////////////////////////////////////////////////////////////////////////////
// Phases
//
/**
* \private
* \brief Adds new phase to the stream.
* \details If the phase already exists, returns a pointer to it.
* \param _phase Phase type identifier.
* \param _name Name of the new phase.
* \return Pointer to the added or already existing phase.
*/
CPhase* AddPhase(EPhase _phase, const std::string& _name);
/**
* \private
* \brief Removes the specified phase from the stream.
* \details If this phase does not exist in the stream, nothing is done.
* \param _phase Phase type identifier.
*/
void RemovePhase(EPhase _phase);
// TODO: maybe remove
/**
* \private
* \brief Returns a pointer to the specified phase.
* \details Returns nullptr if such phase does not exist.
* \return Pointer to a phase descriptor.
*/
CPhase* GetPhase(EPhase _phase);
// TODO: maybe remove
/**
* \private
* \brief Returns a const pointer to the specified phase.
* \details Returns nullptr if such phase does not exist.
* \return Const pointer to a phase descriptor.
*/
const CPhase* GetPhase(EPhase _phase) const;
// TODO: remove this.
/**
* \private
* \brief Removes all defined phases.
*/
void ClearPhases();
/**
* \brief Returns all defined phases.
* \return List of all defined phases.
*/
std::vector<EPhase> GetAllPhases() const;
/**
* \brief Returns the number of defined phases.
* \return Number of defined phases.
*/
[[nodiscard]] size_t GetPhasesNumber() const;
/**
* \brief Returns the mass fraction of the specified phase at the given time point.
* \param _time Target time point.
* \param _phase Phase type identifier.
* \return Mass fraction of the specified phase.
*/
double GetPhaseFraction(double _time, EPhase _phase) const;
/**
* \brief Returns the mass of the specified phase at the given time point.
* \details \f$m_i = m w_i\f$ with
* \f$m_i\f$ mass of phase \f$i\f$,
* \f$m\f$ overall mass of the stream,
* \f$w_i\f$ mass fraction of phase \f$i\f$.
* \param _time Target time point.
* \param _phase Phase type identifier.
* \return Mass of the specified phase.
*/
double GetPhaseMass(double _time, EPhase _phase) const;
/**
* \brief Returns the value of the overall property of the specified phase at the given time point.
* \param _time Target time point.
* \param _phase Phase type identifier.
* \param _property Identifier of time-dependent overall property.
* \return Value of the overall property.
*/
double GetPhaseProperty(double _time, EPhase _phase, EOverall _property) const;
/**
* \brief Returns the value of the constant physical property of the specified phase at the given time point.
* \details
* - For ::MOLAR_MASS:
* \f$M_i = \frac{1}{\sum_j {\frac{f_{i,j}}{M_j}}}\f$ with
* \f$M_i\f$ molar mass of phase \f$i\f$,
* \f$M_j\f$ molar mass of compound \f$j\f$,
* \f$f_{i,j}\f$ mass fraction of compound \f$j\f$ in phase \f$i\f$.
* - For other const material properties:
* \f$v_i = \sum_j f_{i,j} v_j\f$ with
* \f$v_i\f$ const physical property of phase \f$i\f$,
* \f$v_j\f$ value of the specified const \p _property of compound \f$j\f$,
* \f$f_{i,j}\f$ mass fraction of compound \f$j\f$ in phase \f$i\f$.
*
* See also: \verbatim embed:rst:inline :ref:`sec.mdb.const` \endverbatim
* \param _time Target time point.
* \param _phase Phase type identifier.
* \param _property Identifier of a constant material property.
* \return Value of the constant physical property.
*/
double GetPhaseProperty(double _time, EPhase _phase, ECompoundConstProperties _property) const;
/**
* \brief Returns the value of the temperature/pressure-dependent physical property of the specified phase at the given time point.
* \details Available properties are:
* - ::DENSITY:
* - For solid phase with porosity distribution:
* \f$\rho = \sum_{i,j} \rho_i (1 - \varepsilon_j) f_{i,j}\f$ with
* \f$\varepsilon_j\f$ porosity in interval \f$j\f$,
* \f$f_{i,j}\f$ mass fraction of compound \f$i\f$ with porosity \f$j\f$.
* - For solid, liquid, and gas phase:
* \f$\rho = \frac{1}{\sum_i \frac{w_i}{\rho_i}}\f$ with
* \f$\rho_i\f$ density of compound \f$i\f$,
* \f$w_i\f$ mass fraction of compound \f$i\f$ in \p _phase.
* - ::HEAT_CAPACITY_CP:
* \f$C_p = \sum_i w_i \cdot C_{p,i}\f$ with
* \f$C_{p,i}\f$ heat capacity of compound \f$i\f$,
* \f$w_i\f$ mass fraction of compound \f$i\f$ in \p _phase.
* - ::VAPOR_PRESSURE:
* \f$P_v = \min_{i} (P_v)_i\f$ with
* \f$(P_v)_i\f$ vapor pressure of compound \f$i\f$.
* - ::VISCOSITY:
* - For solid phase:
* \f$\eta = \sum\limits_i w_i \eta_i\f$ with
* \f$\eta_i\f$ viscosity of compound \f$i\f$,
* \f$w_i\f$ mass fraction of compound \f$i\f$.
* - For liquid phase:
* \f$\ln \eta = \sum_i w_i \ln \eta_i\f$ with
* \f$\eta_i\f$ viscosity of compound \f$i\f$,
* \f$w_i\f$ mass fraction of compound \f$i\f$ in \p _phase.
* - For vapor phase:
* \f$\eta = \frac{\sum_i x_i \sqrt{M_i} \eta_i}{\sum_i x_i \sqrt{M_i}}\f$ with
* \f$\eta_i\f$ viscosity of compound \f$i\f$,
* \f$w_i\f$ mass fraction of compound \f$i\f$ in \p _phase,
* \f$x_i\f$ the mole fraction of compound \f$i\f$ in \p _phase.
* - ::THERMAL_CONDUCTIVITY:
* - For solid phase:
* \f$\lambda = \sum_i w_i \lambda_i\f$ with
* \f$\lambda_i\f$ thermal conductivity of compound \f$i\f$.
* - For liquid phase:
* \f$\lambda = \frac{1}{\sqrt{\sum_i x_i \lambda_i^{-2}}}\f$ with
* \f$\lambda_i\f$ thermal conductivity of compound \f$i\f$.
* - For vapor phase:
* \f$\lambda = \sum_i \frac{x_i \lambda_i}{\sum_j x_j F_{i,j}}\f$,
* \f$F_{i,j} = \frac{(1 + \sqrt{\lambda_i^4 / \lambda_j} \sqrt{M_j / M_i})^2}{\sqrt{8(1 + M_i / M_j)}}\f$ with
* \f$M_i\f$ the molar mass of compound \f$i\f$.
* - ::PERMITTIVITY:
* \f$\varepsilon = \sum_i w_i \varepsilon_i\f$ with
* \f$\varepsilon_i\f$ permittivity of compound \f$i\f$,
* \f$w_i\f$ mass fraction of compound \f$i\f$ in \p _phase.
* - ::ENTHALPY:
* \f$H = \sum_i w_i H_i\f$ with
* \f$H_i\f$ enthalpy of compound \f$i\f$,
* \f$w_i\f$ mass fraction of compound \f$i\f$ in \p _phase.
* - ::EQUILIBRIUM_MOISTURE_CONTENT:
* \f$M = \sum_i w_i M_i\f$ with
* \f$M_i\f$ equilibrium moisture content of compound \f$i\f$,
* \f$w_i\f$ mass fraction of compound \f$i\f$ in \p _phase.
* - ::MASS_DIFFUSION_COEFFICIENT:
* \f$D = \sum_i w_i D_i\f$ with
* \f$D_i\f$ mass diffusion coefficient of compound \f$i\f$,
* \f$w_i\f$ mass fraction of compound \f$i\f$ in \p _phase.
* - ::TP_PROP_USER_DEFINED_01 - ::TP_PROP_USER_DEFINED_20:
* \f$Y = \sum_i w_i Y_i\f$ with
* \f$Y_i\f$ property value of compound \f$i\f$,
* \f$w_i\f$ mass fraction of compound \f$i\f$ in \p _phase.
*
* See also: \verbatim embed:rst:inline :ref:`sec.mdb.tpd` \endverbatim
* \param _time Target time point.
* \param _phase Phase type identifier.
* \param _property Identifier of temperature/pressure-dependent property.
* \return Value of the temperature/pressure-dependent physical property.
*/
double GetPhaseProperty(double _time, EPhase _phase, ECompoundTPProperties _property) const;
/**
* \brief Sets the mass fraction of the specified phase at the given time point.
* \details If the specified time point does not exist, it is added to the stream.
* If there is no specified phase in the stream, nothing is done.
* \param _time Target time point.
* \param _phase Phase type identifier.
* \param _value Phase mass fraction.
*/
void SetPhaseFraction(double _time, EPhase _phase, double _value);
/**
* \brief Sets the mass of the specified phase at the given time point.
* \details If the specified time point does not exist, it is added to the stream.
* Total mass of the stream is correspondingly adjusted, masses of other phases remain the same.
* If there is no specified phase in the stream, nothing is done.
* Input parameter \p _value is the mass of the defined phase: \f$m_i =\f$ \p _value and \f$w_i = m_i / m\f$.
* The total mass \f$m\f$ changes due to assignment of \f$m_i\f$: \f$m = m_{old} + (\f$ \p _value \f$- m_{i,old})\f$.
* \f$m_i\f$ mass of phase \f$i\f$, \f$w_i\f$ mass fraction of phase \f$i\f$, \f$m\f$ overall mass of the stream.
* \param _time Target time point.
* \param _phase Phase type identifier.
* \param _value Phase mass.
*/
void SetPhaseMass(double _time, EPhase _phase, double _value);
/**
* \brief Returns the molar fraction of the specified phase at the given time point.
* \details \f$x_i = \frac{\nu_i}{\nu}\f$,
* \f$x_i\f$ molar fraction of phase \f$i\f$,
* \f$\nu_i\f$ amount of substance of phase \f$i\f$,
* \f$\nu\f$ value of the overall amount of substance.
* \param _time Target time point.
* \param _phase Phase type identifier.
* \return Molar fraction of the specified phase.
*/
double GetPhaseMolFraction(double _time, EPhase _phase) const;
/**
* \brief Returns the amount of substance of the specified phase at the given time point.
* \details \f$\nu_i = \sum_j \nu_{i,j}\f$,
* \f$\nu_i\f$ amount of substance of phase \f$i\f$,
* \f$\nu_{i,j}\f$ amount of substance of compound \f$j\f$ in phase \f$i\f$.
* \param _time Target time point.
* \param _phase Phase type identifier.
* \return Amount of substance of the specified phase.
*/
double GetPhaseMol(double _time, EPhase _phase) const;
/**
* \brief Sets the molar fraction of the specified phase at the given time point.
* \details If the specified time point does not exist, it is added to the stream.
* Input parameter \p _value is the molar fraction of the defined phase:
* \f$f_i =\f$ \p _value \f$\cdot \frac{f_i}{x_i}\f$ with
* \f$f_i\f$ mass fraction of phase \f$i\f$,
* \f$x_i\f$ molar fraction of phase \f$i\f$.
* \param _time Target time point.
* \param _phase Phase type identifier.
* \param _value Molar fraction of the specified phase.
*/
void SetPhaseMolFraction(double _time, EPhase _phase, double _value);
/**
* \brief Sets the amount of substance of the specified phase at the given time point.
* \details If the specified time point does not exist, it is added to the stream.
* Total mass of the stream is correspondingly adjusted, masses of other phases remain the same.
* Input parameter \p _value is the amount of substance of one defined phase:
* \f$m_i = \f$\p _value \f$\cdot \frac{m_i}{n_i}\f$ with
* \f$m_i\f$ mass of phase \f$i\f$,
* \f$n_i\f$ amount of substance of phase \f$i\f$.
* \param _time Target time point.
* \param _phase Phase type identifier.
* \param _value Amount of substance of the specified phase.
*/
void SetPhaseMol(double _time, EPhase _phase, double _value);
////////////////////////////////////////////////////////////////////////////////
// Properties of the total mixture
//
/**
* \brief Returns the value of the property of the total mixture in the stream at the given time point.
* \details Refer to function CBaseStream::GetOverallProperty(double, EOverall) const.
* \param _time Target time point.
* \param _property Identifier of time-dependent overall property.
* \return Value of the property of the total mixture.
*/
double GetMixtureProperty(double _time, EOverall _property) const;
/**
* \brief Returns the value of the constant physical property of the total mixture in the stream at the given time point.
* \details \f$v = \sum_i v_i w_i\f$ with
* \f$v\f$ value of the const physical property of the total mixture,
* \f$v_i\f$ value of the const physical property of phase \f$i\f$,
* \f$w_i\f$ mass fraction of phase \f$i\f$.
* \param _time Target time point.
* \param _property Identifier of constant material property.
* \return Value of the constant physical property of the total mixture.
*/
double GetMixtureProperty(double _time, ECompoundConstProperties _property) const;
/**
* \brief Returns the value of the temperature/pressure-dependent physical property of the total mixture in the stream at the given time point.
* \details
* - ::DENSITY:
* \f$\rho = \frac{1}{\sum_i \frac{w_i}{\rho_i}}\f$ with
* \f$\rho_i\f$ density of phase \f$i\f$,
* \f$w_i\f$ mass fraction of phase \f$i\f$.
* - Other:
* \f$v = \sum_i v_i w_i\f$ with
* \f$v\f$ value of the temperature/pressure-dependent physical property of the total mixture,
* \f$v_i\f$ value of the temperature/pressure-dependent physical property of phase \f$i\f$,
* \f$w_i\f$ mass fraction of phase \f$i\f$.
* \param _time Target time point.
* \param _property Identifier of temperature/pressure-dependent property.
* \return Value of the temperature/pressure-dependent physical property of the total mixture.
*/
double GetMixtureProperty(double _time, ECompoundTPProperties _property) const;
/**
* \brief Sets the value of the property of the total mixture in the stream at the given time point.
* \details If the specified time point does not exist, it is added to the stream.
* Refer to function CBaseStream::SetOverallProperty(double, EOverall, double).
* \param _time Target time point.
* \param _property Identifier of time-dependent overall property.
* \param _value Value of the property of the total mixture.
*/
void SetMixtureProperty(double _time, EOverall _property, double _value);
////////////////////////////////////////////////////////////////////////////////
// Material database
//
/**
* \brief Returns the value of the constant physical property of the specified compound.
* \details See also: \verbatim embed:rst:inline :ref:`sec.mdb.const` \endverbatim
* \param _compoundKey Unique key of the compound.
* \param _property Identifier of constant material property.
* \return Value of the constant physical property of the specified compound.
*/
double GetCompoundProperty(const std::string& _compoundKey, ECompoundConstProperties _property) const;
/**
* \brief Returns the value of the temperature/pressure-dependent physical property of the specified compound with the given temperature [K] and pressure [Pa].
* \details See also: \verbatim embed:rst:inline :ref:`sec.mdb.tpd` \endverbatim
* \param _compoundKey Unique key of the compound.
* \param _property Identifier of temperature/pressure-dependent property.
* \param _temperature Value of temperature in [K].
* \param _pressure Value of pressure in [Pa].
* \return Value of the temperature/pressure-dependent physical property of the specified compound.
*/
double GetCompoundProperty(const std::string& _compoundKey, ECompoundTPProperties _property, double _temperature, double _pressure) const;
/**
* \brief Returns the value of the temperature/pressure-dependent physical property of the specified compound at temperature and pressure at the given time point.
* \details Refer to function CBaseStream::GetCompoundProperty(const std::string&, ECompoundTPProperties, double, double) const.
* See also: \verbatim embed:rst:inline :ref:`sec.mdb.tpd` \endverbatim
* \param _time Target time point.
* \param _compoundKey Unique key of the compound.
* \param _property Identifier of temperature/pressure-dependent property.
* \return Value of the temperature/pressure-dependent physical property of the specified compound.
*/
double GetCompoundProperty(double _time, const std::string& _compoundKey, ECompoundTPProperties _property) const;
/**
* \brief Returns the value of the interaction physical property between the specified compounds with the given specified temperature [K] and pressure [Pa].
* \details See also: \verbatim embed:rst:inline :ref:`sec.mdb.interactions` \endverbatim
* \param _compoundKey1 Unique key of the first compound.
* \param _compoundKey2 Unique key of the second compound.
* \param _property Identifier of property, defined for interaction of two compounds.
* \param _temperature Value of temperature in [K].
* \param _pressure Value of pressure in [Pa].
* \return Value of the interaction physical property between the specified compounds.
*/
double GetCompoundProperty(const std::string& _compoundKey1, const std::string& _compoundKey2, EInteractionProperties _property, double _temperature, double _pressure) const;
/**
* \brief Returns the value of the interaction physical property between the specified compounds at temperature and pressure at the given time point.
* \details Refer to function CBaseStream::GetCompoundProperty(const std::string&, const std::string&, EInteractionProperties, double, double) const.
* See also: \verbatim embed:rst:inline :ref:`sec.mdb.interactions` \endverbatim
* \param _time Target time point.
* \param _compoundKey1 Unique key of the first compound.
* \param _compoundKey2 Unique key of the second compound.
* \param _property Identifier of property, defined for interaction of two compounds.
* \return Value of the interaction physical property between the specified compounds.
*/
double GetCompoundProperty(double _time, const std::string& _compoundKey1, const std::string& _compoundKey2, EInteractionProperties _property) const;
////////////////////////////////////////////////////////////////////////////////
// Distributed properties of the solid phase
//
/**
* \brief Returns the number of defined distributed parameters of the solid phase.
* \return Number of defined distributed parameters of the solid phase.
*/
[[nodiscard]] size_t GetDistributionsNumber() const;
/**
* \brief Returns mass fraction of the solid material at the specified multidimensional coordinates given for all defined dimensions.
* \param _time Target time point.
* \param _coords Multidimensional coordinates.
* \return Mass fraction of the solid material.
*/
double GetFraction(double _time, const std::vector<size_t>& _coords) const;
/**
* \brief Sets mass fraction of the solid material at the specified multidimensional coordinates given for all defined dimensions.
* \details If the specified time point does not exist, it is added to the stream.
* \param _time Target time point.
* \param _coords Multidimensional coordinates.
* \param _value Mass fraction of the solid material.
*/
void SetFraction(double _time, const std::vector<size_t>& _coords, double _value);
/**
* \brief Returns one-dimensional distribution of the solid material over the specified parameter at the given time point.
* \param _time Target time point.
* \param _distribution Type of distributed parameter of the solid phase.
* \return One-dimensional distribution of the solid material.
*/
std::vector<double> GetDistribution(double _time, EDistrTypes _distribution) const;
/**
* \brief Returns two-dimensional distribution of the solid material over the specified parameters at the given time point.
* \param _time Target time point.
* \param _distribution1 First distributed parameter type of the solid phase.
* \param _distribution2 Second distributed parameter type of the solid phase.
* \return Two-dimensional distribution of the solid material.
*/
CMatrix2D GetDistribution(double _time, EDistrTypes _distribution1, EDistrTypes _distribution2) const;
/**
* \brief Returns multi-dimensional distribution of the solid material over the specified parameters at the given time point.
* \param _time Target time point.
* \param _distributions List of distributed parameter types of the solid phase.
* \return Multi-dimensional distribution of the solid material.
*/
CDenseMDMatrix GetDistribution(double _time, const std::vector<EDistrTypes>& _distributions) const;
/**
* \brief Returns one-dimensional distribution of the solid material over the specified parameter for the given compound and time point.
* \details Input dimensions should not include distribution by compounds (::DISTR_COMPOUNDS).
* If the specified compound has not been defined in the stream, empty vector is returned.
* \param _time Target time point.
* \param _distribution Type of distributed parameter of the solid phase.
* \param _compoundKey Unique key of the compound.
* \return One-dimensional distribution of the solid material.
*/
std::vector<double> GetDistribution(double _time, EDistrTypes _distribution, const std::string& _compoundKey) const;
/**
* \brief Returns two-dimensional distribution of the solid material over the specified parameters for the given compound and time point.
* \details Input dimensions should not include distribution by compounds (::DISTR_COMPOUNDS).
* If the specified compound has not been defined in the stream, empty matrix is returned.
* \param _time Target time point.
* \param _distribution1 First distributed parameter type of the solid phase.
* \param _distribution2 Second distributed parameter type of the solid phase.
* \param _compoundKey Unique key of the compound.
* \return Two-dimensional distribution of the solid material.
*/
CMatrix2D GetDistribution(double _time, EDistrTypes _distribution1, EDistrTypes _distribution2, const std::string& _compoundKey) const;
/**
* \brief Returns multi-dimensional distribution of the solid material over the specified parameters for the given compound and time point.
* \details Input dimensions should not include distribution by compounds (::DISTR_COMPOUNDS).
* If specified compound has not been defined in the stream, empty matrix is returned.
* \param _time Target time point.
* \param _distributions List of distributed parameter types of the solid phase.
* \param _compoundKey Unique key of the compound.
* \return Multi-dimensional distribution of the solid material.
*/
CDenseMDMatrix GetDistribution(double _time, const std::vector<EDistrTypes>& _distributions, const std::string& _compoundKey) const;
/**
* \brief Sets one-dimensional distribution of the solid material over the specified parameter at the given time point.
* \details If such dimension does not exist, nothing is done.
* If the specified time point does not exist, it is added to the stream.
* \param _time Target time point.
* \param _distribution Type of distributed parameter of the solid phase.
* \param _value One-dimensional distribution of the solid material.
*/
void SetDistribution(double _time, EDistrTypes _distribution, const std::vector<double>& _value);
/**
* \brief Sets two-dimensional distribution of the solid material over the specified parameter at the given time point.
* \details If such dimensions do not exist, nothing is done.
* If the specified time point does not exist, it is added to the stream.
* \param _time Target time point.
* \param _distribution1 First distributed parameter type of the solid phase.
* \param _distribution2 Second distributed parameter type of the solid phase.
* \param _value Two-dimensional distribution of the solid material.
*/
void SetDistribution(double _time, EDistrTypes _distribution1, EDistrTypes _distribution2, const CMatrix2D& _value);
/**
* \brief Sets multi-dimensional distribution of the solid material over the specified parameter at the given time point.
* \details If such dimensions do not exist, nothing is done.
* If the specified time point does not exist, it is added to the stream.
* \param _time Target time point.
* \param _value Multi-dimensional distribution of the solid material.
*/
void SetDistribution(double _time, const CDenseMDMatrix& _value);
/**
* \brief Sets one-dimensional distribution of the solid material over the specified parameter for the given compound and time point.
* \details If such compound or dimension does not exist, nothing is done.
* Input dimensions should not include distribution by compounds (::DISTR_COMPOUNDS).
* If the specified time point does not exist, it is added to the stream.
* \param _time Target time point.
* \param _distribution Type of distributed parameter of the solid phase.
* \param _compoundKey Unique key of the compound.
* \param _value One-dimensional distribution of the solid material.
*/
void SetDistribution(double _time, EDistrTypes _distribution, const std::string& _compoundKey, const std::vector<double>& _value);
/**
* \brief Sets two-dimensional distribution of the solid material over the specified parameters for the given compound and time point.
* \details If such time point, compound or dimensions do not exist, nothing is done.
* Input dimensions should not include distribution by compounds (::DISTR_COMPOUNDS).
* If the specified time point does not exist, it is added to the stream.
* \param _time Target time point.
* \param _distribution1 First distributed parameter type of the solid phase.
* \param _distribution2 Second distributed parameter type of the solid phase.
* \param _compoundKey Unique key of the compound.
* \param _value Two-dimensional distribution of the solid material.
*/
void SetDistribution(double _time, EDistrTypes _distribution1, EDistrTypes _distribution2, const std::string& _compoundKey, const CMatrix2D& _value);
/**
* \brief Sets multi-dimensional distribution of the solid material over the specified parameters for the given compound and time point.
* \details If such compound or dimensions do not exist, nothing is done.
* Input dimensions should not include distribution by compounds (::DISTR_COMPOUNDS).
* If the specified time point does not exist, it is added to the stream.
* \param _time Target time point.
* \param _compoundKey Unique key of the compound.
* \param _value Multi-dimensional distribution of the solid material.
*/
void SetDistribution(double _time, const std::string& _compoundKey, const CDenseMDMatrix& _value);
/**
* \brief Applies the transformation matrix to transform the multidimensional distributed parameters of the solid material at the given time point.
* \param _time Target time point.
* \param _matrix Transformation matrix.
*/
void ApplyTM(double _time, const CTransformMatrix& _matrix);
/**
* \brief Applies the transformation matrix to transform the multidimensional distributed parameters of the solid material for the given compound and time point.
* \details Dimensions of transformation matrix should not include distribution by compounds (::DISTR_COMPOUNDS).
* \param _time Target time point.
* \param _compoundKey Unique key of the compound.
* \param _matrix Transformation matrix.
*/
void ApplyTM(double _time, const std::string& _compoundKey, const CTransformMatrix& _matrix);
/**
* \brief Normalizes data in the solids distribution matrix for the given time point.
* \details If time has not been defined, nothing is done.
* \param _time Target time point.
*/
void Normalize(double _time);
/**
* \brief Normalizes data in the solids distribution matrix for the given time interval.
* \param _timeBeg Begin of the time interval.
* \param _timeEnd End of the time interval.
*/
void Normalize(double _timeBeg, double _timeEnd);
/**
* \brief Normalizes data in the solids distribution matrix for all time points.
*/
void Normalize();
////////////////////////////////////////////////////////////////////////////////
// Particle size distributions
//
/**
* \brief Returns the specified type of the PSD of the total mixture of all solid materials at the given time point.
* \details Refer to function CBaseStream::GetPSD(double, EPSDTypes, const std::vector<std::string>&, EPSDGridType) const.
* \param _time Target time point.
* \param _type Identifier of the PSD type.
* \param _grid Identifier of grid units type.
* \return Particle size distribution.
*/
std::vector<double> GetPSD(double _time, EPSDTypes _type, EPSDGridType _grid = EPSDGridType::DIAMETER) const;
/**
* \brief Returns the specified type of the PSD of the selected compound at the given time point.
* \details Refer to function CBaseStream::GetPSD(double, EPSDTypes, const std::vector<std::string>&, EPSDGridType) const.
* \param _time Target time point.
* \param _type Identifier of the PSD type.
* \param _compoundKey Unique key of the compound.
* \param _grid Identifier of grid units type.
* \return Particle size distribution.
*/
std::vector<double> GetPSD(double _time, EPSDTypes _type, const std::string& _compoundKey, EPSDGridType _grid = EPSDGridType::DIAMETER) const;
/**
* \brief Returns the specified type of the PSD of the mixture of selected compounds at the given time point.
* \details If the list of compounds is empty, the whole mixture is considered.
* \param _time Target time point.
* \param _type Identifier of the PSD type.
* \param _compoundKeys Unique keys of the compounds.
* \param _grid Identifier of grid units type.
* \return Particle size distribution.
*/
std::vector<double> GetPSD(double _time, EPSDTypes _type, const std::vector<std::string>& _compoundKeys, EPSDGridType _grid = EPSDGridType::DIAMETER) const;
/**
* \brief Sets the specified type of the PSD of the total mixture of all solid materials at the given time point.
* \details For number-related PSD, the distribution is normalized and the total particle mass remains unchanged.
* If the specified time point does not exist, it is added to the stream.
* Refer to function CBaseStream::SetPSD(double, EPSDTypes, const std::string&, const std::vector<double>&, EPSDGridType).
* \param _time Target time point.
* \param _type Identifier of PSD type.
* \param _value Particle size distribution.
* \param _grid Identifier of grid units type.
*/
void SetPSD(double _time, EPSDTypes _type, const std::vector<double>& _value, EPSDGridType _grid = EPSDGridType::DIAMETER);
/**
* \brief Sets the specified type of the PSD of the selected compound at the given time point.
* \details For number-related PSD, the distribution is normalized and the total particle mass remains unchanged.
* If the compound key if empty, the whole mixture is considered.
* If the specified time point does not exist, it is added to the stream.
* As mass fractions are used to store data, PSD is converted using functions
* Convertq0ToMassFractions(), ConvertQ0ToMassFractions(), Convertq2ToMassFractions(), ConvertQ2ToMassFractions(), Convertq3ToMassFractions(), ConvertQ3ToMassFractions(), ConvertNumbersToMassFractions().
* \param _time Target time point.
* \param _type Identifier of PSD type.
* \param _compoundKey Unique key of the compound.
* \param _value Particle size distribution.
* \param _grid Identifier of grid units type.
*/
void SetPSD(double _time, EPSDTypes _type, const std::string& _compoundKey, const std::vector<double>& _value, EPSDGridType _grid = EPSDGridType::DIAMETER);
////////////////////////////////////////////////////////////////////////////////
// Interactions with other streams
//
/**
* \brief Copies all stream data at the given time point.
* \details All data after the time point are removed from the destination stream.
* \param _time Time point to copy.
* \param _source Source stream.
*/
void Copy(double _time, const CBaseStream& _source);
/**
* \brief Copies all stream data at the given time interval.
* \details All data after the end time point are removed from the destination stream.
* \param _timeBeg Begin of the time interval to copy.
* \param _timeEnd End of the time interval to copy.
* \param _source Source stream.
*/
void Copy(double _timeBeg, double _timeEnd, const CBaseStream& _source);
/**
* \brief Copies all stream data to the given time point from another time point of the source stream.
* \details All data after the time point are removed from the destination stream.
* \param _timeDst Time point of the destination stream to copy to.
* \param _source Source stream.
* \param _timeSrc Time point of the source stream to copy.
*/
void Copy(double _timeDst, const CBaseStream& _source, double _timeSrc);
/**
* \brief Mixes the specified stream with the current stream at the given time point.
* \details Can be applied only for streams with the same structure (MD dimensions, phases, materials, etc.).
* \param _time Time point to copy.
* \param _source Source stream.
*/
void Add(double _time, const CBaseStream& _source);
/**
* \brief Mixes the specified stream with the current stream at the given time interval.
* \details Can be applied only for streams with the same structure (MD dimensions, phases, materials, etc.).
* The stream will contain the union of time points from both streams.
* \param _timeBeg Begin of the time interval to copy.
* \param _timeEnd End of the time interval to copy.
* \param _source Source stream.
*/
void Add(double _timeBeg, double _timeEnd, const CBaseStream& _source);
/**
* \private
* \brief Tests whether all values in the streams at the given time point are equal up to the global tolerances.
* \param _time Target time point.
* \param _stream1 First stream.
* \param _stream2 Second stream.
* \return Whether streams are equal.
*/
static bool AreEqual(double _time, const CBaseStream& _stream1, const CBaseStream& _stream2);
/**
* \private
* \brief Tests whether all values in the stream at the given time points are equal up to the tolerances.
* \param _time1 First target time point.
* \param _time2 Second target time point.
* \param _stream Target stream.
* \param _absTol Absolute tolerance.
* \param _relTol Relative tolerance.
* \return Whether streams are equal.
*/
static bool AreEqual(double _time1, double _time2, const CBaseStream& _stream, double _absTol, double _relTol);
/**
* \private
* \brief Tests whether all values in the stream at the given time points are equal up to the global tolerances.
* \param _time1 First target time point.
* \param _time2 Second target time point.
* \param _stream Target stream.
* \return Whether streams are equal.
*/
static bool AreEqual(double _time1, double _time2, const CBaseStream& _stream);
////////////////////////////////////////////////////////////////////////////////
// Thermodynamics
//
/**
* \private
* \brief Returns a pointer to enthalpy calculator.
* \return Pointer to enthalpy calculator.
*/
[[nodiscard]] CMixtureEnthalpyLookup* GetEnthalpyCalculator() const;
/**
* \brief Calculates enthalpy of the stream mixture for the temperature at the given time point using a lookup table.
* \details See also: \verbatim embed:rst:inline :ref:`sec.development.api.thermodynamics` \endverbatim
* \param _time Target time point.
* \return Calculated value of enthalpy.
*/
[[nodiscard]] double CalculateEnthalpyFromTemperature(double _time) const;
/**
* \brief Calculates temperature of the stream mixture for the enthalpy at the given time point using a lookup table.
* \details See also: \verbatim embed:rst:inline :ref:`sec.development.api.thermodynamics` \endverbatim
* \param _time Target time point.
* \return Calculated value of temperature.
*/
[[nodiscard]] double CalculateTemperatureFromEnthalpy(double _time) const;
////////////////////////////////////////////////////////////////////////////////
// Other
//
/**
* \private
* \brief Returns current grid of distributed parameters.
* \return Const reference to current multidimensional grid.
*/
const CMultidimensionalGrid& GetGrid() const;
// TODO: remove, initialize MDB in constructor
/**
* \private
* \brief Sets new pointer to the used materials database.
* \param _database Const pointer to the materials database.
*/
void SetMaterialsDatabase(const CMaterialsDatabase* _database);
/**
* \private
* \brief Sets grids of distributed parameters.
* \param _grid Const reference to the multidimensional grid.
*/
void SetGrid(const CMultidimensionalGrid& _grid);
/**
* \private
* \brief Sets new cache settings.
* \param _settings Const reference to the cache settings.
*/
void SetCacheSettings(const SCacheSettings& _settings);
/**
* \private
* \brief Sets tolerance settings.
* \param _settings Const reference to the tolerance settings.
*/
void SetToleranceSettings(const SToleranceSettings& _settings);
/**
* \private
* \brief Sets thermodynamics settings.
* \param _settings Const reference to the thermodynamics settings.
*/
void SetThermodynamicsSettings(const SThermodynamicsSettings& _settings);
/**
* \private
* \brief Performs nearest-neighbor extrapolation of all stream data.
* \param _timeExtra Time point to extrapolate.
* \param _time Source time point.
*/
void Extrapolate(double _timeExtra, double _time);
/**
* \private
* \brief Performs linear extrapolation of all stream data.
* \param _timeExtra Time point to extrapolate.
* \param _time1 Begin of the source time interval.
* \param _time2 End of the source time interval.
*/
void Extrapolate(double _timeExtra, double _time1, double _time2);
/**
* \private
* \brief Performs cubic spline extrapolation of all stream data.
* \param _timeExtra Time point to extrapolate.
* \param _time1 First source time point.
* \param _time2 Second source time point.
* \param _time3 Third source time point.
*/
void Extrapolate(double _timeExtra, double _time1, double _time2, double _time3);
/**
* \private
* \brief Saves data to file.
* \param _h5File Reference to the file handler.
* \param _path Path to data.
*/
void SaveToFile(CH5Handler& _h5File, const std::string& _path);
/**
* \private
* \brief Loads data from file.
* \param _h5File Reference to the file handler.
* \param _path Path to data.
*/
void LoadFromFile(const CH5Handler& _h5File, const std::string& _path);
/**
* \private
* \brief Loads data from file of an older version.
* \param _h5File Reference to the file handler.
* \param _path Path to data.
*/
void LoadFromFile_v1(const CH5Handler& _h5File, const std::string& _path);
protected:
/**
* \private
*/
using mix_type = std::tuple<std::map<EOverall, double>, std::map<EPhase, double>, std::map<EPhase, CDenseMDMatrix>>;
/**
* \private
* \brief Calculates mixture of two streams.
* \details Does not perform any checks.
* \param _time1 Target time point of the first stream.
* \param _stream1 Const reference to the first stream.
* \param _mass1 Overall mass of the first stream.
* \param _time2 Target time point of the second stream.
* \param _stream2 Const reference to the second stream.
* \param _mass2 Overall mass of the second stream.
* \return Calculated mixture.
*/
static mix_type CalculateMix(double _time1, const CBaseStream& _stream1, double _mass1, double _time2, const CBaseStream& _stream2, double _mass2);
/**
* \private
* \brief Calculates pressure of the mixture of two streams.
* \details Does not perform any checks.
* \param _time1 Target time point of the first stream.
* \param _stream1 Const reference to the first stream.
* \param _time2 Target time point of the second stream.
* \param _stream2 Const reference to the second stream.
* \return Calculated pressure.
*/
static double CalculateMixPressure(double _time1, const CBaseStream& _stream1, double _time2, const CBaseStream& _stream2);
/**
* \private
* \brief Calculates temperature of the mixture of two streams.
* \details Does not perform any checks.
* \param _time1 Target time point of the first stream.
* \param _stream1 Const reference to the first stream.
* \param _mass1 Overall mass of the first stream.
* \param _time2 Target time point of the second stream.
* \param _stream2 Const reference to the second stream.
* \param _mass2 Overall mass of the second stream.
* \return Calculated temperature.
*/
static double CalculateMixTemperature(double _time1, const CBaseStream& _stream1, double _mass1, double _time2, const CBaseStream& _stream2, double _mass2);
/**
* \private
* \brief Calculates general overall property of the mixture of two streams.
* \details Does not perform any checks.
* \param _time1 Target time point of the first stream.
* \param _stream1 Const reference to the first stream.
* \param _mass1 Overall mass of the first stream.
* \param _time2 Target time point of the second stream.
* \param _stream2 Const reference to the second stream.
* \param _mass2 Overall mass of the second stream.
* \param _property Identifier of time-dependent overall parameter that needs to be calculated.
* \return Calculated overall property.
*/
static double CalculateMixOverall(double _time1, const CBaseStream& _stream1, double _mass1, double _time2, const CBaseStream& _stream2, double _mass2, EOverall _property);
/**
* \private
* \brief Calculates phase fractions of the mixture of two streams for the given phase.
* \details Does not perform any checks.
* \param _time1 Target time point of the first stream.
* \param _stream1 Const reference to the first stream.
* \param _mass1 Overall mass of the first stream.
* \param _time2 Target time point of the second stream.
* \param _stream2 Const reference to the second stream.
* \param _mass2 Overall mass of the second stream.
* \param _phase Phase type identifier.
* \return Calculated phase fraction.
*/
static double CalculateMixPhaseFractions(double _time1, const CBaseStream& _stream1, double _mass1, double _time2, const CBaseStream& _stream2, double _mass2, EPhase _phase);
/**
* \private
* \brief Calculates multidimensional distributions of the mixture of two streams for the given phase.
* \details Does not perform any checks.
* \param _time1 Target time point of the first stream.
* \param _stream1 Const reference to the first stream.
* \param _mass1 Overall mass of the first stream.
* \param _time2 Target time point of the second stream.
* \param _stream2 Const reference to the second stream.
* \param _mass2 Overall mass of the second stream.
* \param _phase Phase type identifier.
* \return Calculated multidimensional distribution.
*/
static CDenseMDMatrix CalculateMixDistribution(double _time1, const CBaseStream& _stream1, double _mass1, double _time2, const CBaseStream& _stream2, double _mass2, EPhase _phase);
/**
* \private
* \brief Sets the result of mixing two streams into this stream at the given time point.
* \param _time Target time point.
* \param _data Mixture of two streams.
*/
void SetMix(double _time, const mix_type& _data);
private:
/**
* \private
* \brief Inserts the new time into the list of time points, if it does not exist yet.
* \param _time New time point that needs to be inserted.
*/
void InsertTimePoint(double _time);
/**
* \private
* \brief Checks whether the given time point exists.
* \param _time Time point.
* \return Whether the given time point exists.
*/
bool HasTime(double _time) const;
/**
* \private
* \brief Checks whether the specified compound is defined in the stream.
* \param _compoundKey Unique key of the compound.
* \return Whether the specified compound is defined in the stream.
*/
bool HasCompound(const std::string& _compoundKey) const;
/**
* \private
* \brief Checks whether all the specified compounds are defined in the stream.
* \param _compoundKeys Unique keys of the compounds.
* \return Whether all the specified compounds are defined in the stream.
*/
bool HasCompounds(const std::vector<std::string>& _compoundKeys) const;
/**
* \private
* \brief Returns index of the compound.
* \param _compoundKey Unique key of the compound.
* \return Index of the existing compound.
*/
size_t CompoundIndex(const std::string& _compoundKey) const;
/**
* \private
* \brief Checks whether the specified phase is defined in the stream.
* \param _phase Phase type identifier.
* \return Whether the specified phase is defined in the stream.
*/
bool HasPhase(EPhase _phase) const;
/**
* \private
* \brief Calculates the PSD of the stream in mass fractions for the selected compounds.
* \details If the list of components is empty, calculates the PSD for the entire mixture. Takes into account porosity, if specified.
* All checks of parameters, phases, grids availability, etc. must be executed by the calling code.
* \param _time Target time point.
* \param _compoundKeys Unique keys of the compounds.
* \return Calculated PSD in mass fractions.
*/
std::vector<double> GetPSDMassFraction(double _time, const std::vector<std::string>& _compoundKeys) const;
/**
* \private
* \brief Calculates the number particle distribution of the stream for the selected compounds.
* \details If the list of components is empty, calculates the PSD for the entire mixture. Takes into account porosity, if specified.
* All checks of parameters, phases, grids availability, etc. must be executed by the calling code.
* \param _time Target time point.
* \param _compoundKeys Unique keys of the compounds.
* \param _grid Unique keys of the compounds.
* \return Calculated number particle distribution.
*/
std::vector<double> GetPSDNumber(double _time, const std::vector<std::string>& _compoundKeys, EPSDGridType _grid) const;
/**
* \private
* \brief Clears enthalpy calculator.
*/
void ClearEnthalpyCalculator();
// TODO: move it somewhere
////////////////////////////////////////////////////////////////////////////////
// Deprecated functions
public:
/**
* \private
*/
[[deprecated("WARNING! AddTimePoint(double, double) is deprecated. Use CopyTimePoint(double, double) instead.")]]
void AddTimePoint(double _timeDst, double _timeSrc);
/**
* \private
*/
[[deprecated("WARNING! GetStreamName() is deprecated. Use GetName() instead.")]]
std::string GetStreamName() const;
/**
* \private
*/
[[deprecated("WARNING! SetupStream(const CBaseStream*) is deprecated. Use SetupStructure(const CBaseStream*) instead.")]]
void SetupStream(const CBaseStream* _stream);
/**
* \private
*/
[[deprecated("WARNING! GetTimePointsForInterval(double, double, bool) is deprecated. Use GetTimePoints(double, double) or GetTimePointsClosed(double, double) instead.")]]
std::vector<double> GetTimePointsForInterval(double _timeBeg, double _timeEnd, bool _inclusive) const;
/**
* \private
*/
[[deprecated("WARNING! GetOverallProperty(double, unsigned) is deprecated. Use GetOverallProperty(double, EOverall), GetMixtureProperty(double, EOverall), GetMixtureProperty(double, ECompoundConstProperties) or GetMixtureProperty(double, ECompoundTPProperties) instead.")]]
double GetOverallProperty(double _time, unsigned _property) const;
/**
* \private
*/
[[deprecated("WARNING! GetMass_Base(double) is deprecated. Use GetMass(double) instead.")]]
double GetMass_Base(double _time) const;
/**
* \private
*/
[[deprecated("WARNING! SetMass_Base(double, double) is deprecated. Use SetMass(double, double) instead.")]]
void SetMass_Base(double _time, double _value);
/**
* \private
*/
[[deprecated("WARNING! GetCompoundsList() is deprecated. Use a unit-level version CBaseUnit::GetCompoundsList() instead.")]]
std::vector<std::string> GetCompoundsList() const;
/**
* \private
*/
[[deprecated("WARNING! GetCompoundsNames() is deprecated. Use a unit-level version CBaseUnit::GetAllCompoundsNames(), CBaseUnit::GetCompoundName(const std::string&) or CBaseUnit::GetCompoundName(size_t) instead.")]]
std::vector<std::string> GetCompoundsNames() const;
/**
* \private
*/
[[deprecated("WARNING! GetCompoundPhaseFraction(double, const std::string&, EPhaseTypes) is deprecated. Use GetCompoundFraction(double, const std::string&, EPhase) or GetCompoundsFractions(_time, EPhase) instead.")]]
double GetCompoundPhaseFraction(double _time, const std::string& _compoundKey, unsigned _soa) const;
/**
* \private
*/
[[deprecated("WARNING! GetCompoundPhaseFraction(double, unsigned, EPhaseTypes) is deprecated. Use GetCompoundFraction(double, const std::string&, EPhase) or GetCompoundsFractions(_time, EPhase) instead.")]]
double GetCompoundPhaseFraction(double _time, unsigned _index, unsigned _soa) const;
/**
* \private
*/
[[deprecated("WARNING! SetCompoundPhaseFraction(double, const std::string&, EPhaseTypes, double, eValueBasises) is deprecated. Use SetCompoundFraction(double, const std::string&, EPhase, double) or SetCompoundMolFraction(double, const std::string&, EPhase, double) instead.")]]
void SetCompoundPhaseFraction(double _time, const std::string& _compoundKey, unsigned _soa, double _value, unsigned _basis = BASIS_MASS);
/**
* \private
*/
[[deprecated("WARNING! GetPhaseMass_Base(double, EPhaseTypes) is deprecated. Use GetPhaseMass(double, EPhase) instead.")]]
double GetPhaseMass_Base(double _time, unsigned _soa) const;
/**
* \private
*/
[[deprecated("WARNING! SetPhaseMass_Base(double, EPhaseTypes, double) is deprecated. Use SetPhaseMass(double, EPhase, double) instead.")]]
void SetPhaseMass_Base(double _time, unsigned _soa, double _value);
/**
* \private
*/
[[deprecated("WARNING! GetPhaseSOA(unsigned) is deprecated. Use a unit-level version CBaseUnit::GetPhaseType(size_t) instead.")]]
unsigned GetPhaseSOA(unsigned _index) const;
/**
* \private
*/
[[deprecated("WARNING! GetPhaseIndex(EPhaseTypes) is deprecated. Access phases by their type.")]]
unsigned GetPhaseIndex(unsigned _soa) const;
/**
* \private
*/
[[deprecated("WARNING! GetCompoundConstant(const std::string&, unsigned) is deprecated. Use GetCompoundProperty(const std::string&, ECompoundConstProperties) instead.")]]
double GetCompoundConstant(const std::string& _compoundKey, unsigned _property) const;
/**
* \private
*/
[[deprecated("WARNING! GetCompoundTPDProp(double, const std::string&, unsigned) is deprecated. Use GetCompoundProperty(double, const std::string&, ECompoundTPProperties) instead.")]]
double GetCompoundTPDProp(double _time, const std::string& _compoundKey, unsigned _property) const;
/**
* \private
*/
[[deprecated("WARNING! GetCompoundTPDProp(const std::string&, unsigned, double, double) is deprecated. Use GetCompoundProperty(const std::string&, ECompoundTPProperties, double, double) instead.")]]
double GetCompoundTPDProp(const std::string& _compoundKey, unsigned _property, double _temperature, double _pressure) const;
/**
* \private
*/
[[deprecated("WARNING! GetCompoundInteractionProp(double, const std::string&, const std::string&, unsigned) is deprecated. Use GetCompoundProperty(double, const std::string&, const std::string&, ECompoundTPProperties) instead.")]]
double GetCompoundInteractionProp(double _time, const std::string& _compoundKey1, const std::string& _compoundKey2, unsigned _property) const;
/**
* \private
*/
[[deprecated("WARNING! GetCompoundInteractionProp(const std::string&, const std::string&, unsigned, double, double) is deprecated. Use GetCompoundProperty(const std::string&, const std::string&, ECompoundTPProperties, double, double) instead.")]]
double GetCompoundInteractionProp(const std::string& _compoundKey1, const std::string& _compoundKey2, unsigned _property, double _temperature, double _pressure) const;
/**
* \private
*/
[[deprecated("WARNING! GetDistribution(double, EDistrTypes, std::vector<double>&) is deprecated. Use GetDistribution(double, EDistrTypes) instead.")]]
bool GetDistribution(double _time, EDistrTypes _distribution, std::vector<double>& _result) const;
/**
* \private
*/
[[deprecated("WARNING! CopyFromStream_Base(const CBaseStream&, double, bool) is deprecated. Use Copy(double, const CBaseStream&) instead.")]]
void CopyFromStream_Base(const CBaseStream& _source, double _time, bool _deleteDataAfter = true);
/**
* \private
*/
[[deprecated("WARNING! AddStream_Base(const CBaseStream&, double) is deprecated. Use Add(double, const CBaseStream&) instead.")]]
void AddStream_Base(const CBaseStream& _source, double _time);
/**
* \private
*/
[[deprecated("WARNING! GetSinglePhaseProp(double, unsigned, EPhaseTypes) is deprecated. Use GetPhaseFraction(double, EPhase), GetPhaseMass(double, EPhase), GetPhaseProperty(double, EPhase, EOverall), GetPhaseProperty(double, EPhase, ECompoundConstProperties) or GetPhaseProperty(double, EPhase, ECompoundTPProperties) instead.")]]
double GetSinglePhaseProp(double _time, unsigned _property, unsigned _soa) const;
/**
* \private
*/
[[deprecated("WARNING! GetPhaseTPDProp(double, unsigned, EPhaseTypes) is deprecated. Use GetPhaseProperty(double, EPhase, ECompoundTPProperties) instead.")]]
double GetPhaseTPDProp(double _time, unsigned _property, unsigned _soa) const;
/**
* \private
*/
[[deprecated("WARNING! SetSinglePhaseProp(double, unsigned, EPhaseTypes, double) is deprecated. Use SetPhaseFraction(double, EPhase, double) or SetPhaseMass(double, EPhase, double) instead.")]]
void SetSinglePhaseProp(double _time, unsigned _property, unsigned _soa, double _value);
protected:
/**
* \private
*/
static EPhase SOA2EPhase(unsigned _soa);
/**
* \private
*/
static unsigned EPhase2SOA(EPhase _phase);
};
|