File: PSDFunctions.h

package info (click to toggle)
dyssol 1.5.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 18,184 kB
  • sloc: cpp: 53,870; sh: 85; python: 59; makefile: 11
file content (1190 lines) | stat: -rw-r--r-- 48,528 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
/* Copyright (c) 2020, Dyssol Development Team.
 * Copyright (c) 2023, DyssolTEC GmbH.
 * All rights reserved. This file is part of Dyssol. See LICENSE file for license information. */

#pragma once

#include <algorithm>
#include <cmath>
#include <numeric>
#include <string>
#include <vector>

/**
 * \file
 * \brief Several global functions are defined to work with particle size distributions. These functions can be called from any place of the code.
 * \details All functions receive grid as the input parameter. The grid can be previously obtained with the help of the function CBaseUnit::GetNumericGrid(EDistrTypes) const.
 * \note
 * - \f$d_i\f$ - diameter of particle in class \f$i\f$
 * - \f$\Delta d_i\f$ - size of the class \f$i\f$
 * - \f$M_k\f$ - \f$k\f$-th moment
 * - \f$q\f$ - density distribution
 * - \f$q_0\f$ - number related density distribution
 * - \f$Q_0\f$ - number related cumulative distribution
 * - \f$q_2\f$ - surface-area-related density distribution
 * - \f$Q_2\f$ - surface-area-related cumulative distribution
 * - \f$q_3\f$ - mass-related density distribution
 * - \f$Q_3\f$ - mass-related cumulative distribution
 * - \f$w_i\f$ - mass fraction of particles of class \f$i\f$
 * - \f$N_i\f$ - number of particles of class \f$i\f$
 * - \f$N_{tot}\f$ - total number of particles
 */

/**
 * \brief Calculates moment of the density distribution.
 * \details \f$M_k = \sum_i d_i^k q_i \Delta d_i\f$.
 * \param _moment Value of moment.
 * \param _grid Distribution grid.
 * \param _q Input distribution.
 * \return Value of the density distribution moment.
 */
double inline GetMMoment(int _moment, const std::vector<double>& _grid, const std::vector<double>& _q)
{
	if (_grid.size() != _q.size() + 1)	return 0;

	double dMoment = 0;
	for (size_t i = 0; i < _q.size(); ++i)
		dMoment += std::pow((_grid[i] + _grid[i + 1]) / 2, _moment) * _q[i] * (_grid[i + 1] - _grid[i]);
	return dMoment;
}

/**
 * \brief Calculates Q.
 * \details
 * \param _QiDistr Input distribution.
 * \param _grid Distribution grid.
 * \param _size Value of size.
 * \return Calculated Q.
 */
double inline GetQ(const std::vector<double>& _QiDistr, const std::vector<double>& _grid, double _size)
{
	if (_size <= _grid.front()) return 0;
	if (_size >= _grid.back()) return 1;

	std::vector<double> vTempDistr;
	vTempDistr.push_back(0);
	for (double v : _QiDistr)
		vTempDistr.push_back(v);

	// find indexes where interpolation should be done
	int nLeft = static_cast<int>(_grid.size()) - 1;
	int nRight = 0;
	while (nRight < static_cast<int>(_grid.size()))
		if (_grid[nRight] >= _size)
		{
			nLeft = nRight - 1;
			break;
		}
		else
			nRight++;
	if (nLeft >= 0 && _grid[nLeft] == _size)
		return vTempDistr[nLeft];
	else if (nRight < static_cast<int>(_grid.size()) && _grid[nRight] == _size)
		return vTempDistr[nRight];
	else // point inside - interpolation
		return(vTempDistr[nRight] - vTempDistr[nLeft]) / (_grid[nRight] - _grid[nLeft]) * (_size - _grid[nLeft]) + vTempDistr[nLeft];
}

/**
 * \brief Performs conversion from cumulative to density distributions.
 * \details \f$q_0 = \frac{Q_0}{\Delta d_i}\f$ and \f$q_i = \frac{Q_i - Q_{i-1}}{\Delta d_i}\f$.
 * \param _grid Distribution grid.
 * \param _Q Input distribution.
 * \return Density distribution.
 */
std::vector<double> inline Q2q(const std::vector<double>& _grid, const std::vector<double>& _Q)
{
	if (_Q.empty()) return {};
	std::vector<double> q(_Q.size());
	q[0] = _Q[0] / (_grid[1] - _grid[0]);
	for (size_t i = 1; i < _Q.size(); ++i)
		q[i] = (_Q[i] - _Q[i - 1]) / (_grid[i + 1] - _grid[i]);
	return q;
}

/**
 * \brief Performs conversion from density to cumulative distributions.
 * \details \f$Q_i = \sum_i q_i \Delta d_i = Q_i-1 + q_i \Delta d_i\f$.
 * \param _grid Distribution grid.
 * \param _q Input distribution.
 * \return Cumulative distribution.
 */
std::vector<double> inline q2Q(const std::vector<double>& _grid, const std::vector<double>& _q)
{
	std::vector<double> Q(_q.size());
	double dQ3 = 0;
	for (size_t i = 0; i < _q.size(); ++i)
	{
		dQ3 += (_grid[i + 1] - _grid[i]) * _q[i];
		Q[i] = dQ3;
	}
	return Q;
}

/**
 * \brief Performs conversion from one density distribution to another.
 * \details \f$q_i = \frac{d_i^{y-x} q_i}{M^{y-x}(q_x)}\f$.
 * \param _grid Distribution grid.
 * \param _qx Input distribution.
 * \param _x Input density distribution.
 * \param _y Output density distribution.
 * \return Density distribution.
 */
std::vector<double> inline qx2qy(const std::vector<double>& _grid, const std::vector<double>& _qx, int _x, int _y)
{
	if (_grid.size() != _qx.size() + 1) return {};

	const double M = GetMMoment(_y - _x, _grid, _qx);
	if (M == 0) return _qx;
	std::vector<double> qy(_qx.size());
	for (size_t i = 0; i < _qx.size(); ++i)
		qy[i] = std::pow((_grid[i] + _grid[i + 1]) / 2, _y - _x) * _qx[i] / M;
	return qy;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

/**
 * \brief Performs conversion from Q0 to q0 distributions.
 * \details Using information about the size grid: \f$q_{0,0} = \frac{Q_{0,0}}{\Delta d_i}\f$ and \f$q_{0,i} = \frac{Q_{0,i} - Q_{0,i-1}}{\Delta d_i}\f$.
 * Refer to function Q2q(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _Q0 Input distribution.
 * \return Converted q0 distribution.
 */
std::vector<double> inline ConvertQ0Toq0(const std::vector<double>& _grid, const std::vector<double>& _Q0)
{
	return Q2q(_grid, _Q0);
}

/**
 * \brief Performs conversion from q0 to Q0 distributions.
 * \details Using information about the size grid: \f$Q_{0,i} = \sum_i q_{0,i} \Delta d_i = Q_{0,i-1} + q_{0,i} \Delta d_i\f$.
 * Refer to function q2Q(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _q0 Input distribution.
 * \return Converted Q0 distribution.
 */
std::vector<double> inline Convertq0ToQ0(const std::vector<double>& _grid, const std::vector<double>& _q0)
{
	return q2Q(_grid, _q0);
}

/**
 * \brief Performs conversion from Q2 to q2 distributions.
 * \details Using information about the size grid: \f$q_{2,0} = \frac{Q_{2,0}}{\Delta d_i}\f$ and \f$q_{2,i} = \frac{Q_{2,i} - Q_{2,i-1}}{\Delta d_i}\f$.
 * Refer to function Q2q(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _Q2 Input distribution.
 * \return Converted q2 distribution.
 */
std::vector<double> inline ConvertQ2Toq2(const std::vector<double>& _grid, const std::vector<double>& _Q2)
{
	return Q2q(_grid, _Q2);
}

/**
 * \brief Performs conversion from q2 to Q2 distributions.
 * \details Using information about the size grid: \f$Q_{2,i} = \sum_i q_{2,i} \Delta d_i = Q_{2,i-1} + q_{2,i} \Delta d_i\f$.
 * Refer to function q2Q(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _q2 Input distribution.
 * \return Converted Q2 distribution.
 */
std::vector<double> inline Convertq2ToQ2(const std::vector<double>& _grid, const std::vector<double>& _q2)
{
	return q2Q(_grid, _q2);
}

/**
 * \brief Performs conversion from Q3 to q3 distributions.
 * \details Using information about the size grid: \f$q_{3,0} = \dfrac{Q_{3,0}}{\Delta d_i}\f$ and \f$q_{3,i} = \frac{Q_{3,i} - Q_{3,i-1}}{\Delta d_i}\f$.
 * Refer to function Q2q(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _Q3 Input distribution.
 * \return Converted q3 distribution.
 */
std::vector<double> inline ConvertQ3Toq3(const std::vector<double>& _grid, const std::vector<double>& _Q3)
{
	return Q2q(_grid, _Q3);
}

/**
 * \brief Performs conversion from q3 to Q3 distributions.
 * \details Using information about the size grid: \f$Q_{3,i} = \sum_i q_{3,i} \Delta d_i = Q_{3,i-1} + q_{3,i} \Delta d_i\f$.
 * Refer to function q2Q(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _q3 Input distribution.
 * \return Converted Q3 distribution.
 */
std::vector<double> inline Convertq3ToQ3(const std::vector<double>& _grid, const std::vector<double>& _q3)
{
	return q2Q(_grid, _q3);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

/**
 * \brief Performs conversion from q0 to q2 distributions.
 * \details Using information about the size grid by \f$q_{2,i} = \frac{d_i^2 q_{0,i}}{M_2(q_0)}\f$.
 * Refer to function qx2qy(const std::vector<double>&, const std::vector<double>&, int, int).
 * \param _grid Distribution grid.
 * \param _q0 Input distribution.
 * \return Converted q2 distribution.
 */
std::vector<double> inline Convertq0Toq2(const std::vector<double>& _grid, const std::vector<double>& _q0)
{
	return qx2qy(_grid, _q0, 0, 2);
}

/**
 * \brief Performs conversion from q0 to q3 distributions.
 * \details Using information about the size grid by \f$q_{3,i} = \frac{d_i^3 q_{0,i}}{M_3(q_0)}\f$.
 * Refer to function qx2qy(const std::vector<double>&, const std::vector<double>&, int, int).
 * \param _grid Distribution grid.
 * \param _q0 Input distribution.
 * \return Converted q3 distribution.
 */
std::vector<double> inline Convertq0Toq3(const std::vector<double>& _grid, const std::vector<double>& _q0)
{
	return qx2qy(_grid, _q0, 0, 3);
}

/**
 * \brief Performs conversion from q2 to q0 distributions.
 * \details Using information about the size grid by \f$q_{0,i} = \frac{d_i^{-2} q_{2,i}}{M_{-2}(q_2)}\f$.
 * Refer to function qx2qy(const std::vector<double>&, const std::vector<double>&, int, int).
 * \param _grid Distribution grid.
 * \param _q2 Input distribution.
 * \return Converted q0 distribution.
 */
std::vector<double> inline Convertq2Toq0(const std::vector<double>& _grid, const std::vector<double>& _q2)
{
	return qx2qy(_grid, _q2, 2, 0);
}

/**
 * \brief Performs conversion from q2 to q3 distributions.
 * \details Using information about the size grid by \f$q_{3,i} = \frac{d_i q_{2,i}}{M_1(q_2)}\f$.
 * Refer to function qx2qy(const std::vector<double>&, const std::vector<double>&, int, int).
 * \param _grid Distribution grid.
 * \param _q2 Input distribution.
 * \return Converted q3 distribution.
 */
std::vector<double> inline Convertq2Toq3(const std::vector<double>& _grid, const std::vector<double>& _q2)
{
	return qx2qy(_grid, _q2, 2, 3);
}

/**
 * \brief Performs conversion from q3 to q0 distributions.
 * \details Using information about the size grid by \f$q_{0,i} = \frac{d_i^{-3} q_{3,i}}{M_{-3}(q_3)}\f$.
 * Refer to function qx2qy(const std::vector<double>&, const std::vector<double>&, int, int).
 * \param _grid Distribution grid.
 * \param _q3 Input distribution.
 * \return Converted q0 distribution.
 */
std::vector<double> inline Convertq3Toq0(const std::vector<double>& _grid, const std::vector<double>& _q3)
{
	return qx2qy(_grid, _q3, 3, 0);
}

/**
 * \brief Performs conversion from q3 to q2 distributions.
 * \details Using information about the size grid by \f$q_{2,i} = \frac{d_i^{-1} q_{3,i}}{M_{-1}(q_3)}\f$.
 * Refer to function qx2qy(const std::vector<double>&, const std::vector<double>&, int, int).
 * \param _grid Distribution grid.
 * \param _q3 Input distribution.
 * \return Converted q2 distribution.
 */
std::vector<double> inline Convertq3Toq2(const std::vector<double>& _grid, const std::vector<double>& _q3)
{
	return qx2qy(_grid, _q3, 3, 2);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

/**
 * \brief Calculates q3 distribution.
 * \details Using the size grid and the distribution of mass fractions by \f$q_3 = w_i / \Delta d_i\f$.
 * \param _grid Distribution grid.
 * \param _massFrac Input distribution.
 * \return Calculated q3 distribution.
 */
std::vector<double> inline ConvertMassFractionsToq3(const std::vector<double>& _grid, const std::vector<double>& _massFrac)
{
	std::vector<double> q3(_massFrac.size());
	for (size_t i = 0; i < _massFrac.size(); ++i)
		q3[i] = _massFrac[i] / (_grid[i + 1] - _grid[i]);
	return q3;
}

/**
 * \brief Calculates Q3 distribution.
 * \details Using the distribution of mass fractions: \f$Q_{3,0} = w_i\f$ and \f$Q_{3,i} = Q_{3,i-1} + w_i\f$.
 * \param _massFrac Input distribution.
 * \return Calculated Q3 distribution.
 */
std::vector<double> inline ConvertMassFractionsToQ3(const std::vector<double>& _massFrac)
{
	if (_massFrac.empty()) return {};
	std::vector<double> Q3(_massFrac.size());
	Q3[0] = _massFrac[0];
	for (size_t i = 1; i < _massFrac.size(); ++i)
		Q3[i] = Q3[i - 1] + _massFrac[i];
	return Q3;
}

/**
 * \brief Calculates q2 distribution.
 * \details Refer to the functions ConvertMassFractionsToq3(const std::vector<double>&, const std::vector<double>&) and Convertq3Toq2(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _massFrac Input distribution.
 * \return Calculated q2 distribution.
 */
std::vector<double> inline ConvertMassFractionsToq2(const std::vector<double>& _grid, const std::vector<double>& _massFrac)
{
	return Convertq3Toq2(_grid, ConvertMassFractionsToq3(_grid, _massFrac));
}

/**
 * \brief Calculates Q2 distribution.
 * \details Refer to the functions ConvertMassFractionsToq2(const std::vector<double>&, const std::vector<double>&) and Convertq2ToQ2(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _massFrac Input distribution.
 * \return Calculated Q2 distribution.
 */
std::vector<double> inline ConvertMassFractionsToQ2(const std::vector<double>& _grid, const std::vector<double>& _massFrac)
{
	return Convertq2ToQ2(_grid, ConvertMassFractionsToq2(_grid, _massFrac));
}

/**
 * \brief Calculates q0 distribution.
 * \details Refer to the functions ConvertMassFractionsToq3(const std::vector<double>&, const std::vector<double>&) and Convertq3Toq0(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _massFrac Input distribution.
 * \return Calculated q0 distribution.
 */
std::vector<double> inline ConvertMassFractionsToq0(const std::vector<double>& _grid, const std::vector<double>& _massFrac)
{
	return Convertq3Toq0(_grid, ConvertMassFractionsToq3(_grid, _massFrac));
}

/**
 * \brief Calculates Q0 distribution.
 * \details Refer to the functions ConvertMassFractionsToq0(const std::vector<double>&, const std::vector<double>&) and Convertq0ToQ0(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _massFrac Input distribution.
 * \return Calculated q0 distribution.
 */
std::vector<double> inline ConvertMassFractionsToQ0(const std::vector<double>& _grid, const std::vector<double>& _massFrac)
{
	return Convertq0ToQ0(_grid, ConvertMassFractionsToq0(_grid, _massFrac));
}

////////////////////////////////////////////////////////////////////////////////////////////////////

/**
 * \brief Calculates mass fractions from q3.
 * \details Using the size grid by \f$w_i = q_{3,i}\cdot \Delta d_i\f$.
 * \param _grid Distribution grid.
 * \param _q3 Input distribution.
 * \return Calculated mass fractions.
 */
std::vector<double> inline Convertq3ToMassFractions(const std::vector<double>& _grid, const std::vector<double>& _q3)
{
	std::vector<double> massFrac(_q3.size());
	for (size_t i = 0; i < _q3.size(); ++i)
		massFrac[i] = _q3[i] * (_grid[i + 1] - _grid[i]);
	return massFrac;
}

/**
 * \brief Calculates mass fractions from Q3 distribution.
 * \details Using the size grid: \f$w_0 = Q_{3,0}\f$ and \f$w_i = Q_{3,i} - Q_{3,i-1}\f$.
 * \param _Q3 Input distribution.
 * \return Calculated mass fractions.
 */
std::vector<double> inline ConvertQ3ToMassFractions(const std::vector<double>& _Q3)
{
	if (_Q3.empty()) return {};
	std::vector<double> massFrac(_Q3.size());
	massFrac[0] = _Q3[0];
	for (size_t i = 1; i < _Q3.size(); ++i)
		massFrac[i] = _Q3[i] - _Q3[i - 1];
	return massFrac;
}

/**
 * \brief Calculates mass fractions from q2 distribution.
 * \details Refer to the functions Convertq2Toq3(const std::vector<double>&, const std::vector<double>&) and Convertq3ToMassFractions(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _q2 Input distribution.
 * \return Calculated mass fractions.
 */
std::vector<double> inline Convertq2ToMassFractions(const std::vector<double>& _grid, const std::vector<double>& _q2)
{
	return Convertq3ToMassFractions(_grid, Convertq2Toq3(_grid, _q2));
}

/**
 * \brief Calculates mass fractions from Q2 distribution.
 * \details Refer to the functions ConvertQ2Toq2(const std::vector<double>&, const std::vector<double>&) and Convertq2ToMassFractions(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _Q2 Input distribution.
 * \return Calculated mass fractions.
 */
std::vector<double> inline ConvertQ2ToMassFractions(const std::vector<double>& _grid, const std::vector<double>& _Q2)
{
	return Convertq2ToMassFractions(_grid, ConvertQ2Toq2(_grid, _Q2));
}

/**
 * \brief Calculates mass fractions from q0 distribution.
 * \details Refer to the functions Convertq0Toq3(const std::vector<double>&, const std::vector<double>&) and Convertq3ToMassFractions(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _q0 Input distribution.
 * \return Calculated mass fractions.
 */
std::vector<double> inline Convertq0ToMassFractions(const std::vector<double>& _grid, const std::vector<double>& _q0)
{
	return Convertq3ToMassFractions(_grid, Convertq0Toq3(_grid, _q0));
}

/**
 * \brief Calculates mass fractions from Q0 distribution.
 * \details Refer to the functions ConvertQ0Toq0(const std::vector<double>&, const std::vector<double>&) and Convertq0ToMassFractions(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _Q0 Input distribution.
 * \return Calculated mass fractions.
 */
std::vector<double> inline ConvertQ0ToMassFractions(const std::vector<double>& _grid, const std::vector<double>& _Q0)
{
	return Convertq0ToMassFractions(_grid, ConvertQ0Toq0(_grid, _Q0));
}

////////////////////////////////////////////////////////////////////////////////////////////////////

/**
 * \brief Calculates q0 distribution using the number distribution and the size grid.
 * \details \f$q_{0,i} = \frac{N_i}{\Delta d_i N_{tot}}\f$.
 * \param _grid Distribution grid.
 * \param _number Number distribution.
 * \return Calculated q0 distribution.
 */
std::vector<double> inline ConvertNumbersToq0(const std::vector<double>& _grid, const std::vector<double>& _number)
{
	const double Ntot = std::accumulate(_number.begin(), _number.end(), 0.0);
	if (Ntot == 0.0) return std::vector(_number.size(), 0.0);
	std::vector<double> q0(_number.size());
	for (size_t i = 0; i < _number.size(); ++i)
		q0[i] = _number[i] / Ntot / (_grid[i + 1] - _grid[i]);
	return q0;
}

/**
 * \brief Calculates Q0 distribution using the number distribution.
 * \details Refer to the functions ConvertNumbersToq0(const std::vector<double>&, const std::vector<double>&) and Convertq0ToQ0(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _number Number distribution.
 * \return Calculated Q0 distribution.
 */
std::vector<double> inline ConvertNumbersToQ0(const std::vector<double>& _grid, const std::vector<double>& _number)
{
	return Convertq0ToQ0(_grid, ConvertNumbersToq0(_grid, _number));
}

/**
 * \brief Calculates Q2 distribution using the number distribution and the size grid.
 * \details \f$Q_{2,i} = \frac{\sum_{j=0}^i N_j \pi d_j^2}{\sum_j N_j \pi d_j^2}\f$.
 * \param _grid Distribution grid.
 * \param _number Number distribution.
 * \return Calculated Q2 distribution.
 */
std::vector<double> inline ConvertNumbersToQ2(const std::vector<double>& _grid, const std::vector<double>& _number)
{
	if (_number.empty()) return {};
	if (_grid.size() != _number.size() + 1) return {};
	constexpr double PI = 3.14159265358979323846;
	std::vector<double> Q2(_number.size());
	Q2[0] = _number[0] * PI * pow((_grid[0] + _grid[1]) / 2, 2);
	for (size_t i = 1; i < _number.size(); ++i)
		Q2[i] = Q2[i - 1] + _number[i] * PI * pow((_grid[i] + _grid[i + 1]) / 2, 2);
	for (size_t i = 0; i < Q2.size(); ++i)
		Q2[i] /= Q2.back();
	return Q2;
}

/**
 * \brief Calculates q2 distribution using the number distribution.
 * \details Refer to the functions ConvertNumbersToQ2(const std::vector<double>&, const std::vector<double>&) and ConvertQ2Toq2(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _number Number distribution.
 * \return Calculated q2 distribution.
 */
std::vector<double> inline ConvertNumbersToq2(const std::vector<double>& _grid, const std::vector<double>& _number)
{
	return ConvertQ2Toq2(_grid, ConvertNumbersToQ2(_grid, _number));
}

/**
 * \brief Calculates q3 distribution using the number distribution.
 * \details Refer to the functions ConvertNumbersToq0(const std::vector<double>&, const std::vector<double>&) and Convertq0Toq3(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _number Number distribution.
 * \return Calculated q3 distribution.
 */
std::vector<double> inline ConvertNumbersToq3(const std::vector<double>& _grid, const std::vector<double>& _number)
{
	return Convertq0Toq3(_grid, ConvertNumbersToq0(_grid, _number));
}

/**
 * \brief Calculates Q3 distribution using the number distribution.
 * \details Refer to the functions ConvertNumbersToq3(const std::vector<double>&, const std::vector<double>&) and Convertq3ToQ3(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _number Number distribution.
 * \return Calculated Q3 distribution.
 */
std::vector<double> inline ConvertNumbersToQ3(const std::vector<double>& _grid, const std::vector<double>& _number)
{
	return Convertq3ToQ3(_grid, ConvertNumbersToq3(_grid, _number));
}

/**
 * \brief Calculates mass fractions from the number distribution.
 * \details Refer to the functions ConvertNumbersToq0(const std::vector<double>&, const std::vector<double>&) and Convertq0ToMassFractions(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _number Number distribution.
 * \return Calculated mass fractions.
 */
std::vector<double> inline ConvertNumbersToMassFractions(const std::vector<double>& _grid, const std::vector<double>& _number)
{
	return Convertq0ToMassFractions(_grid, ConvertNumbersToq0(_grid, _number));
}

////////////////////////////////////////////////////////////////////////////////////////////////////

/**
 * \brief Calculates Q2 distribution.
 * \details Refer to the functions Convertq0Toq2(const std::vector<double>&, const std::vector<double>&) and Convertq2ToQ2(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _q0 Input distribution.
 * \return Calculated Q2 distribution.
 */
std::vector<double> inline Convertq0ToQ2(const std::vector<double>& _grid, const std::vector<double>& _q0)
{
	return Convertq2ToQ2(_grid, Convertq0Toq2(_grid, _q0));
}

/**
 * \brief Calculates Q3 distribution.
 * \details Refer to the functions Convertq0Toq3(const std::vector<double>&, const std::vector<double>&) and Convertq3ToQ3(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _q0 Input distribution.
 * \return Calculated Q3 distribution.
 */
std::vector<double> inline Convertq0ToQ3(const std::vector<double>& _grid, const std::vector<double>& _q0)
{
	return Convertq3ToQ3(_grid, Convertq0Toq3(_grid, _q0));
}

/**
 * \brief Calculates Q0 distribution.
 * \details Refer to the functions Convertq2Toq0(const std::vector<double>&, const std::vector<double>&) and Convertq0ToQ0(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _q2 Input distribution.
 * \return Calculated Q0 distribution.
 */
std::vector<double> inline Convertq2ToQ0(const std::vector<double>& _grid, const std::vector<double>& _q2)
{
	return Convertq0ToQ0(_grid, Convertq2Toq0(_grid, _q2));
}

/**
 * \brief Calculates Q3 distribution.
 * \details Refer to the functions Convertq2Toq3(const std::vector<double>&, const std::vector<double>&) and Convertq3ToQ3(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _q2 Input distribution.
 * \return Calculated Q3 distribution.
 */
std::vector<double> inline Convertq2ToQ3(const std::vector<double>& _grid, const std::vector<double>& _q2)
{
	return Convertq3ToQ3(_grid, Convertq2Toq3(_grid, _q2));
}

/**
 * \brief Calculates Q0 distribution.
 * \details Refer to the functions Convertq3Toq0(const std::vector<double>&, const std::vector<double>&) and Convertq0ToQ0(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _q3 Input distribution.
 * \return Calculated Q0 distribution.
 */
std::vector<double> inline Convertq3ToQ0(const std::vector<double>& _grid, const std::vector<double>& _q3)
{
	return Convertq0ToQ0(_grid, Convertq3Toq0(_grid, _q3));
}

/**
 * \brief Calculates Q2 distribution.
 * \details Refer to the functions Convertq3Toq2(const std::vector<double>&, const std::vector<double>&) and Convertq2ToQ2(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _q3 Input distribution.
 * \return Calculated Q2 distribution.
 */
std::vector<double> inline Convertq3ToQ2(const std::vector<double>& _grid, const std::vector<double>& _q3)
{
	return Convertq2ToQ2(_grid, Convertq3Toq2(_grid, _q3));
}

////////////////////////////////////////////////////////////////////////////////////////////////////

/**
 * \brief Calculates q2 distribution.
 * \details Refer to the functions ConvertQ0Toq0(const std::vector<double>&, const std::vector<double>&) and Convertq0Toq2(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _Q0 Input distribution.
 * \return Calculated q2 distribution.
 */
std::vector<double> inline ConvertQ0Toq2(const std::vector<double>& _grid, const std::vector<double>& _Q0)
{
	return Convertq0Toq2(_grid, ConvertQ0Toq0(_grid, _Q0));
}

/**
 * \brief Calculates q3 distribution.
 * \details Refer to the functions ConvertQ0Toq0(const std::vector<double>&, const std::vector<double>&) and Convertq0Toq3(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _Q0 Input distribution.
 * \return Calculated q3 distribution.
 */
std::vector<double> inline ConvertQ0Toq3(const std::vector<double>& _grid, const std::vector<double>& _Q0)
{
	return Convertq0Toq3(_grid, ConvertQ0Toq0(_grid, _Q0));
}

/**
 * \brief Calculates q0 distribution.
 * \details Refer to the functions ConvertQ2Toq2(const std::vector<double>&, const std::vector<double>&) and Convertq2Toq0(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _Q2 Input distribution.
 * \return Calculated q0 distribution.
 */
std::vector<double> inline ConvertQ2Toq0(const std::vector<double>& _grid, const std::vector<double>& _Q2)
{
	return Convertq2Toq0(_grid, ConvertQ2Toq2(_grid, _Q2));
}

/**
 * \brief Calculates q3 distribution.
 * \details Refer to the functions ConvertQ2Toq2(const std::vector<double>&, const std::vector<double>&) and Convertq2Toq3(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _Q2 Input distribution.
 * \return Calculated q3 distribution.
 */
std::vector<double> inline ConvertQ2Toq3(const std::vector<double>& _grid, const std::vector<double>& _Q2)
{
	return Convertq2Toq3(_grid, ConvertQ2Toq2(_grid, _Q2));
}

/**
 * \brief Calculates q0 distribution.
 * \details Refer to the functions ConvertQ3Toq3(const std::vector<double>&, const std::vector<double>&) and Convertq3Toq0(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _Q3 Input distribution.
 * \return Calculated q0 distribution.
 */
std::vector<double> inline ConvertQ3Toq0(const std::vector<double>& _grid, const std::vector<double>& _Q3)
{
	return Convertq3Toq0(_grid, ConvertQ3Toq3(_grid, _Q3));
}

/**
 * \brief Calculates q2 distribution.
 * \details Refer to the functions ConvertQ3Toq3(const std::vector<double>&, const std::vector<double>&) and Convertq3Toq2(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _Q3 Input distribution.
 * \return Calculated q2 distribution.
 */
std::vector<double> inline ConvertQ3Toq2(const std::vector<double>& _grid, const std::vector<double>& _Q3)
{
	return Convertq3Toq2(_grid, ConvertQ3Toq3(_grid, _Q3));
}

////////////////////////////////////////////////////////////////////////////////////////////////////

/**
 * \brief Calculates Q2 distribution.
 * \details Refer to the functions ConvertQ0ToMassFractions(const std::vector<double>&, const std::vector<double>&) and ConvertMassFractionsToQ2(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _Q0 Input distribution.
 * \return Calculated Q2 distribution.
 */
std::vector<double> inline ConvertQ0ToQ2(const std::vector<double>& _grid, const std::vector<double>& _Q0)
{
	return ConvertMassFractionsToQ2(_grid, ConvertQ0ToMassFractions(_grid, _Q0));
}

/**
 * \brief Calculates Q3 distribution.
 * \details Refer to the functions ConvertQ0ToMassFractions(const std::vector<double>&, const std::vector<double>&) and ConvertMassFractionsToQ3(const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _Q0 Input distribution.
 * \return Calculated Q3 distribution.
 */
std::vector<double> inline ConvertQ0ToQ3(const std::vector<double>& _grid, const std::vector<double>& _Q0)
{
	return ConvertMassFractionsToQ3(ConvertQ0ToMassFractions(_grid, _Q0));
}

/**
 * \brief Calculates Q0 distribution.
 * \details Refer to the functions ConvertQ2ToMassFractions(const std::vector<double>&, const std::vector<double>&) and ConvertMassFractionsToQ0(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _Q2 Input distribution.
 * \return Calculated Q0 distribution.
 */
std::vector<double> inline ConvertQ2ToQ0(const std::vector<double>& _grid, const std::vector<double>& _Q2)
{
	return ConvertMassFractionsToQ0(_grid, ConvertQ2ToMassFractions(_grid, _Q2));
}

/**
 * \brief Calculates Q3 distribution.
 * \details Refer to the functions ConvertQ2ToMassFractions(const std::vector<double>&, const std::vector<double>&) and ConvertMassFractionsToQ3(const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _Q2 Input distribution.
 * \return Calculated Q3 distribution.
 */
std::vector<double> inline ConvertQ2ToQ3(const std::vector<double>& _grid, const std::vector<double>& _Q2)
{
	return ConvertMassFractionsToQ3(ConvertQ2ToMassFractions(_grid, _Q2));
}

/**
 * \brief Calculates Q0 distribution.
 * \details Refer to the functions ConvertQ0ToMassFractions(const std::vector<double>&, const std::vector<double>&) and ConvertMassFractionsToQ0(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _Q0 Input distribution.
 * \return Calculated Q0 distribution.
 */
std::vector<double> inline ConvertQ3ToQ0(const std::vector<double>& _grid, const std::vector<double>& _Q0)
{
	return ConvertMassFractionsToQ0(_grid, ConvertQ0ToMassFractions(_grid, _Q0));
}

/**
 * \brief Calculates Q2 distribution.
 * \details Refer to the functions ConvertQ3ToMassFractions(const std::vector<double>&) and ConvertMassFractionsToQ2(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _Q3 Input distribution.
 * \return Calculated Q2 distribution.
 */
std::vector<double> inline ConvertQ3ToQ2(const std::vector<double>& _grid, const std::vector<double>& _Q3)
{
	return ConvertMassFractionsToQ2(_grid, ConvertQ3ToMassFractions(_Q3));
}

////////////////////////////////////////////////////////////////////////////////////////////////////

/**
 * \brief Assumes unity density and unity total mass.
 * \details \f$N_i = \frac{6 \cdot w_i}{\pi \cdot \Delta d_i^3}\f$.
 * \param _grid Distribution grid.
 * \param _massFrac Input distribution.
 * \return Number distribution.
 */
std::vector<double> inline ConvertMassFractionsToNumbers(const std::vector<double>& _grid, const std::vector<double>& _massFrac)
{
	constexpr double PI = 3.14159265358979323846;
	std::vector res(_massFrac.size(), 0.0);
	for (size_t i = 0; i < _massFrac.size(); ++i)
		res[i] = 6 * _massFrac[i] / (PI * pow(_grid[i + 1] - _grid[i], 3));
	return res;
}

/**
 * \brief Assumes unity density and unity total mass.
 * \details Refer to the functions Convertq0ToMassFractions(const std::vector<double>&, const std::vector<double>&) and ConvertMassFractionsToNumbers(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _q0 Input distribution.
 * \return Number distribution.
 */
std::vector<double> inline Convertq0ToNumbers(const std::vector<double>& _grid, const std::vector<double>& _q0)
{
	return ConvertMassFractionsToNumbers(_grid, Convertq0ToMassFractions(_grid, _q0));
}

/**
 * \brief Assumes unity density and unity total mass.
 * \details Refer to the functions Convertq2ToMassFractions(const std::vector<double>&, const std::vector<double>&) and ConvertMassFractionsToNumbers(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _q2 Input distribution.
 * \return Number distribution.
 */
std::vector<double> inline Convertq2ToNumbers(const std::vector<double>& _grid, const std::vector<double>& _q2)
{
	return ConvertMassFractionsToNumbers(_grid, Convertq2ToMassFractions(_grid, _q2));
}

/**
 * \brief Assumes unity density and unity total mass.
 * \details Refer to the functions Convertq3ToMassFractions(const std::vector<double>&, const std::vector<double>&) and ConvertMassFractionsToNumbers(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _q3 Input distribution.
 * \return Number distribution.
 */
std::vector<double> inline Convertq3ToNumbers(const std::vector<double>& _grid, const std::vector<double>& _q3)
{
	return ConvertMassFractionsToNumbers(_grid, Convertq3ToMassFractions(_grid, _q3));
}

/**
 * \brief Assumes unity density and unity total mass.
 * \details Refer to the functions ConvertQ0ToMassFractions(const std::vector<double>&, const std::vector<double>&) and ConvertMassFractionsToNumbers(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _Q0 Input distribution.
 * \return Number distribution.
 */
std::vector<double> inline ConvertQ0ToNumbers(const std::vector<double>& _grid, const std::vector<double>& _Q0)
{
	return ConvertMassFractionsToNumbers(_grid, ConvertQ0ToMassFractions(_grid, _Q0));
}

/**
 * \brief Assumes unity density and unity total mass.
 * \details Refer to the functions ConvertQ2ToMassFractions(const std::vector<double>&, const std::vector<double>&) and ConvertMassFractionsToNumbers(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _Q2 Input distribution.
 * \return Number distribution.
 */
std::vector<double> inline ConvertQ2ToNumbers(const std::vector<double>& _grid, const std::vector<double>& _Q2)
{
	return ConvertMassFractionsToNumbers(_grid, ConvertQ2ToMassFractions(_grid, _Q2));
}

/**
 * \brief Assumes unity density and unity total mass.
 * \details Refer to the functions ConvertQ3ToMassFractions(const std::vector<double>&) and ConvertMassFractionsToNumbers(const std::vector<double>&, const std::vector<double>&).
 * \param _grid Distribution grid.
 * \param _Q3 Input distribution.
 * \return Number distribution.
 */
std::vector<double> inline ConvertQ3ToNumbers(const std::vector<double>& _grid, const std::vector<double>& _Q3)
{
	return ConvertMassFractionsToNumbers(_grid, ConvertQ3ToMassFractions(_Q3));
}


////////////////////////////////////////////////////////////////////////////////////////////////////

/**
 * \brief Converts the mass fraction distribution defined on the numeric grid to the new grid.
 * \param _grid Old mass fraction distribution.
 * \param _w Old symbolic distribution grid.
 * \param _gridNew New distribution grid.
 * \return Converted distribution on the modified size grid.
 */
std::vector<double> inline ConvertOnNewGrid(const std::vector<std::string>& _grid, const std::vector<double>& _w, const std::vector<std::string>& _gridNew)
{
	if (_grid == _gridNew) return _w;
	std::vector<double> res(_gridNew.size());
	for (size_t i = 0; i < _gridNew.size(); ++i)
	{
		const auto it = std::find(_grid.begin(), _grid.end(), _gridNew[i]);
		res[i] = it != _grid.end() ? _w[std::distance(_grid.begin(), it)] : 0.0;
	}
	return res;
}

/**
 * \brief Converts the mass fraction distribution defined on the numeric grid to the new grid.
 * \param _grid Old mass fraction distribution.
 * \param _w Old numeric distribution grid.
 * \param _gridNew New distribution grid.
 * \return Converted distribution on the modified size grid.
 */
std::vector<double> inline ConvertOnNewGrid(const std::vector<double>& _grid, const std::vector<double>& _w, const std::vector<double>& _gridNew)
{
	if (_grid == _gridNew) return _w;
	if (_gridNew.empty()) return {};
	if (std::all_of(_w.begin(), _w.end(), [](double d) { return d == 0.0; })) return std::vector<double>(_gridNew.size() - 1, 0.0);
	const std::vector<double> QDistr = ConvertMassFractionsToQ3(_w);
	std::vector<double> res(_gridNew.size() - 1);
	double Q1 = GetQ(QDistr, _grid, _gridNew[0]);
	for (size_t i = 0; i < _gridNew.size() - 1; ++i)
	{
		const double Q2 = GetQ(QDistr, _grid, _gridNew[i + 1]);
		res[i] = (Q2 - Q1) / (_gridNew[i + 1] - _gridNew[i]);
		Q1 = Q2;
	}
	return res;
}

/**
 * \brief Converts density distribution defined on the numeric grid to the new grid.
 * \param _grid Old numeric distribution grid.
 * \param _q Old density distribution.
 * \param _gridNew New distribution grid.
 * \return Converted distribution on the modified size grid.
 */
std::vector<double> inline ConvertqOnNewGrid(const std::vector<double>& _grid, const std::vector<double>& _q, const std::vector<double>& _gridNew)
{
	if (_grid == _gridNew) return _q;
	std::vector<double> qNew(_gridNew.size() - 1);
	const std::vector<double> QDistr = q2Q(_grid, _q);
	double Q1 = GetQ(QDistr, _grid, _gridNew[0]);
	for (size_t i = 0; i < _gridNew.size() - 1; ++i)
	{
		const double Q2 = GetQ(QDistr, _grid, _gridNew[i + 1]);
		qNew[i] = (Q2 - Q1) / (_gridNew[i + 1] - _gridNew[i]);
		Q1 = Q2;
	}
	return qNew;
}

/**
 * \brief Converts q0 distribution to the same distribution on the modified size grid.
 * \details Refer to function ConvertqOnNewGrid(const std::vector<double>&, const std::vector<double>&, const std::vector<double>&).
 * \param _gridOld Old distribution grid.
 * \param _q0Old Old distribution.
 * \param _gridNew New distribution grid.
 * \return Converted q0 distribution on the modified size grid.
 */
std::vector<double> inline Convertq0Toq0(const std::vector<double>& _gridOld, const std::vector<double>& _q0Old, std::vector<double>& _gridNew)
{
	return ConvertqOnNewGrid(_gridOld, _q0Old, _gridNew);
}

/**
 * \brief Converts q2 distribution to the same distribution on the modified size grid.
 * \details Refer to function ConvertqOnNewGrid(const std::vector<double>&, const std::vector<double>&, const std::vector<double>&).
 * \param _gridOld Old distribution grid.
 * \param _q2Old Old distribution.
 * \param _gridNew New distribution grid.
 * \return Converted q2 distribution on the modified size grid.
 */
std::vector<double> inline Convertq2Toq2(const std::vector<double>& _gridOld, const std::vector<double>& _q2Old, std::vector<double>& _gridNew)
{
	return ConvertqOnNewGrid(_gridOld, _q2Old, _gridNew);
}

/**
 * \brief Converts q3 distribution to the same distribution on the modified size grid.
 * \details Refer to function ConvertqOnNewGrid(const std::vector<double>&, const std::vector<double>&, const std::vector<double>&).
 * \param _gridOld Old distribution grid.
 * \param _q3Old Old distribution.
 * \param _gridNew New distribution grid.
 * \return Converted q3 distribution on the modified size grid.
 */
std::vector<double> inline Convertq3Toq3(const std::vector<double>& _gridOld, const std::vector<double>& _q3Old, std::vector<double>& _gridNew)
{
	return ConvertqOnNewGrid(_gridOld, _q3Old, _gridNew);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

/**
 * \brief Normalizes density distribution q0 or q3.
 * \details \f$q_i = \frac{q_i}{\sum_j q_j \Delta d_j}\f$.
 * \param _grid Distribution grid.
 * \param _qiDistr Input distribution.
 */
void inline NormalizeDensityDistribution(const std::vector<double>& _grid, std::vector<double>& _qiDistr)
{
	// normalization of the distribution
	double dSum = 0;
	for (size_t i = 0; i<_qiDistr.size(); i++)
		dSum += _qiDistr[i] * (_grid[i + 1] - _grid[i]);
	if (dSum == 0)
		for (double& v : _qiDistr)
			v = 1. / _grid.size();
	else
		for (double& v : _qiDistr)
			v = v / dSum;
}

/**
 * \brief Returns value of the grid in the measurement units of the grid, which corresponds to a specified value of cumulative distribution Q0 or Q3.
 * \details For PSD, returns particle diameter in [m]. Input value should range between 0 and 1.
 * \param _grid Distribution grid.
 * \param _QiDistr Input distribution.
 * \param _val Value in range between 0 and 1.
 * \return Distribution value.
 */
double inline GetDistributionValue(const std::vector<double>& _grid, const std::vector<double>& _QiDistr, double _val)
{
	if (_val < 0 || _val > 1) return 0;
	if (_QiDistr.empty()) return 0; // if no element at all
	if (_QiDistr.size() == 1) return (_grid[1] + _grid[0]) * _val; // if just one element

	/// find two elements to interpolate values
	size_t nLeft = 0;
	while (nLeft < _QiDistr.size() - 1 && (_QiDistr[nLeft] < _val))
		nLeft++;
	if (nLeft == 0)
		return 0;
	nLeft--;
	const size_t nRight = nLeft + 1;

	const double dDLeft = (_grid[nLeft] + _grid[nLeft + 1]) / 2; // diameter of left interval
	const double dDRight = (_grid[nRight] + _grid[nRight + 1]) / 2; // diameter of right interval
	const double dQLeft = _QiDistr[nLeft];
	const double dQRight = _QiDistr[nRight];

	if (dQLeft == dQRight)
		return (dDLeft + dDRight) * _val;
	else
		return dDLeft + (dDRight - dDLeft)*(_val - dQLeft) / (dQRight - dQLeft);
}

/**
 * \brief Returns median in the measurement units of the grid of Q0 or Q3 distribution. Median is a value of the grid, which corresponds to a value of distribution equal to 0.5.
 * \details For PSD, returns particle diameter in [m]. Refer to function GetDistributionValue(const std::vector<double>&, const std::vector<double>&, double).
 * \param _grid Distribution grid.
 * \param _QiDistr Input distribution.
 * \return Median of distribution.
 */
double inline GetDistributionMedian(const std::vector<double>& _grid, const std::vector<double>& _QiDistr)
{
	return GetDistributionValue(_grid, _QiDistr, 0.5);
}

/**
 * \brief Returns value of the grid in the measurement units of the grid, which corresponds to a maximum value of density distribution.
 * \details For PSD, returns particle diameter in [m].
 * \param _grid Distribution grid.
 * \param _qiDistr Input distribution.
 * \return Mode of distribution.
 */
double inline GetDistributionMode(const std::vector<double>& _grid, const std::vector<double>& _qiDistr)
{
	double maxDiameter{ 0.0 };
	if (_grid.size() != _qiDistr.size() + 1)
		return maxDiameter;
	double maxqValue = 0;
	for (size_t i = 0; i < _qiDistr.size(); ++i)
		if (_qiDistr[i] > maxqValue)
		{
			maxqValue = _qiDistr[i];
			maxDiameter = (_grid[i] + _grid[i + 1]) / 2;
		}
	return maxDiameter;
}

/**
 * \brief Returns value of the grid in the measurement units of the grid, which corresponds to a mean value of density distribution.
 * \details For PSD, returns particle diameter in [m]. Calculated as
 * \f$\mu = \frac{\sum q_{i} d_{i}}{\sum q_{i}}\f$ with
 * \f$\mu\f$ mean value of the distribution,
 * \f$q_{i}\f$ value of the distribution at class \f$i\f$,
 * \f$d_{i}\f$ mean value of the class \f$i\f$.
 * \param _grid Distribution grid.
 * \param _qiDistr Input density distribution.
 * \return Mean of distribution.
 */
double inline GetDistributionMean(const std::vector<double>& _grid, const std::vector<double>& _qiDistr)
{
	double res{ 0.0 };
	if (_grid.size() != _qiDistr.size() + 1)
		return res;
	for (size_t i = 0; i < _qiDistr.size(); ++i)
		res += _qiDistr[i] * (_grid[i] + _grid[i + 1]) / 2;
	res /= std::accumulate(_qiDistr.begin(), _qiDistr.end(), 0.0);
	return res;
}

/**
 * \brief Returns variance of the density distribution around its mean value in the measurement units of the grid.
 * \details For PSD, calculates in the terms of particle diameter in [m]. Calculated as
 * \f$\sigma^2 = \frac{\sum q_{i} d_{i}^2}{\sum q_{i}}-\mu^2\f$ with
 * \f$\sigma^2\f$ variance of the distribution,
 * \f$q_{i}\f$ value of the distribution at class \f$i\f$,
 * \f$d_{i}\f$ mean value of the class \f$i\f$,
 * \f$\mu\f$ mean value of the distribution (Refer to function GetDistributionMean(const std::vector<double>&, const std::vector<double>&)).
 * \param _grid Distribution grid.
 * \param _qiDistr Input density distribution.
 * \return Variance of distribution.
 */
double inline GetDistributionVariance(const std::vector<double>& _grid, const std::vector<double>& _qiDistr)
{
	double res{ 0.0 };
	if (_grid.size() != _qiDistr.size() + 1)
		return res;
	for (size_t i = 0; i < _qiDistr.size(); ++i)
		res += _qiDistr[i] * pow((_grid[i] + _grid[i + 1]) / 2, 2);
	res /= std::accumulate(_qiDistr.begin(), _qiDistr.end(), 0.0);
	const auto mean = GetDistributionMean(_grid, _qiDistr);
	res -= pow(mean, 2);
	return res;
}

/**
 * \brief Returns standard deviation of the density distribution around its mean value in the measurement units of the grid.
 * \details For PSD, calculates in the terms of particle diameter in [m]. Calculated as
 * \f$\sigma = \sqrt{\frac{\sum q_{i} d_{i}^2}{\sum q_{i}}-\mu^2}\f$ with
 * \f$\sigma\f$ standard deviation  of the distribution,
 * \f$q_{i}\f$ value of the distribution at class \f$i\f$,
 * \f$d_{i}\f$ mean value of the class \f$i\f$,
 * \f$\mu\f$ mean value of the distribution (Refer to function GetDistributionMean(const std::vector<double>&, const std::vector<double>&)).
 * \param _grid Distribution grid.
 * \param _qiDistr Input density distribution.
 * \return Standard deviation of distribution.
 */
double inline GetDistributionStdDev(const std::vector<double>& _grid, const std::vector<double>& _qiDistr)
{
	const double variance = GetDistributionVariance(_grid, _qiDistr);
	if (variance < 0.0)
		return 0.0;
	return sqrt(variance);
}

/**
 * \brief Returns average diameter in [m] of the distribution q0 or q3.
 * \details
 * \param _grid Distribution grid.
 * \param _qiDistr Input distribution.
 * \return Average diameter of distribution.
 */
double inline GetAverageDiameter(const std::vector<double>& _grid, const std::vector<double>& _qiDistr)
{
	double dResult = 0;
	for (size_t i = 0; i < _qiDistr.size(); ++i)
		dResult += _qiDistr[i] * ((_grid[i] + _grid[i + 1]) / 2) * (_grid[i + 1] - _grid[i]);
	return dResult;
}

/**
 * \brief Calculates specific surface of q3 distribution in [m<sup>2</sup>].
 * \details
 * \param _grid Distribution grid.
 * \param _q3 Input distribution.
 * \return Specific surface of distribution.
 */
double inline GetSpecificSurface(const std::vector<double>& _grid, const std::vector<double>& _q3)
{
	double dSV = 0;
	for (size_t i = 0; i < _q3.size(); i++)
		dSV += 6 * _q3[i] * 1 / ((_grid[i] + _grid[i + 1]) / 2) * (_grid[i + 1] - _grid[i]);
	return dSV;
}

/**
 * \brief Calculates Sauter diameter (d<sub>32</sub>) of q3 distribution in [m].
 * \details
 * \param _grid Distribution grid.
 * \param _q3 Input distribution.
 * \return Sauter diameter of distribution.
 */
double inline GetSauterDiameter(const std::vector<double>& _grid, const std::vector<double>& _q3)
{
	if (_q3.size() + 1 != _grid.size())
		return 0;
	double dSum = 0;
	for (size_t i = 0; i < _q3.size(); ++i)
		dSum += _q3[i] * (_grid[i + 1] - _grid[i]) / ((_grid[i] + _grid[i + 1]) / 2);
	if (dSum != 0)
		dSum = 1 / dSum;
	return dSum;
}