1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
|
/* Copyright (c) 2020, Dyssol Development Team.
* Copyright (c) 2023, DyssolTEC GmbH.
* All rights reserved. This file is part of Dyssol. See LICENSE file for license information. */
#pragma once
#include <algorithm>
#include <cmath>
#include <numeric>
#include <string>
#include <vector>
/**
* \file
* \brief Several global functions are defined to work with particle size distributions. These functions can be called from any place of the code.
* \details All functions receive grid as the input parameter. The grid can be previously obtained with the help of the function CBaseUnit::GetNumericGrid(EDistrTypes) const.
* \note
* - \f$d_i\f$ - diameter of particle in class \f$i\f$
* - \f$\Delta d_i\f$ - size of the class \f$i\f$
* - \f$M_k\f$ - \f$k\f$-th moment
* - \f$q\f$ - density distribution
* - \f$q_0\f$ - number related density distribution
* - \f$Q_0\f$ - number related cumulative distribution
* - \f$q_2\f$ - surface-area-related density distribution
* - \f$Q_2\f$ - surface-area-related cumulative distribution
* - \f$q_3\f$ - mass-related density distribution
* - \f$Q_3\f$ - mass-related cumulative distribution
* - \f$w_i\f$ - mass fraction of particles of class \f$i\f$
* - \f$N_i\f$ - number of particles of class \f$i\f$
* - \f$N_{tot}\f$ - total number of particles
*/
/**
* \brief Calculates moment of the density distribution.
* \details \f$M_k = \sum_i d_i^k q_i \Delta d_i\f$.
* \param _moment Value of moment.
* \param _grid Distribution grid.
* \param _q Input distribution.
* \return Value of the density distribution moment.
*/
double inline GetMMoment(int _moment, const std::vector<double>& _grid, const std::vector<double>& _q)
{
if (_grid.size() != _q.size() + 1) return 0;
double dMoment = 0;
for (size_t i = 0; i < _q.size(); ++i)
dMoment += std::pow((_grid[i] + _grid[i + 1]) / 2, _moment) * _q[i] * (_grid[i + 1] - _grid[i]);
return dMoment;
}
/**
* \brief Calculates Q.
* \details
* \param _QiDistr Input distribution.
* \param _grid Distribution grid.
* \param _size Value of size.
* \return Calculated Q.
*/
double inline GetQ(const std::vector<double>& _QiDistr, const std::vector<double>& _grid, double _size)
{
if (_size <= _grid.front()) return 0;
if (_size >= _grid.back()) return 1;
std::vector<double> vTempDistr;
vTempDistr.push_back(0);
for (double v : _QiDistr)
vTempDistr.push_back(v);
// find indexes where interpolation should be done
int nLeft = static_cast<int>(_grid.size()) - 1;
int nRight = 0;
while (nRight < static_cast<int>(_grid.size()))
if (_grid[nRight] >= _size)
{
nLeft = nRight - 1;
break;
}
else
nRight++;
if (nLeft >= 0 && _grid[nLeft] == _size)
return vTempDistr[nLeft];
else if (nRight < static_cast<int>(_grid.size()) && _grid[nRight] == _size)
return vTempDistr[nRight];
else // point inside - interpolation
return(vTempDistr[nRight] - vTempDistr[nLeft]) / (_grid[nRight] - _grid[nLeft]) * (_size - _grid[nLeft]) + vTempDistr[nLeft];
}
/**
* \brief Performs conversion from cumulative to density distributions.
* \details \f$q_0 = \frac{Q_0}{\Delta d_i}\f$ and \f$q_i = \frac{Q_i - Q_{i-1}}{\Delta d_i}\f$.
* \param _grid Distribution grid.
* \param _Q Input distribution.
* \return Density distribution.
*/
std::vector<double> inline Q2q(const std::vector<double>& _grid, const std::vector<double>& _Q)
{
if (_Q.empty()) return {};
std::vector<double> q(_Q.size());
q[0] = _Q[0] / (_grid[1] - _grid[0]);
for (size_t i = 1; i < _Q.size(); ++i)
q[i] = (_Q[i] - _Q[i - 1]) / (_grid[i + 1] - _grid[i]);
return q;
}
/**
* \brief Performs conversion from density to cumulative distributions.
* \details \f$Q_i = \sum_i q_i \Delta d_i = Q_i-1 + q_i \Delta d_i\f$.
* \param _grid Distribution grid.
* \param _q Input distribution.
* \return Cumulative distribution.
*/
std::vector<double> inline q2Q(const std::vector<double>& _grid, const std::vector<double>& _q)
{
std::vector<double> Q(_q.size());
double dQ3 = 0;
for (size_t i = 0; i < _q.size(); ++i)
{
dQ3 += (_grid[i + 1] - _grid[i]) * _q[i];
Q[i] = dQ3;
}
return Q;
}
/**
* \brief Performs conversion from one density distribution to another.
* \details \f$q_i = \frac{d_i^{y-x} q_i}{M^{y-x}(q_x)}\f$.
* \param _grid Distribution grid.
* \param _qx Input distribution.
* \param _x Input density distribution.
* \param _y Output density distribution.
* \return Density distribution.
*/
std::vector<double> inline qx2qy(const std::vector<double>& _grid, const std::vector<double>& _qx, int _x, int _y)
{
if (_grid.size() != _qx.size() + 1) return {};
const double M = GetMMoment(_y - _x, _grid, _qx);
if (M == 0) return _qx;
std::vector<double> qy(_qx.size());
for (size_t i = 0; i < _qx.size(); ++i)
qy[i] = std::pow((_grid[i] + _grid[i + 1]) / 2, _y - _x) * _qx[i] / M;
return qy;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* \brief Performs conversion from Q0 to q0 distributions.
* \details Using information about the size grid: \f$q_{0,0} = \frac{Q_{0,0}}{\Delta d_i}\f$ and \f$q_{0,i} = \frac{Q_{0,i} - Q_{0,i-1}}{\Delta d_i}\f$.
* Refer to function Q2q(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _Q0 Input distribution.
* \return Converted q0 distribution.
*/
std::vector<double> inline ConvertQ0Toq0(const std::vector<double>& _grid, const std::vector<double>& _Q0)
{
return Q2q(_grid, _Q0);
}
/**
* \brief Performs conversion from q0 to Q0 distributions.
* \details Using information about the size grid: \f$Q_{0,i} = \sum_i q_{0,i} \Delta d_i = Q_{0,i-1} + q_{0,i} \Delta d_i\f$.
* Refer to function q2Q(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _q0 Input distribution.
* \return Converted Q0 distribution.
*/
std::vector<double> inline Convertq0ToQ0(const std::vector<double>& _grid, const std::vector<double>& _q0)
{
return q2Q(_grid, _q0);
}
/**
* \brief Performs conversion from Q2 to q2 distributions.
* \details Using information about the size grid: \f$q_{2,0} = \frac{Q_{2,0}}{\Delta d_i}\f$ and \f$q_{2,i} = \frac{Q_{2,i} - Q_{2,i-1}}{\Delta d_i}\f$.
* Refer to function Q2q(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _Q2 Input distribution.
* \return Converted q2 distribution.
*/
std::vector<double> inline ConvertQ2Toq2(const std::vector<double>& _grid, const std::vector<double>& _Q2)
{
return Q2q(_grid, _Q2);
}
/**
* \brief Performs conversion from q2 to Q2 distributions.
* \details Using information about the size grid: \f$Q_{2,i} = \sum_i q_{2,i} \Delta d_i = Q_{2,i-1} + q_{2,i} \Delta d_i\f$.
* Refer to function q2Q(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _q2 Input distribution.
* \return Converted Q2 distribution.
*/
std::vector<double> inline Convertq2ToQ2(const std::vector<double>& _grid, const std::vector<double>& _q2)
{
return q2Q(_grid, _q2);
}
/**
* \brief Performs conversion from Q3 to q3 distributions.
* \details Using information about the size grid: \f$q_{3,0} = \dfrac{Q_{3,0}}{\Delta d_i}\f$ and \f$q_{3,i} = \frac{Q_{3,i} - Q_{3,i-1}}{\Delta d_i}\f$.
* Refer to function Q2q(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _Q3 Input distribution.
* \return Converted q3 distribution.
*/
std::vector<double> inline ConvertQ3Toq3(const std::vector<double>& _grid, const std::vector<double>& _Q3)
{
return Q2q(_grid, _Q3);
}
/**
* \brief Performs conversion from q3 to Q3 distributions.
* \details Using information about the size grid: \f$Q_{3,i} = \sum_i q_{3,i} \Delta d_i = Q_{3,i-1} + q_{3,i} \Delta d_i\f$.
* Refer to function q2Q(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _q3 Input distribution.
* \return Converted Q3 distribution.
*/
std::vector<double> inline Convertq3ToQ3(const std::vector<double>& _grid, const std::vector<double>& _q3)
{
return q2Q(_grid, _q3);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* \brief Performs conversion from q0 to q2 distributions.
* \details Using information about the size grid by \f$q_{2,i} = \frac{d_i^2 q_{0,i}}{M_2(q_0)}\f$.
* Refer to function qx2qy(const std::vector<double>&, const std::vector<double>&, int, int).
* \param _grid Distribution grid.
* \param _q0 Input distribution.
* \return Converted q2 distribution.
*/
std::vector<double> inline Convertq0Toq2(const std::vector<double>& _grid, const std::vector<double>& _q0)
{
return qx2qy(_grid, _q0, 0, 2);
}
/**
* \brief Performs conversion from q0 to q3 distributions.
* \details Using information about the size grid by \f$q_{3,i} = \frac{d_i^3 q_{0,i}}{M_3(q_0)}\f$.
* Refer to function qx2qy(const std::vector<double>&, const std::vector<double>&, int, int).
* \param _grid Distribution grid.
* \param _q0 Input distribution.
* \return Converted q3 distribution.
*/
std::vector<double> inline Convertq0Toq3(const std::vector<double>& _grid, const std::vector<double>& _q0)
{
return qx2qy(_grid, _q0, 0, 3);
}
/**
* \brief Performs conversion from q2 to q0 distributions.
* \details Using information about the size grid by \f$q_{0,i} = \frac{d_i^{-2} q_{2,i}}{M_{-2}(q_2)}\f$.
* Refer to function qx2qy(const std::vector<double>&, const std::vector<double>&, int, int).
* \param _grid Distribution grid.
* \param _q2 Input distribution.
* \return Converted q0 distribution.
*/
std::vector<double> inline Convertq2Toq0(const std::vector<double>& _grid, const std::vector<double>& _q2)
{
return qx2qy(_grid, _q2, 2, 0);
}
/**
* \brief Performs conversion from q2 to q3 distributions.
* \details Using information about the size grid by \f$q_{3,i} = \frac{d_i q_{2,i}}{M_1(q_2)}\f$.
* Refer to function qx2qy(const std::vector<double>&, const std::vector<double>&, int, int).
* \param _grid Distribution grid.
* \param _q2 Input distribution.
* \return Converted q3 distribution.
*/
std::vector<double> inline Convertq2Toq3(const std::vector<double>& _grid, const std::vector<double>& _q2)
{
return qx2qy(_grid, _q2, 2, 3);
}
/**
* \brief Performs conversion from q3 to q0 distributions.
* \details Using information about the size grid by \f$q_{0,i} = \frac{d_i^{-3} q_{3,i}}{M_{-3}(q_3)}\f$.
* Refer to function qx2qy(const std::vector<double>&, const std::vector<double>&, int, int).
* \param _grid Distribution grid.
* \param _q3 Input distribution.
* \return Converted q0 distribution.
*/
std::vector<double> inline Convertq3Toq0(const std::vector<double>& _grid, const std::vector<double>& _q3)
{
return qx2qy(_grid, _q3, 3, 0);
}
/**
* \brief Performs conversion from q3 to q2 distributions.
* \details Using information about the size grid by \f$q_{2,i} = \frac{d_i^{-1} q_{3,i}}{M_{-1}(q_3)}\f$.
* Refer to function qx2qy(const std::vector<double>&, const std::vector<double>&, int, int).
* \param _grid Distribution grid.
* \param _q3 Input distribution.
* \return Converted q2 distribution.
*/
std::vector<double> inline Convertq3Toq2(const std::vector<double>& _grid, const std::vector<double>& _q3)
{
return qx2qy(_grid, _q3, 3, 2);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* \brief Calculates q3 distribution.
* \details Using the size grid and the distribution of mass fractions by \f$q_3 = w_i / \Delta d_i\f$.
* \param _grid Distribution grid.
* \param _massFrac Input distribution.
* \return Calculated q3 distribution.
*/
std::vector<double> inline ConvertMassFractionsToq3(const std::vector<double>& _grid, const std::vector<double>& _massFrac)
{
std::vector<double> q3(_massFrac.size());
for (size_t i = 0; i < _massFrac.size(); ++i)
q3[i] = _massFrac[i] / (_grid[i + 1] - _grid[i]);
return q3;
}
/**
* \brief Calculates Q3 distribution.
* \details Using the distribution of mass fractions: \f$Q_{3,0} = w_i\f$ and \f$Q_{3,i} = Q_{3,i-1} + w_i\f$.
* \param _massFrac Input distribution.
* \return Calculated Q3 distribution.
*/
std::vector<double> inline ConvertMassFractionsToQ3(const std::vector<double>& _massFrac)
{
if (_massFrac.empty()) return {};
std::vector<double> Q3(_massFrac.size());
Q3[0] = _massFrac[0];
for (size_t i = 1; i < _massFrac.size(); ++i)
Q3[i] = Q3[i - 1] + _massFrac[i];
return Q3;
}
/**
* \brief Calculates q2 distribution.
* \details Refer to the functions ConvertMassFractionsToq3(const std::vector<double>&, const std::vector<double>&) and Convertq3Toq2(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _massFrac Input distribution.
* \return Calculated q2 distribution.
*/
std::vector<double> inline ConvertMassFractionsToq2(const std::vector<double>& _grid, const std::vector<double>& _massFrac)
{
return Convertq3Toq2(_grid, ConvertMassFractionsToq3(_grid, _massFrac));
}
/**
* \brief Calculates Q2 distribution.
* \details Refer to the functions ConvertMassFractionsToq2(const std::vector<double>&, const std::vector<double>&) and Convertq2ToQ2(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _massFrac Input distribution.
* \return Calculated Q2 distribution.
*/
std::vector<double> inline ConvertMassFractionsToQ2(const std::vector<double>& _grid, const std::vector<double>& _massFrac)
{
return Convertq2ToQ2(_grid, ConvertMassFractionsToq2(_grid, _massFrac));
}
/**
* \brief Calculates q0 distribution.
* \details Refer to the functions ConvertMassFractionsToq3(const std::vector<double>&, const std::vector<double>&) and Convertq3Toq0(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _massFrac Input distribution.
* \return Calculated q0 distribution.
*/
std::vector<double> inline ConvertMassFractionsToq0(const std::vector<double>& _grid, const std::vector<double>& _massFrac)
{
return Convertq3Toq0(_grid, ConvertMassFractionsToq3(_grid, _massFrac));
}
/**
* \brief Calculates Q0 distribution.
* \details Refer to the functions ConvertMassFractionsToq0(const std::vector<double>&, const std::vector<double>&) and Convertq0ToQ0(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _massFrac Input distribution.
* \return Calculated q0 distribution.
*/
std::vector<double> inline ConvertMassFractionsToQ0(const std::vector<double>& _grid, const std::vector<double>& _massFrac)
{
return Convertq0ToQ0(_grid, ConvertMassFractionsToq0(_grid, _massFrac));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* \brief Calculates mass fractions from q3.
* \details Using the size grid by \f$w_i = q_{3,i}\cdot \Delta d_i\f$.
* \param _grid Distribution grid.
* \param _q3 Input distribution.
* \return Calculated mass fractions.
*/
std::vector<double> inline Convertq3ToMassFractions(const std::vector<double>& _grid, const std::vector<double>& _q3)
{
std::vector<double> massFrac(_q3.size());
for (size_t i = 0; i < _q3.size(); ++i)
massFrac[i] = _q3[i] * (_grid[i + 1] - _grid[i]);
return massFrac;
}
/**
* \brief Calculates mass fractions from Q3 distribution.
* \details Using the size grid: \f$w_0 = Q_{3,0}\f$ and \f$w_i = Q_{3,i} - Q_{3,i-1}\f$.
* \param _Q3 Input distribution.
* \return Calculated mass fractions.
*/
std::vector<double> inline ConvertQ3ToMassFractions(const std::vector<double>& _Q3)
{
if (_Q3.empty()) return {};
std::vector<double> massFrac(_Q3.size());
massFrac[0] = _Q3[0];
for (size_t i = 1; i < _Q3.size(); ++i)
massFrac[i] = _Q3[i] - _Q3[i - 1];
return massFrac;
}
/**
* \brief Calculates mass fractions from q2 distribution.
* \details Refer to the functions Convertq2Toq3(const std::vector<double>&, const std::vector<double>&) and Convertq3ToMassFractions(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _q2 Input distribution.
* \return Calculated mass fractions.
*/
std::vector<double> inline Convertq2ToMassFractions(const std::vector<double>& _grid, const std::vector<double>& _q2)
{
return Convertq3ToMassFractions(_grid, Convertq2Toq3(_grid, _q2));
}
/**
* \brief Calculates mass fractions from Q2 distribution.
* \details Refer to the functions ConvertQ2Toq2(const std::vector<double>&, const std::vector<double>&) and Convertq2ToMassFractions(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _Q2 Input distribution.
* \return Calculated mass fractions.
*/
std::vector<double> inline ConvertQ2ToMassFractions(const std::vector<double>& _grid, const std::vector<double>& _Q2)
{
return Convertq2ToMassFractions(_grid, ConvertQ2Toq2(_grid, _Q2));
}
/**
* \brief Calculates mass fractions from q0 distribution.
* \details Refer to the functions Convertq0Toq3(const std::vector<double>&, const std::vector<double>&) and Convertq3ToMassFractions(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _q0 Input distribution.
* \return Calculated mass fractions.
*/
std::vector<double> inline Convertq0ToMassFractions(const std::vector<double>& _grid, const std::vector<double>& _q0)
{
return Convertq3ToMassFractions(_grid, Convertq0Toq3(_grid, _q0));
}
/**
* \brief Calculates mass fractions from Q0 distribution.
* \details Refer to the functions ConvertQ0Toq0(const std::vector<double>&, const std::vector<double>&) and Convertq0ToMassFractions(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _Q0 Input distribution.
* \return Calculated mass fractions.
*/
std::vector<double> inline ConvertQ0ToMassFractions(const std::vector<double>& _grid, const std::vector<double>& _Q0)
{
return Convertq0ToMassFractions(_grid, ConvertQ0Toq0(_grid, _Q0));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* \brief Calculates q0 distribution using the number distribution and the size grid.
* \details \f$q_{0,i} = \frac{N_i}{\Delta d_i N_{tot}}\f$.
* \param _grid Distribution grid.
* \param _number Number distribution.
* \return Calculated q0 distribution.
*/
std::vector<double> inline ConvertNumbersToq0(const std::vector<double>& _grid, const std::vector<double>& _number)
{
const double Ntot = std::accumulate(_number.begin(), _number.end(), 0.0);
if (Ntot == 0.0) return std::vector(_number.size(), 0.0);
std::vector<double> q0(_number.size());
for (size_t i = 0; i < _number.size(); ++i)
q0[i] = _number[i] / Ntot / (_grid[i + 1] - _grid[i]);
return q0;
}
/**
* \brief Calculates Q0 distribution using the number distribution.
* \details Refer to the functions ConvertNumbersToq0(const std::vector<double>&, const std::vector<double>&) and Convertq0ToQ0(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _number Number distribution.
* \return Calculated Q0 distribution.
*/
std::vector<double> inline ConvertNumbersToQ0(const std::vector<double>& _grid, const std::vector<double>& _number)
{
return Convertq0ToQ0(_grid, ConvertNumbersToq0(_grid, _number));
}
/**
* \brief Calculates Q2 distribution using the number distribution and the size grid.
* \details \f$Q_{2,i} = \frac{\sum_{j=0}^i N_j \pi d_j^2}{\sum_j N_j \pi d_j^2}\f$.
* \param _grid Distribution grid.
* \param _number Number distribution.
* \return Calculated Q2 distribution.
*/
std::vector<double> inline ConvertNumbersToQ2(const std::vector<double>& _grid, const std::vector<double>& _number)
{
if (_number.empty()) return {};
if (_grid.size() != _number.size() + 1) return {};
constexpr double PI = 3.14159265358979323846;
std::vector<double> Q2(_number.size());
Q2[0] = _number[0] * PI * pow((_grid[0] + _grid[1]) / 2, 2);
for (size_t i = 1; i < _number.size(); ++i)
Q2[i] = Q2[i - 1] + _number[i] * PI * pow((_grid[i] + _grid[i + 1]) / 2, 2);
for (size_t i = 0; i < Q2.size(); ++i)
Q2[i] /= Q2.back();
return Q2;
}
/**
* \brief Calculates q2 distribution using the number distribution.
* \details Refer to the functions ConvertNumbersToQ2(const std::vector<double>&, const std::vector<double>&) and ConvertQ2Toq2(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _number Number distribution.
* \return Calculated q2 distribution.
*/
std::vector<double> inline ConvertNumbersToq2(const std::vector<double>& _grid, const std::vector<double>& _number)
{
return ConvertQ2Toq2(_grid, ConvertNumbersToQ2(_grid, _number));
}
/**
* \brief Calculates q3 distribution using the number distribution.
* \details Refer to the functions ConvertNumbersToq0(const std::vector<double>&, const std::vector<double>&) and Convertq0Toq3(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _number Number distribution.
* \return Calculated q3 distribution.
*/
std::vector<double> inline ConvertNumbersToq3(const std::vector<double>& _grid, const std::vector<double>& _number)
{
return Convertq0Toq3(_grid, ConvertNumbersToq0(_grid, _number));
}
/**
* \brief Calculates Q3 distribution using the number distribution.
* \details Refer to the functions ConvertNumbersToq3(const std::vector<double>&, const std::vector<double>&) and Convertq3ToQ3(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _number Number distribution.
* \return Calculated Q3 distribution.
*/
std::vector<double> inline ConvertNumbersToQ3(const std::vector<double>& _grid, const std::vector<double>& _number)
{
return Convertq3ToQ3(_grid, ConvertNumbersToq3(_grid, _number));
}
/**
* \brief Calculates mass fractions from the number distribution.
* \details Refer to the functions ConvertNumbersToq0(const std::vector<double>&, const std::vector<double>&) and Convertq0ToMassFractions(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _number Number distribution.
* \return Calculated mass fractions.
*/
std::vector<double> inline ConvertNumbersToMassFractions(const std::vector<double>& _grid, const std::vector<double>& _number)
{
return Convertq0ToMassFractions(_grid, ConvertNumbersToq0(_grid, _number));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* \brief Calculates Q2 distribution.
* \details Refer to the functions Convertq0Toq2(const std::vector<double>&, const std::vector<double>&) and Convertq2ToQ2(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _q0 Input distribution.
* \return Calculated Q2 distribution.
*/
std::vector<double> inline Convertq0ToQ2(const std::vector<double>& _grid, const std::vector<double>& _q0)
{
return Convertq2ToQ2(_grid, Convertq0Toq2(_grid, _q0));
}
/**
* \brief Calculates Q3 distribution.
* \details Refer to the functions Convertq0Toq3(const std::vector<double>&, const std::vector<double>&) and Convertq3ToQ3(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _q0 Input distribution.
* \return Calculated Q3 distribution.
*/
std::vector<double> inline Convertq0ToQ3(const std::vector<double>& _grid, const std::vector<double>& _q0)
{
return Convertq3ToQ3(_grid, Convertq0Toq3(_grid, _q0));
}
/**
* \brief Calculates Q0 distribution.
* \details Refer to the functions Convertq2Toq0(const std::vector<double>&, const std::vector<double>&) and Convertq0ToQ0(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _q2 Input distribution.
* \return Calculated Q0 distribution.
*/
std::vector<double> inline Convertq2ToQ0(const std::vector<double>& _grid, const std::vector<double>& _q2)
{
return Convertq0ToQ0(_grid, Convertq2Toq0(_grid, _q2));
}
/**
* \brief Calculates Q3 distribution.
* \details Refer to the functions Convertq2Toq3(const std::vector<double>&, const std::vector<double>&) and Convertq3ToQ3(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _q2 Input distribution.
* \return Calculated Q3 distribution.
*/
std::vector<double> inline Convertq2ToQ3(const std::vector<double>& _grid, const std::vector<double>& _q2)
{
return Convertq3ToQ3(_grid, Convertq2Toq3(_grid, _q2));
}
/**
* \brief Calculates Q0 distribution.
* \details Refer to the functions Convertq3Toq0(const std::vector<double>&, const std::vector<double>&) and Convertq0ToQ0(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _q3 Input distribution.
* \return Calculated Q0 distribution.
*/
std::vector<double> inline Convertq3ToQ0(const std::vector<double>& _grid, const std::vector<double>& _q3)
{
return Convertq0ToQ0(_grid, Convertq3Toq0(_grid, _q3));
}
/**
* \brief Calculates Q2 distribution.
* \details Refer to the functions Convertq3Toq2(const std::vector<double>&, const std::vector<double>&) and Convertq2ToQ2(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _q3 Input distribution.
* \return Calculated Q2 distribution.
*/
std::vector<double> inline Convertq3ToQ2(const std::vector<double>& _grid, const std::vector<double>& _q3)
{
return Convertq2ToQ2(_grid, Convertq3Toq2(_grid, _q3));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* \brief Calculates q2 distribution.
* \details Refer to the functions ConvertQ0Toq0(const std::vector<double>&, const std::vector<double>&) and Convertq0Toq2(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _Q0 Input distribution.
* \return Calculated q2 distribution.
*/
std::vector<double> inline ConvertQ0Toq2(const std::vector<double>& _grid, const std::vector<double>& _Q0)
{
return Convertq0Toq2(_grid, ConvertQ0Toq0(_grid, _Q0));
}
/**
* \brief Calculates q3 distribution.
* \details Refer to the functions ConvertQ0Toq0(const std::vector<double>&, const std::vector<double>&) and Convertq0Toq3(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _Q0 Input distribution.
* \return Calculated q3 distribution.
*/
std::vector<double> inline ConvertQ0Toq3(const std::vector<double>& _grid, const std::vector<double>& _Q0)
{
return Convertq0Toq3(_grid, ConvertQ0Toq0(_grid, _Q0));
}
/**
* \brief Calculates q0 distribution.
* \details Refer to the functions ConvertQ2Toq2(const std::vector<double>&, const std::vector<double>&) and Convertq2Toq0(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _Q2 Input distribution.
* \return Calculated q0 distribution.
*/
std::vector<double> inline ConvertQ2Toq0(const std::vector<double>& _grid, const std::vector<double>& _Q2)
{
return Convertq2Toq0(_grid, ConvertQ2Toq2(_grid, _Q2));
}
/**
* \brief Calculates q3 distribution.
* \details Refer to the functions ConvertQ2Toq2(const std::vector<double>&, const std::vector<double>&) and Convertq2Toq3(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _Q2 Input distribution.
* \return Calculated q3 distribution.
*/
std::vector<double> inline ConvertQ2Toq3(const std::vector<double>& _grid, const std::vector<double>& _Q2)
{
return Convertq2Toq3(_grid, ConvertQ2Toq2(_grid, _Q2));
}
/**
* \brief Calculates q0 distribution.
* \details Refer to the functions ConvertQ3Toq3(const std::vector<double>&, const std::vector<double>&) and Convertq3Toq0(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _Q3 Input distribution.
* \return Calculated q0 distribution.
*/
std::vector<double> inline ConvertQ3Toq0(const std::vector<double>& _grid, const std::vector<double>& _Q3)
{
return Convertq3Toq0(_grid, ConvertQ3Toq3(_grid, _Q3));
}
/**
* \brief Calculates q2 distribution.
* \details Refer to the functions ConvertQ3Toq3(const std::vector<double>&, const std::vector<double>&) and Convertq3Toq2(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _Q3 Input distribution.
* \return Calculated q2 distribution.
*/
std::vector<double> inline ConvertQ3Toq2(const std::vector<double>& _grid, const std::vector<double>& _Q3)
{
return Convertq3Toq2(_grid, ConvertQ3Toq3(_grid, _Q3));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* \brief Calculates Q2 distribution.
* \details Refer to the functions ConvertQ0ToMassFractions(const std::vector<double>&, const std::vector<double>&) and ConvertMassFractionsToQ2(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _Q0 Input distribution.
* \return Calculated Q2 distribution.
*/
std::vector<double> inline ConvertQ0ToQ2(const std::vector<double>& _grid, const std::vector<double>& _Q0)
{
return ConvertMassFractionsToQ2(_grid, ConvertQ0ToMassFractions(_grid, _Q0));
}
/**
* \brief Calculates Q3 distribution.
* \details Refer to the functions ConvertQ0ToMassFractions(const std::vector<double>&, const std::vector<double>&) and ConvertMassFractionsToQ3(const std::vector<double>&).
* \param _grid Distribution grid.
* \param _Q0 Input distribution.
* \return Calculated Q3 distribution.
*/
std::vector<double> inline ConvertQ0ToQ3(const std::vector<double>& _grid, const std::vector<double>& _Q0)
{
return ConvertMassFractionsToQ3(ConvertQ0ToMassFractions(_grid, _Q0));
}
/**
* \brief Calculates Q0 distribution.
* \details Refer to the functions ConvertQ2ToMassFractions(const std::vector<double>&, const std::vector<double>&) and ConvertMassFractionsToQ0(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _Q2 Input distribution.
* \return Calculated Q0 distribution.
*/
std::vector<double> inline ConvertQ2ToQ0(const std::vector<double>& _grid, const std::vector<double>& _Q2)
{
return ConvertMassFractionsToQ0(_grid, ConvertQ2ToMassFractions(_grid, _Q2));
}
/**
* \brief Calculates Q3 distribution.
* \details Refer to the functions ConvertQ2ToMassFractions(const std::vector<double>&, const std::vector<double>&) and ConvertMassFractionsToQ3(const std::vector<double>&).
* \param _grid Distribution grid.
* \param _Q2 Input distribution.
* \return Calculated Q3 distribution.
*/
std::vector<double> inline ConvertQ2ToQ3(const std::vector<double>& _grid, const std::vector<double>& _Q2)
{
return ConvertMassFractionsToQ3(ConvertQ2ToMassFractions(_grid, _Q2));
}
/**
* \brief Calculates Q0 distribution.
* \details Refer to the functions ConvertQ0ToMassFractions(const std::vector<double>&, const std::vector<double>&) and ConvertMassFractionsToQ0(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _Q0 Input distribution.
* \return Calculated Q0 distribution.
*/
std::vector<double> inline ConvertQ3ToQ0(const std::vector<double>& _grid, const std::vector<double>& _Q0)
{
return ConvertMassFractionsToQ0(_grid, ConvertQ0ToMassFractions(_grid, _Q0));
}
/**
* \brief Calculates Q2 distribution.
* \details Refer to the functions ConvertQ3ToMassFractions(const std::vector<double>&) and ConvertMassFractionsToQ2(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _Q3 Input distribution.
* \return Calculated Q2 distribution.
*/
std::vector<double> inline ConvertQ3ToQ2(const std::vector<double>& _grid, const std::vector<double>& _Q3)
{
return ConvertMassFractionsToQ2(_grid, ConvertQ3ToMassFractions(_Q3));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* \brief Assumes unity density and unity total mass.
* \details \f$N_i = \frac{6 \cdot w_i}{\pi \cdot \Delta d_i^3}\f$.
* \param _grid Distribution grid.
* \param _massFrac Input distribution.
* \return Number distribution.
*/
std::vector<double> inline ConvertMassFractionsToNumbers(const std::vector<double>& _grid, const std::vector<double>& _massFrac)
{
constexpr double PI = 3.14159265358979323846;
std::vector res(_massFrac.size(), 0.0);
for (size_t i = 0; i < _massFrac.size(); ++i)
res[i] = 6 * _massFrac[i] / (PI * pow(_grid[i + 1] - _grid[i], 3));
return res;
}
/**
* \brief Assumes unity density and unity total mass.
* \details Refer to the functions Convertq0ToMassFractions(const std::vector<double>&, const std::vector<double>&) and ConvertMassFractionsToNumbers(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _q0 Input distribution.
* \return Number distribution.
*/
std::vector<double> inline Convertq0ToNumbers(const std::vector<double>& _grid, const std::vector<double>& _q0)
{
return ConvertMassFractionsToNumbers(_grid, Convertq0ToMassFractions(_grid, _q0));
}
/**
* \brief Assumes unity density and unity total mass.
* \details Refer to the functions Convertq2ToMassFractions(const std::vector<double>&, const std::vector<double>&) and ConvertMassFractionsToNumbers(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _q2 Input distribution.
* \return Number distribution.
*/
std::vector<double> inline Convertq2ToNumbers(const std::vector<double>& _grid, const std::vector<double>& _q2)
{
return ConvertMassFractionsToNumbers(_grid, Convertq2ToMassFractions(_grid, _q2));
}
/**
* \brief Assumes unity density and unity total mass.
* \details Refer to the functions Convertq3ToMassFractions(const std::vector<double>&, const std::vector<double>&) and ConvertMassFractionsToNumbers(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _q3 Input distribution.
* \return Number distribution.
*/
std::vector<double> inline Convertq3ToNumbers(const std::vector<double>& _grid, const std::vector<double>& _q3)
{
return ConvertMassFractionsToNumbers(_grid, Convertq3ToMassFractions(_grid, _q3));
}
/**
* \brief Assumes unity density and unity total mass.
* \details Refer to the functions ConvertQ0ToMassFractions(const std::vector<double>&, const std::vector<double>&) and ConvertMassFractionsToNumbers(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _Q0 Input distribution.
* \return Number distribution.
*/
std::vector<double> inline ConvertQ0ToNumbers(const std::vector<double>& _grid, const std::vector<double>& _Q0)
{
return ConvertMassFractionsToNumbers(_grid, ConvertQ0ToMassFractions(_grid, _Q0));
}
/**
* \brief Assumes unity density and unity total mass.
* \details Refer to the functions ConvertQ2ToMassFractions(const std::vector<double>&, const std::vector<double>&) and ConvertMassFractionsToNumbers(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _Q2 Input distribution.
* \return Number distribution.
*/
std::vector<double> inline ConvertQ2ToNumbers(const std::vector<double>& _grid, const std::vector<double>& _Q2)
{
return ConvertMassFractionsToNumbers(_grid, ConvertQ2ToMassFractions(_grid, _Q2));
}
/**
* \brief Assumes unity density and unity total mass.
* \details Refer to the functions ConvertQ3ToMassFractions(const std::vector<double>&) and ConvertMassFractionsToNumbers(const std::vector<double>&, const std::vector<double>&).
* \param _grid Distribution grid.
* \param _Q3 Input distribution.
* \return Number distribution.
*/
std::vector<double> inline ConvertQ3ToNumbers(const std::vector<double>& _grid, const std::vector<double>& _Q3)
{
return ConvertMassFractionsToNumbers(_grid, ConvertQ3ToMassFractions(_Q3));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* \brief Converts the mass fraction distribution defined on the numeric grid to the new grid.
* \param _grid Old mass fraction distribution.
* \param _w Old symbolic distribution grid.
* \param _gridNew New distribution grid.
* \return Converted distribution on the modified size grid.
*/
std::vector<double> inline ConvertOnNewGrid(const std::vector<std::string>& _grid, const std::vector<double>& _w, const std::vector<std::string>& _gridNew)
{
if (_grid == _gridNew) return _w;
std::vector<double> res(_gridNew.size());
for (size_t i = 0; i < _gridNew.size(); ++i)
{
const auto it = std::find(_grid.begin(), _grid.end(), _gridNew[i]);
res[i] = it != _grid.end() ? _w[std::distance(_grid.begin(), it)] : 0.0;
}
return res;
}
/**
* \brief Converts the mass fraction distribution defined on the numeric grid to the new grid.
* \param _grid Old mass fraction distribution.
* \param _w Old numeric distribution grid.
* \param _gridNew New distribution grid.
* \return Converted distribution on the modified size grid.
*/
std::vector<double> inline ConvertOnNewGrid(const std::vector<double>& _grid, const std::vector<double>& _w, const std::vector<double>& _gridNew)
{
if (_grid == _gridNew) return _w;
if (_gridNew.empty()) return {};
if (std::all_of(_w.begin(), _w.end(), [](double d) { return d == 0.0; })) return std::vector<double>(_gridNew.size() - 1, 0.0);
const std::vector<double> QDistr = ConvertMassFractionsToQ3(_w);
std::vector<double> res(_gridNew.size() - 1);
double Q1 = GetQ(QDistr, _grid, _gridNew[0]);
for (size_t i = 0; i < _gridNew.size() - 1; ++i)
{
const double Q2 = GetQ(QDistr, _grid, _gridNew[i + 1]);
res[i] = (Q2 - Q1) / (_gridNew[i + 1] - _gridNew[i]);
Q1 = Q2;
}
return res;
}
/**
* \brief Converts density distribution defined on the numeric grid to the new grid.
* \param _grid Old numeric distribution grid.
* \param _q Old density distribution.
* \param _gridNew New distribution grid.
* \return Converted distribution on the modified size grid.
*/
std::vector<double> inline ConvertqOnNewGrid(const std::vector<double>& _grid, const std::vector<double>& _q, const std::vector<double>& _gridNew)
{
if (_grid == _gridNew) return _q;
std::vector<double> qNew(_gridNew.size() - 1);
const std::vector<double> QDistr = q2Q(_grid, _q);
double Q1 = GetQ(QDistr, _grid, _gridNew[0]);
for (size_t i = 0; i < _gridNew.size() - 1; ++i)
{
const double Q2 = GetQ(QDistr, _grid, _gridNew[i + 1]);
qNew[i] = (Q2 - Q1) / (_gridNew[i + 1] - _gridNew[i]);
Q1 = Q2;
}
return qNew;
}
/**
* \brief Converts q0 distribution to the same distribution on the modified size grid.
* \details Refer to function ConvertqOnNewGrid(const std::vector<double>&, const std::vector<double>&, const std::vector<double>&).
* \param _gridOld Old distribution grid.
* \param _q0Old Old distribution.
* \param _gridNew New distribution grid.
* \return Converted q0 distribution on the modified size grid.
*/
std::vector<double> inline Convertq0Toq0(const std::vector<double>& _gridOld, const std::vector<double>& _q0Old, std::vector<double>& _gridNew)
{
return ConvertqOnNewGrid(_gridOld, _q0Old, _gridNew);
}
/**
* \brief Converts q2 distribution to the same distribution on the modified size grid.
* \details Refer to function ConvertqOnNewGrid(const std::vector<double>&, const std::vector<double>&, const std::vector<double>&).
* \param _gridOld Old distribution grid.
* \param _q2Old Old distribution.
* \param _gridNew New distribution grid.
* \return Converted q2 distribution on the modified size grid.
*/
std::vector<double> inline Convertq2Toq2(const std::vector<double>& _gridOld, const std::vector<double>& _q2Old, std::vector<double>& _gridNew)
{
return ConvertqOnNewGrid(_gridOld, _q2Old, _gridNew);
}
/**
* \brief Converts q3 distribution to the same distribution on the modified size grid.
* \details Refer to function ConvertqOnNewGrid(const std::vector<double>&, const std::vector<double>&, const std::vector<double>&).
* \param _gridOld Old distribution grid.
* \param _q3Old Old distribution.
* \param _gridNew New distribution grid.
* \return Converted q3 distribution on the modified size grid.
*/
std::vector<double> inline Convertq3Toq3(const std::vector<double>& _gridOld, const std::vector<double>& _q3Old, std::vector<double>& _gridNew)
{
return ConvertqOnNewGrid(_gridOld, _q3Old, _gridNew);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* \brief Normalizes density distribution q0 or q3.
* \details \f$q_i = \frac{q_i}{\sum_j q_j \Delta d_j}\f$.
* \param _grid Distribution grid.
* \param _qiDistr Input distribution.
*/
void inline NormalizeDensityDistribution(const std::vector<double>& _grid, std::vector<double>& _qiDistr)
{
// normalization of the distribution
double dSum = 0;
for (size_t i = 0; i<_qiDistr.size(); i++)
dSum += _qiDistr[i] * (_grid[i + 1] - _grid[i]);
if (dSum == 0)
for (double& v : _qiDistr)
v = 1. / _grid.size();
else
for (double& v : _qiDistr)
v = v / dSum;
}
/**
* \brief Returns value of the grid in the measurement units of the grid, which corresponds to a specified value of cumulative distribution Q0 or Q3.
* \details For PSD, returns particle diameter in [m]. Input value should range between 0 and 1.
* \param _grid Distribution grid.
* \param _QiDistr Input distribution.
* \param _val Value in range between 0 and 1.
* \return Distribution value.
*/
double inline GetDistributionValue(const std::vector<double>& _grid, const std::vector<double>& _QiDistr, double _val)
{
if (_val < 0 || _val > 1) return 0;
if (_QiDistr.empty()) return 0; // if no element at all
if (_QiDistr.size() == 1) return (_grid[1] + _grid[0]) * _val; // if just one element
/// find two elements to interpolate values
size_t nLeft = 0;
while (nLeft < _QiDistr.size() - 1 && (_QiDistr[nLeft] < _val))
nLeft++;
if (nLeft == 0)
return 0;
nLeft--;
const size_t nRight = nLeft + 1;
const double dDLeft = (_grid[nLeft] + _grid[nLeft + 1]) / 2; // diameter of left interval
const double dDRight = (_grid[nRight] + _grid[nRight + 1]) / 2; // diameter of right interval
const double dQLeft = _QiDistr[nLeft];
const double dQRight = _QiDistr[nRight];
if (dQLeft == dQRight)
return (dDLeft + dDRight) * _val;
else
return dDLeft + (dDRight - dDLeft)*(_val - dQLeft) / (dQRight - dQLeft);
}
/**
* \brief Returns median in the measurement units of the grid of Q0 or Q3 distribution. Median is a value of the grid, which corresponds to a value of distribution equal to 0.5.
* \details For PSD, returns particle diameter in [m]. Refer to function GetDistributionValue(const std::vector<double>&, const std::vector<double>&, double).
* \param _grid Distribution grid.
* \param _QiDistr Input distribution.
* \return Median of distribution.
*/
double inline GetDistributionMedian(const std::vector<double>& _grid, const std::vector<double>& _QiDistr)
{
return GetDistributionValue(_grid, _QiDistr, 0.5);
}
/**
* \brief Returns value of the grid in the measurement units of the grid, which corresponds to a maximum value of density distribution.
* \details For PSD, returns particle diameter in [m].
* \param _grid Distribution grid.
* \param _qiDistr Input distribution.
* \return Mode of distribution.
*/
double inline GetDistributionMode(const std::vector<double>& _grid, const std::vector<double>& _qiDistr)
{
double maxDiameter{ 0.0 };
if (_grid.size() != _qiDistr.size() + 1)
return maxDiameter;
double maxqValue = 0;
for (size_t i = 0; i < _qiDistr.size(); ++i)
if (_qiDistr[i] > maxqValue)
{
maxqValue = _qiDistr[i];
maxDiameter = (_grid[i] + _grid[i + 1]) / 2;
}
return maxDiameter;
}
/**
* \brief Returns value of the grid in the measurement units of the grid, which corresponds to a mean value of density distribution.
* \details For PSD, returns particle diameter in [m]. Calculated as
* \f$\mu = \frac{\sum q_{i} d_{i}}{\sum q_{i}}\f$ with
* \f$\mu\f$ mean value of the distribution,
* \f$q_{i}\f$ value of the distribution at class \f$i\f$,
* \f$d_{i}\f$ mean value of the class \f$i\f$.
* \param _grid Distribution grid.
* \param _qiDistr Input density distribution.
* \return Mean of distribution.
*/
double inline GetDistributionMean(const std::vector<double>& _grid, const std::vector<double>& _qiDistr)
{
double res{ 0.0 };
if (_grid.size() != _qiDistr.size() + 1)
return res;
for (size_t i = 0; i < _qiDistr.size(); ++i)
res += _qiDistr[i] * (_grid[i] + _grid[i + 1]) / 2;
res /= std::accumulate(_qiDistr.begin(), _qiDistr.end(), 0.0);
return res;
}
/**
* \brief Returns variance of the density distribution around its mean value in the measurement units of the grid.
* \details For PSD, calculates in the terms of particle diameter in [m]. Calculated as
* \f$\sigma^2 = \frac{\sum q_{i} d_{i}^2}{\sum q_{i}}-\mu^2\f$ with
* \f$\sigma^2\f$ variance of the distribution,
* \f$q_{i}\f$ value of the distribution at class \f$i\f$,
* \f$d_{i}\f$ mean value of the class \f$i\f$,
* \f$\mu\f$ mean value of the distribution (Refer to function GetDistributionMean(const std::vector<double>&, const std::vector<double>&)).
* \param _grid Distribution grid.
* \param _qiDistr Input density distribution.
* \return Variance of distribution.
*/
double inline GetDistributionVariance(const std::vector<double>& _grid, const std::vector<double>& _qiDistr)
{
double res{ 0.0 };
if (_grid.size() != _qiDistr.size() + 1)
return res;
for (size_t i = 0; i < _qiDistr.size(); ++i)
res += _qiDistr[i] * pow((_grid[i] + _grid[i + 1]) / 2, 2);
res /= std::accumulate(_qiDistr.begin(), _qiDistr.end(), 0.0);
const auto mean = GetDistributionMean(_grid, _qiDistr);
res -= pow(mean, 2);
return res;
}
/**
* \brief Returns standard deviation of the density distribution around its mean value in the measurement units of the grid.
* \details For PSD, calculates in the terms of particle diameter in [m]. Calculated as
* \f$\sigma = \sqrt{\frac{\sum q_{i} d_{i}^2}{\sum q_{i}}-\mu^2}\f$ with
* \f$\sigma\f$ standard deviation of the distribution,
* \f$q_{i}\f$ value of the distribution at class \f$i\f$,
* \f$d_{i}\f$ mean value of the class \f$i\f$,
* \f$\mu\f$ mean value of the distribution (Refer to function GetDistributionMean(const std::vector<double>&, const std::vector<double>&)).
* \param _grid Distribution grid.
* \param _qiDistr Input density distribution.
* \return Standard deviation of distribution.
*/
double inline GetDistributionStdDev(const std::vector<double>& _grid, const std::vector<double>& _qiDistr)
{
const double variance = GetDistributionVariance(_grid, _qiDistr);
if (variance < 0.0)
return 0.0;
return sqrt(variance);
}
/**
* \brief Returns average diameter in [m] of the distribution q0 or q3.
* \details
* \param _grid Distribution grid.
* \param _qiDistr Input distribution.
* \return Average diameter of distribution.
*/
double inline GetAverageDiameter(const std::vector<double>& _grid, const std::vector<double>& _qiDistr)
{
double dResult = 0;
for (size_t i = 0; i < _qiDistr.size(); ++i)
dResult += _qiDistr[i] * ((_grid[i] + _grid[i + 1]) / 2) * (_grid[i + 1] - _grid[i]);
return dResult;
}
/**
* \brief Calculates specific surface of q3 distribution in [m<sup>2</sup>].
* \details
* \param _grid Distribution grid.
* \param _q3 Input distribution.
* \return Specific surface of distribution.
*/
double inline GetSpecificSurface(const std::vector<double>& _grid, const std::vector<double>& _q3)
{
double dSV = 0;
for (size_t i = 0; i < _q3.size(); i++)
dSV += 6 * _q3[i] * 1 / ((_grid[i] + _grid[i + 1]) / 2) * (_grid[i + 1] - _grid[i]);
return dSV;
}
/**
* \brief Calculates Sauter diameter (d<sub>32</sub>) of q3 distribution in [m].
* \details
* \param _grid Distribution grid.
* \param _q3 Input distribution.
* \return Sauter diameter of distribution.
*/
double inline GetSauterDiameter(const std::vector<double>& _grid, const std::vector<double>& _q3)
{
if (_q3.size() + 1 != _grid.size())
return 0;
double dSum = 0;
for (size_t i = 0; i < _q3.size(); ++i)
dSum += _q3[i] * (_grid[i + 1] - _grid[i]) / ((_grid[i] + _grid[i + 1]) / 2);
if (dSum != 0)
dSum = 1 / dSum;
return dSum;
}
|