File: renf_class.cpp

package info (click to toggle)
e-antic 1.3.0%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,700 kB
  • sloc: ansic: 5,873; cpp: 3,890; python: 952; makefile: 452; sh: 35; javascript: 5
file content (310 lines) | stat: -rw-r--r-- 10,170 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
/*
    Copyright (C)      2018 Vincent Delecroix
    Copyright (C) 2019-2022 Julian RĂ¼th

    This file is part of e-antic

    e-antic is free software: you can redistribute it and/or modify it under
    the terms of the GNU Lesser General Public License (LGPL) as published
    by the Free Software Foundation; either version 3.0 of the License, or
    (at your option) any later version.  See <http://www.gnu.org/licenses/>.
*/

#include <iostream>
#include <atomic>
#include <mutex>
#include <stdexcept>
#include <type_traits>
#include <unordered_set>

#include "../e-antic/renf_class.hpp"
#include "../e-antic/renf_elem_class.hpp"
#include "../e-antic/fmpq_poly_extra.h"

namespace eantic {

namespace {
// An index returned from std::ios_base::xalloc() that we use to store a
// pointer back to this number field.  We store a pointer to this number
// field at that index in a stream when we want to parse renf_elem_class
// elements from it.
static int xalloc = std::ios_base::xalloc();

// Computes a hash value for a field. This is only used to deduplicate fields
// and is not the std::hash implementation we use normally: once we know that
// fields are unique, we can hash much faster by using their address in the
// std::hash implementation at the bottom of this file.
struct fields_hasher {
    size_t operator()(const renf_class* nf) const { return std::hash<eantic::renf_elem_class>()(nf->gen()); }
};

// Compare two fields. This is only used to deduplicate fields and is not the
// usual operator== implementation we use normally: once we know that fields
// are unique, we can just compare their addresses in memory which is much
// faster.
struct fields_equality {
    bool operator()(const renf_class* lhs, const renf_class* rhs) const {
        return renf_equal(lhs->renf_t(), rhs->renf_t()) && lhs->gen_name() == rhs->gen_name();
    }
};

// A global registry of all fields that are currently around. We use this to
// make sure that fields are unique parents.
static std::unordered_set<const renf_class*, fields_hasher, fields_equality> fields;

// A mutex to lock any access to the global field registry.
static std::mutex fields_mutex;

}

static_assert(!std::is_default_constructible<renf_class>::value, "renf_class should have implicitly deleted its default constructor; since there can only be one default renf_class() we must not allow for a default constructor.");
static_assert(!std::is_copy_constructible<renf_class>::value, "renf_class should have implicitly deleted its copy constructor; since it is only accessible through intrusive pointers, there must be no copies at other memory addresses");
static_assert(!std::is_move_constructible<renf_class>::value, "renf_class should have implicitly deleted its copy constructor; since it is only accessible through intrusive pointers, the address must be stable for the entire lifetime");
static_assert(!std::is_copy_assignable<renf_class>::value, "renf_class should have implicitly deleted its assignment operator; since it is only accessible through intrusive pointers, there must be no copies at other memory addresses");
static_assert(!std::is_move_assignable<renf_class>::value, "renf_class should have implicitly deleted its assignment operator; since it is only accessible through intrusive pointers, the address must be stable for the entire lifetime");

renf_class::renf_class(const ::renf_t k, const std::string & gen_name) : name(gen_name), refcount(0)
{
    renf_init_set(nf, k);

    // We prepare a cache of 0,1, and the generator of this field.
    cache = new renf_elem_class[3] {
        renf_elem_class(*this),
        renf_elem_class(*this, 1),
        renf_elem_class(*this),
    };
    renf_elem_gen(cache[2].renf_elem_t(), renf_t());
}

const renf_class& renf_class::make()
{
    // We cache our standard rational field in a static variable.
    // Note that the destructor of this shared pointer gets called before the
    // destructor of the factory, i.e., the factory does not complain about a
    // pending object, because in C++ static objects are destructed in the
    // reverse order of their construction:
    // https://stackoverflow.com/questions/469597/destruction-order-of-static-objects-in-c
    static const boost::intrusive_ptr<const renf_class> trivial = make("a - 1", "a", "1 +/- 1", 64);

    return *trivial;
}

boost::intrusive_ptr<const renf_class> renf_class::make(const ::renf_t k, const std::string & gen_name)
{
    const auto* key = new renf_class(k, gen_name);

    std::lock_guard<std::mutex> lock(fields_mutex);

    const auto entry = fields.find(key);

    if (entry == fields.end())
    {
        fields.insert(key);
        return key;
    }
    else
    {
        delete key;
        return *entry;
    }
}

boost::intrusive_ptr<const renf_class> renf_class::make(const std::string & minpoly, const std::string & gen, const std::string & emb, const slong prec)
{
    return make(minpoly, gen, [&](slong p) -> std::string
    {
        if (p != prec)
            throw std::invalid_argument("the given polynomial does not have a unique such root");
        return emb;
    }, prec);
}

boost::intrusive_ptr<const renf_class> renf_class::make(const std::string & minpoly, const std::string& gen, const std::function<std::string(slong prec)> emb, slong prec) {
    while (true)
    {
        arb_t e;
        fmpq_poly_t p;

        fmpq_poly_init(p);
        if (fmpq_poly_set_str_pretty(p, minpoly.c_str(), gen.c_str()))
        {
            fmpq_poly_clear(p);
            throw std::invalid_argument("renf_class: can not read polynomial from string");
        }

        arb_init(e);
        if (arb_set_str(e, emb(prec).c_str(), prec))
        {
            fmpq_poly_clear(p);
            arb_clear(e);
            throw std::invalid_argument("renf_class: can not read ball from string");
        }

        if (!fmpq_poly_check_unique_real_root(p, e, prec))
        {
            fmpq_poly_clear(p);
            arb_clear(e);
            prec *= 2;
            continue;
        }

        ::renf_t nf;
        renf_init(nf, p, e, prec);

        fmpq_poly_clear(p);
        arb_clear(e);

        auto field = make(nf, gen);

        renf_clear(nf);

        return field;
    }
}

renf_class::~renf_class() noexcept
{
    delete[] cache;
    assert(refcount == 0 && "All references to this number field must have been destroyed when this field is deleted. There seems to be an error in the reference counting.");
    renf_clear(nf);
}

slong renf_class::degree() const { return fmpq_poly_degree(nf->nf->pol); }

const renf_elem_class& renf_class::zero() const
{
    return cache[0];
}

const renf_elem_class& renf_class::one() const
{
    return cache[1];
}

const renf_elem_class& renf_class::gen() const
{
    return cache[2];
}

std::tuple<std::string, std::string, std::string, slong> renf_class::construction() const {
  char * emb = arb_get_str(renf_t()->emb, arf_bits(arb_midref(renf_t()->emb)), 0);
  char * pol = fmpq_poly_get_str_pretty(renf_t()->nf->pol, gen_name().c_str());

  const auto construction = std::make_tuple(std::string(pol), gen_name(), std::string(emb), renf_t()->prec);

  flint_free(pol);
  flint_free(emb);

  return construction;
}

bool operator==(const renf_class & self, const renf_class & other)
{
    return &self == &other;
}

std::istream & renf_class::set_pword(std::istream & is) const
{
    is.pword(xalloc) = const_cast<void*>(reinterpret_cast<const void*>(this));
    return is;
}

std::istream & renf_class::set_istream(std::istream & is) const { return set_pword(is); }

boost::intrusive_ptr<const renf_class> renf_class::get_pword(std::istream& is)
{
    return reinterpret_cast<renf_class *>(is.pword(xalloc));
}

std::string renf_class::to_string() const
{
    char * u = renf_get_str(renf_t(), gen_name().c_str(), 64);
    std::string s = u;
    flint_free(u);
    return s;
}

std::ostream & operator<<(std::ostream & os, const renf_class & nf)
{
    os << nf.to_string();
    return os;
}

std::ostream & operator<<(std::ostream & os, const renf_elem_class & a)
{
    if (a.is_integer())
        os << a.to_string(EANTIC_STR_ALG);
    else
        os << a.to_string(EANTIC_STR_ALG | EANTIC_STR_D);
    return os;
}

std::istream & operator>>(std::istream & is, renf_elem_class & a)
{
    auto nf = renf_class::get_pword(is);

    std::string s; // part of the stream to use

    if (is.eof()) throw std::invalid_argument("empty stream");

    bool paren = is.peek() == std::char_traits<char>::to_int_type('(');
    if (paren)
    {
        // read until ")"
        is.get();
        while (!is.eof() && is.peek() != std::char_traits<char>::to_int_type(')') && is.peek() != EOF) {
            char c;
            is >> c;
            s += c;
        }
        if (is.eof()) throw std::invalid_argument("invalid stream");
        is.get(); // remove ) from the stream
    }
    else
    {
        if (paren) is.get();
        // read until space or EOF
        while (!is.eof() && !isspace(is.peek()) && is.peek() != EOF) {
            char c;
            is >> c;
            s += c;
        }
    }

    a = renf_elem_class(*nf, s);

    return is;
}

// Track a pointer to the field `nf` (and keep the field alive until this
// pointer is around.)
void intrusive_ptr_add_ref(const renf_class* nf) {
    nf->refcount.fetch_add(1, std::memory_order_relaxed);
}

// Stop tracking a pointer to the field `nf`.
void intrusive_ptr_release(const renf_class* nf) {
    if (nf->refcount.fetch_sub(1, std::memory_order_release) == 4)
    {
        // All references to this field have been released, i.e., all
        // intrusive_ptr<const renf_class*> are gone except for the ones
        // internal to the renf_class itself.
        // We remove this field from the registry of fields and then free the
        // memory it is occupying.

        std::lock_guard<std::mutex> lock(fields_mutex);

        assert(fields.find(nf) != fields.end());
        fields.erase(nf);
        delete(nf);
    }
}

} // end of namespace eantic

namespace std {
size_t hash<eantic::renf_class>::operator()(const eantic::renf_class& nf) const
{
    return reinterpret_cast<size_t>(&nf);
}
}