1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
/*
$Id: gcModel.c 564 2013-03-08 17:16:42Z earonesty $
*/
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include <math.h>
#include <stdarg.h>
#include <sys/stat.h>
#include <string>
#include <iostream>
#include "fastq-lib.h"
#include "gcModel.h"
// #define UNIT_TEST
void gcInit(int maxReadLength);
void gcProcessSequence(int l,int c);
void gcPrintDistribution(FILE *fp);
void gcClose();
using namespace std;
#define roundgt0(x) (long)(x<0.5?0:x+0.5)
typedef struct GCModelValue {
int percentage;
double increment;
} GC_MODEL_VALUE;
typedef struct GCModelValues {
GC_MODEL_VALUE * values;
int valuesLength;
} GC_MODEL_VALUES;
typedef GC_MODEL_VALUES *GC_MODELS;
static int claimingCounts[101];
static double gcDistribution[101];
static GC_MODELS *cachedModels;
static int gMaxReadLength = -1;
GC_MODEL_VALUES *calcModels(int readLength) {
memset(claimingCounts,0,sizeof(claimingCounts));
GC_MODEL_VALUES *models = (GC_MODEL_VALUES *) malloc((readLength+1) * sizeof(GC_MODEL_VALUES ));
memset(models,0,(readLength+1) * sizeof(GC_MODEL_VALUES ));
for (int pos=0;pos<=readLength;pos++) {
double lowCount = pos-0.5;
double highCount = pos+0.5;
if (lowCount < 0.0) lowCount = 0.0;
if (highCount < 0.0) highCount = 0.0;
if (highCount > readLength) highCount = readLength;
if (lowCount > readLength) lowCount = readLength;
int lowPercentage = (int)roundgt0(((lowCount*100) / readLength));
int highPercentage = (int)roundgt0(((highCount*100) / readLength));
for (int p=lowPercentage;p<=highPercentage;p++) {
claimingCounts[p]++;
}
}
// We now do a second pass to make up the model using the weightings
// we calculated previously.
for (int pos=0;pos<=readLength;pos++) {
double lowCount = pos-0.5;
double highCount = pos+0.5;
if (lowCount < 0) lowCount = 0;
if (highCount < 0) highCount = 0;
if (highCount > readLength) highCount = readLength;
if (lowCount > readLength) lowCount = readLength;
int lowPercentage = (int)roundgt0((lowCount*100) / readLength);
int highPercentage = (int)roundgt0((highCount*100) / readLength);
models[pos].values = (GC_MODEL_VALUE *) malloc(((highPercentage-lowPercentage)+1) * sizeof(GC_MODEL_VALUE) );
memset(models[pos].values,0,
((highPercentage-lowPercentage)+1) * sizeof(GC_MODEL_VALUE) );
models[pos].valuesLength = (highPercentage-lowPercentage)+1;
for (int p=lowPercentage;p<=highPercentage;p++) {
models[pos].values[p-lowPercentage].percentage = p;
models[pos].values[p-lowPercentage].increment = 1.0/claimingCounts[p];
}
}
return (models);
}
void gcProcessSequence(int l,int c) {
if(l > gMaxReadLength) { printf("Error: read length (%d) exceeds specified maximum length(%d)\n", l, gMaxReadLength); }
if(c > l) { printf("Error: GC-count (%d) exceeds actual read length(%d)\n", c, l) ;}
GC_MODEL_VALUE *values = cachedModels[l][c].values;
for(int i=0; i < cachedModels[l][c].valuesLength; i++) {
gcDistribution[values[i].percentage] += values[i].increment;
}
}
void printModels(int rl) {
GC_MODEL_VALUES *m = cachedModels[rl];
printf("## Model values for read length=%d\n",rl);
for(int i = 0; i <= rl; i++) {
printf("%d: ",i);
for(int j = 0; j < m[i].valuesLength; j++) {
printf("%d,%.2f ",m[i].values[j].percentage, m[i].values[j].increment);
}
printf("\n");
}
}
void gcPrintDistribution(FILE *fp) {
if(fp == NULL) {
fp = stdout;
}
fprintf(fp, "pct_GC\tCount\n");
for(int i=0; i<=100;i++) {
fprintf(fp, "%d\t%.2f\n",i,gcDistribution[i]);
}
}
void gcClose() {
if(gMaxReadLength < 0)return; // never initialized
for(int rl = 0; rl < gMaxReadLength; rl++) {
GC_MODEL_VALUES * m = cachedModels[rl];
for(int i = 0; i <= rl; i++) {
free(m[i].values);
}
free(m);
}
free(cachedModels);
}
void gcInit(int maxReadLength) {
gMaxReadLength = maxReadLength;
memset(gcDistribution,0,sizeof(gcDistribution));
// Build all models for a given max readlength:
cachedModels = (GC_MODELS*)malloc((maxReadLength+1) * sizeof(GC_MODELS));
// original code fills this in,caching, as necessary
// here, we just build all models at outset:
int pos;
for( pos = 0; pos <= maxReadLength; pos++) {
cachedModels[pos] = calcModels(pos);
}
}
#ifdef UNIT_TEST
main() {
// int maxReadLength = 35;
int maxReadLength = 5;
gcInit(maxReadLength);
// ***
// simulate processing A sequence:
// int seqLength = 3; // this sequence's length
// int gcCount = 2; // total G's & C's -- count 'em
/*
for(int i = 0; i < 10000000; i++) {
gcProcessSequence(35,15);
}
for(int i = 0; i < 5000000; i++) {
gcProcessSequence(35,10);
}
*/
printModels(4);
// exit(0);
// for(int pos=0; pos <= maxReadLength; pos++) {
// gcProcessSequence(maxReadLength,pos);
// }
// gcProcessSequence(3,0);
// gcProcessSequence(4,2);
// gcProcessSequence(5,4);
// gcPrintDistribution(NULL);
gcClose();
}
#endif
|