1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>
Drawing Methods
</title>
<meta name="GENERATOR" content=
"Modular DocBook HTML Stylesheet Version 1.45">
<link rel="HOME" title="GTK+ / Gnome Application Development"
href="ggad.html">
<link rel="UP" title="Writing a GnomeCanvasItem" href=
"cha-canvasitem.html">
<link rel="PREVIOUS" title="Writing a GnomeCanvasItem" href=
"cha-canvasitem.html">
<link rel="NEXT" title="Other Methods" href="z192.html">
</head>
<body bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink=
"#840084" alink="#0000FF">
<div class="NAVHEADER">
<table width="100%" border="0" bgcolor="#ffffff" cellpadding=
"1" cellspacing="0">
<tr>
<th colspan="4" align="center">
<font color="#000000" size="2">GTK+ / Gnome Application
Development</font>
</th>
</tr>
<tr>
<td width="25%" bgcolor="#ffffff" align="left">
<a href="cha-canvasitem.html"><font color="#0000ff"
size="2"><b><<< Previous</b></font></a>
</td>
<td width="25%" colspan="2" bgcolor="#ffffff" align=
"center">
<font color="#0000ff" size="2"><b><a href="ggad.html">
<font color="#0000ff" size="2"><b>
Home</b></font></a></b></font>
</td>
<td width="25%" bgcolor="#ffffff" align="right">
<a href="z192.html"><font color="#0000ff" size="2"><b>
Next >>></b></font></a>
</td>
</tr>
</table>
</div>
<div class="SECT1">
<h1 class="SECT1">
<a name="Z186">Drawing Methods</a>
</h1>
<p>
The most important task of any canvas item is rendering
itself onto the canvas. Rendering is a two-stage process
for efficiency reasons. The first stage, implemented in a
<span class="STRUCTNAME">GnomeCanvasItem</span>'s <span
class="STRUCTNAME">update</span> method, is guaranteed to
happen only once per item per rendering cycle; the idea is
to do any expensive affine transformations or other
calculations in the update method. In the second stage, the
canvas item renders itself to some region on the screen.
The <span class="STRUCTNAME">render</span> method
implements stage two for antialiased items, while the <span
class="STRUCTNAME">draw</span> method implements stage two
for GDK items. An item's render or draw method may be
invoked multiple times during a canvas repaint.
</p>
<p>
Rendering occurs in a one-shot idle function. That is,
whenever the canvas receives an expose event or otherwise
determines that a redraw is needed, it adds an idle
function which removes itself after a single invocation.
(An idle function runs when no GTK+ events are pending and
the flow of execution is in the GTK+ main loop---see <a
href="sec-mainloop.html">the section called <i>The Main
Loop</i> in the chapter called <i>GTK+ Basics</i></a> for
details.) The canvas maintains a list of redraw regions and
adds to it whenever a redraw request is received, so it
knows which areas to repaint when the idle handler is
finally invoked.
</p>
<p>
Canvas items carry a flag indicating whether they need to
be updated. Whenever a canvas item "changes" (for example,
if you set a new fill color for <span class="STRUCTNAME">
GnomeCanvasRect</span>), it will call <tt class="FUNCTION">
gnome_canvas_item_request_update()</tt> to set the "update
needed" flag for itself and the groups that contain it, up
to and including the root canvas group. (The <tt class=
"CLASSNAME">GnomeCanvas</tt> widget is only aware of a
single canvas item, the root group---all other items are
handled recursively when methods are invoked on the root
group.) In its one-shot idle function, the canvas invokes
the update method of the root canvas item if its update
flag is set, then clears the flag so the update method will
not be run next time. The <span class="STRUCTNAME">
GnomeCanvasGroup</span> update method does the same for
each child item.
</p>
<p>
Once all canvas items have been updated, the rendering
process begins. The canvas creates an RGB or <span class=
"STRUCTNAME">GdkPixmap</span> buffer, converts its list of
redraw regions into a list of buffer-sized rectangles, then
invokes the render or draw method of the root canvas group
once per rectangle. After each rectangle is rendered, the
buffer is copied to the screen.
</p>
<div class="SECT2">
<h2 class="SECT2">
<a name="Z187">The Update Method</a>
</h2>
<p>
The update method is primarily used by antialiased canvas
items. <tt class="APPLICATION">libart_lgpl</tt> can
prebuild a vector path to be rendered, performing
clipping and affine transformation in advance. The render
method stamps the pre-assembled path into the RGB buffer.
</p>
<p>
The update method is one of the two that <span class=
"STRUCTNAME">GnomeCanvasRect</span> and <span class=
"STRUCTNAME">GnomeCanvasEllipse</span> have to implement
differently. Here is the <span class="STRUCTNAME">
GnomeCanvasRect</span> implementation:
</p>
<table border="0" bgcolor="#E0E0E0" width="100%">
<tr>
<td>
<pre class="PROGRAMLISTING">
static void
gnome_canvas_rect_update (GnomeCanvasItem *item, double affine[6],
ArtSVP *clip_path, gint flags)
{
GnomeCanvasRE *re;
ArtVpath vpath[11];
ArtVpath *vpath2;
double x0, y0, x1, y1;
double dx, dy;
double halfwidth;
int i;
gnome_canvas_re_update_shared (item, affine, clip_path, flags);
re = GNOME_CANVAS_RE (item);
if (item->canvas->aa) {
x0 = re->x1;
y0 = re->y1;
x1 = re->x2;
y1 = re->y2;
gnome_canvas_item_reset_bounds (item);
if (re->fill_set) {
vpath[0].code = ART_MOVETO;
vpath[0].x = x0;
vpath[0].y = y0;
vpath[1].code = ART_LINETO;
vpath[1].x = x0;
vpath[1].y = y1;
vpath[2].code = ART_LINETO;
vpath[2].x = x1;
vpath[2].y = y1;
vpath[3].code = ART_LINETO;
vpath[3].x = x1;
vpath[3].y = y0;
vpath[4].code = ART_LINETO;
vpath[4].x = x0;
vpath[4].y = y0;
vpath[5].code = ART_END;
vpath[5].x = 0;
vpath[5].y = 0;
vpath2 = art_vpath_affine_transform (vpath, affine);
gnome_canvas_item_update_svp_clip (item, &re->fill_svp, art_svp_from_vpath (vpath2), clip_path);
art_free (vpath2);
} else
gnome_canvas_item_update_svp (item, &re->fill_svp, NULL);
if (re->outline_set) {
if (re->width_pixels)
halfwidth = re->width * 0.5;
else
halfwidth = re->width * item->canvas->pixels_per_unit * 0.5;
if (halfwidth < 0.25)
halfwidth = 0.25;
i = 0;
vpath[i].code = ART_MOVETO;
vpath[i].x = x0 - halfwidth;
vpath[i].y = y0 - halfwidth;
i++;
vpath[i].code = ART_LINETO;
vpath[i].x = x0 - halfwidth;
vpath[i].y = y1 + halfwidth;
i++;
vpath[i].code = ART_LINETO;
vpath[i].x = x1 + halfwidth;
vpath[i].y = y1 + halfwidth;
i++;
vpath[i].code = ART_LINETO;
vpath[i].x = x1 + halfwidth;
vpath[i].y = y0 - halfwidth;
i++;
vpath[i].code = ART_LINETO;
vpath[i].x = x0 - halfwidth;
vpath[i].y = y0 - halfwidth;
i++;
if (x1 - halfwidth > x0 + halfwidth &&
y1 - halfwidth > y0 + halfwidth) {
vpath[i].code = ART_MOVETO;
vpath[i].x = x0 + halfwidth;
vpath[i].y = y0 + halfwidth;
i++;
vpath[i].code = ART_LINETO;
vpath[i].x = x1 - halfwidth;
vpath[i].y = y0 + halfwidth;
i++;
vpath[i].code = ART_LINETO;
vpath[i].x = x1 - halfwidth;
vpath[i].y = y1 - halfwidth;
i++;
vpath[i].code = ART_LINETO;
vpath[i].x = x0 + halfwidth;
vpath[i].y = y1 - halfwidth;
i++;
vpath[i].code = ART_LINETO;
vpath[i].x = x0 + halfwidth;
vpath[i].y = y0 + halfwidth;
i++;
}
vpath[i].code = ART_END;
vpath[i].x = 0;
vpath[i].y = 0;
vpath2 = art_vpath_affine_transform (vpath, affine);
gnome_canvas_item_update_svp_clip (item, &re->outline_svp, art_svp_from_vpath (vpath2), clip_path);
art_free (vpath2);
} else
gnome_canvas_item_update_svp (item, &re->outline_svp, NULL);
} else {
get_bounds (re, &x0, &y0, &x1, &y1);
gnome_canvas_update_bbox (item, x0, y0, x1, y1);
}
}
</pre>
</td>
</tr>
</table>
<p>
As you can see, the first thing this function does is
invoke an update function shared by <span class=
"STRUCTNAME">GnomeCanvasRect</span> and <span class=
"STRUCTNAME">GnomeCanvasEllipse</span>; here is that
function:
</p>
<table border="0" bgcolor="#E0E0E0" width="100%">
<tr>
<td>
<pre class="PROGRAMLISTING">
static void
gnome_canvas_re_update_shared (GnomeCanvasItem *item, double *affine,
ArtSVP *clip_path, int flags)
{
GnomeCanvasRE *re;
re = GNOME_CANVAS_RE (item);
if (re_parent_class->update)
(* re_parent_class->update) (item, affine, clip_path, flags);
if (!item->canvas->aa) {
set_gc_foreground (re->fill_gc, re->fill_pixel);
set_gc_foreground (re->outline_gc, re->outline_pixel);
set_stipple (re->fill_gc, &re->fill_stipple,
re->fill_stipple, TRUE);
set_stipple (re->outline_gc, &re->outline_stipple,
re->outline_stipple, TRUE);
set_outline_gc_width (re);
}
}
</pre>
</td>
</tr>
</table>
<p>
There is a lot of code involved here; the update method
is almost always the most complicated one, since it does
all the work of preparing to render a canvas item. Also,
the update method is different for GDK and antialiased
mode; notice the code which depends on the <span class=
"STRUCTNAME">item->canvas->aa</span> flag.
</p>
<p>
The first thing <span class="STRUCTNAME">
GnomeCanvasRE</span> does during an update is invoke the
update method of its parent class. The <span class=
"STRUCTNAME">GnomeCanvasItem</span> default update method
does nothing whatsoever in Gnome 1.0, but it is good
practice to chain up for future robustness. Then, <span
class="STRUCTNAME">GnomeCanvasRE</span> calls a series of
utility routines to fill in its graphics contexts with
their correct values. These are straightforward
functions, so their implementations are omitted here.
</p>
<p>
Next <tt class="FUNCTION">gnome_canvas_rect_update()</tt>
continues with <span class="STRUCTNAME">
GnomeCanvasRect</span>-specific details. Several tasks
are accomplished:
</p>
<ul>
<li>
<p>
The bounding box of the canvas item is updated. Every
canvas item has an associated bounding box; the <span
class="STRUCTNAME">GnomeCanvasGroup</span> draw and
render methods use this box to determine which items
are in the redraw region. The bounding box must be
updated in both GDK and antialiased mode.
</p>
</li>
<li>
<p>
In antialiased mode, a <i class="FIRSTTERM">sorted
vector path</i> is created. A sorted vector path is
simply a series of drawing instructions, similar to
primitive PostScript operations, that <tt class=
"APPLICATION">libart_lgpl</tt> can render to an RGB
buffer.
</p>
</li>
<li>
<p>
In antialiased mode, the <span class="STRUCTNAME">
affine</span> and <span class="STRUCTNAME">
clip_path</span> arguments to the update method are
used to transform the sorted vector path; thus the
affine and clip path are implicitly stored for use in
the render method. If you do not use <tt class=
"APPLICATION">libart_lgpl</tt>'s sorted vector paths
in your own canvas items, you must arrange some other
way to ensure the affine and clip are taken into
account when you render.
</p>
</li>
<li>
<p>
In both modes, a redraw is requested for both the
region the item used to occupy, <i class="EMPHASIS">
and</i> the region the item will now occupy.
</p>
</li>
</ul>
<p>
Much of this work takes place behind the scenes in
utility functions from <tt class="FILENAME">
libgnomeui/gnome-canvas-util.h</tt>. <tt class=
"FUNCTION">gnome_canvas_update_bbox()</tt> sets the
item's new bounding box and requests a redraw on both the
old and new bounding boxes; it is used in GDK mode. (<tt
class="FUNCTION">gnome_canvas_update_bbox()</tt> expects
canvas pixel coordinates; <tt class="FUNCTION">
get_bounds()</tt> is a trivial function which computes
the rectangle's bounds in canvas pixel coordinates.)
</p>
<p>
So you know what's happening behind the scenes, here is
the implementation of <tt class="FUNCTION">
gnome_canvas_update_bbox()</tt>:
</p>
<table border="0" bgcolor="#E0E0E0" width="100%">
<tr>
<td>
<pre class="PROGRAMLISTING">
void
gnome_canvas_update_bbox (GnomeCanvasItem *item,
int x1, int y1,
int x2, int y2)
{
gnome_canvas_request_redraw (item->canvas,
item->x1, item->y1,
item->x2, item->y2);
item->x1 = x1;
item->y1 = y1;
item->x2 = x2;
item->y2 = y2;
gnome_canvas_request_redraw (item->canvas,
item->x1, item->y1,
item->x2, item->y2);
}
</pre>
</td>
</tr>
</table>
<p>
Of course you're free to do the equivalent yourself, this
is merely a convenience function.
</p>
<p>
In GDK mode, that's about all that happens; we update the
bounds and then return. Antialiased mode is a bit more
complex, but essentially the same tasks are performed.
First, <tt class="FUNCTION">
gnome_canvas_item_reset_bounds()</tt> sets the item's
bounds back to an empty rectangle. Then, two sorted
vector paths are prepared; one for the solid part of the
rectangle (if any), and one for the rectangle's outline
(if any). The same procedure is followed each time.
First, a vector path for <tt class="APPLICATION">
libart_lgpl</tt> is prepared; next, the path is affine
transformed; then <tt class="FUNCTION">
gnome_canvas_item_update_svp_clip()</tt> is used to
request a redraw on the old path, free the old path, clip
the new path, request a redraw on the new one, and save
the new one for use in rendering. If the rectangle's fill
or outline has been turned off, a redraw is requested on
the old vector path, but no new path is created.
</p>
<p>
To give you a clearer idea what is happening, here is the
implementation of <tt class="FUNCTION">
gnome_canvas_item_update_svp_clip()</tt>:
</p>
<table border="0" bgcolor="#E0E0E0" width="100%">
<tr>
<td>
<pre class="PROGRAMLISTING">
void
gnome_canvas_item_update_svp_clip (GnomeCanvasItem *item,
ArtSVP **p_svp, ArtSVP *new_svp,
ArtSVP *clip_svp)
{
ArtSVP *clipped_svp;
if (clip_svp != NULL)
{
clipped_svp = art_svp_intersect (new_svp, clip_svp);
art_svp_free (new_svp);
}
else
{
clipped_svp = new_svp;
}
gnome_canvas_item_update_svp (item, p_svp, clipped_svp);
}
</pre>
</td>
</tr>
</table>
<p>
and <tt class="FUNCTION">
gnome_canvas_item_update_svp()</tt>:
</p>
<table border="0" bgcolor="#E0E0E0" width="100%">
<tr>
<td>
<pre class="PROGRAMLISTING">
void
gnome_canvas_item_update_svp (GnomeCanvasItem *item,
ArtSVP **p_svp, ArtSVP *new_svp)
{
ArtDRect bbox;
gnome_canvas_update_svp (item->canvas, p_svp, new_svp);
if (new_svp)
{
bbox.x0 = item->x1;
bbox.y0 = item->y1;
bbox.x1 = item->x2;
bbox.y1 = item->y2;
art_drect_svp_union (&bbox, new_svp);
item->x1 = bbox.x0;
item->y1 = bbox.y0;
item->x2 = bbox.x1;
item->y2 = bbox.y1;
}
}
</pre>
</td>
</tr>
</table>
<p>
and then <tt class="FUNCTION">
gnome_canvas_update_svp()</tt>:
</p>
<table border="0" bgcolor="#E0E0E0" width="100%">
<tr>
<td>
<pre class="PROGRAMLISTING">
void
gnome_canvas_update_svp (GnomeCanvas *canvas,
ArtSVP **p_svp, ArtSVP *new_svp)
{
ArtSVP *old_svp;
ArtSVP *diff;
ArtUta *repaint_uta;
old_svp = *p_svp;
if (old_svp != NULL && new_svp != NULL)
{
repaint_uta = art_uta_from_svp (old_svp);
gnome_canvas_request_redraw_uta (canvas, repaint_uta);
repaint_uta = art_uta_from_svp (new_svp);
gnome_canvas_request_redraw_uta (canvas, repaint_uta);
}
else if (old_svp != NULL)
{
repaint_uta = art_uta_from_svp (old_svp);
art_svp_free (old_svp);
gnome_canvas_request_redraw_uta (canvas, repaint_uta);
}
*p_svp = new_svp;
}
</pre>
</td>
</tr>
</table>
<p>
Again, all of these are in <tt class="FILENAME">
libgnomeui/gnome-canvas-util.h</tt> for any canvas item
to use. Ignore the implementation details; the idea is
simply to see what work is being done. The code may be
easier to understand if you know that an <span class=
"STRUCTNAME">ArtDRect</span> is a "rectangle defined with
doubles," from <tt class="APPLICATION">libart_lgpl</tt>,
and that an <span class="STRUCTNAME">ArtUta</span> is a
"microtile array," basically a list of small regions.
(The antialiased canvas tracks the redraw region in a
fairly sophisticated way. Note that the "U" in "<span
class="STRUCTNAME">Uta</span>" is supposed to suggest the
greek letter symbolizing "micro," it does not stand for a
word beginning with "U".)
</p>
<div class="SECT3">
<h3 class="SECT3">
<a name="Z188">Requesting Updates</a>
</h3>
<p>
It is the canvas item's responsibility to request an
update or redraw when the properties of the item are
changed and the screen should be refreshed. This is
straightforward. For example, here is a snippet of code
from <tt class="FUNCTION">
gnome_canvas_re_set_arg()</tt>, which sets the <span
class="STRUCTNAME">"y2"</span> argument:
</p>
<table border="0" bgcolor="#E0E0E0" width="100%">
<tr>
<td>
<pre class="PROGRAMLISTING">
case ARG_Y2:
re->y2 = GTK_VALUE_DOUBLE (*arg);
gnome_canvas_item_request_update (item);
break;
</pre>
</td>
</tr>
</table>
<p>
Since <span class="STRUCTNAME">"y2"</span> modifies the
shape of the rectangle, the path must be recreated and
an update is necessary. Note that <tt class="FUNCTION">
gnome_canvas_item_request_update()</tt> simply sets a
flag and installs an idle handler if none is pending,
so it can be called many times without a performance
penalty.
</p>
<p>
Not all changes require an update; a redraw may be
sufficient, or perhaps the argument is unrelated to the
display. It depends on the canvas item and what exactly
is being changed.
</p>
</div>
</div>
<div class="SECT2">
<h2 class="SECT2">
<a name="Z189">The Render Method (Antialiased Mode)</a>
</h2>
<p>
The render method is shared between <span class=
"STRUCTNAME">GnomeCanvasRect</span> and <span class=
"STRUCTNAME">GnomeCanvasEllipse</span>; all it does is
stamp the two paths created in the update method into the
RGB buffer:
</p>
<table border="0" bgcolor="#E0E0E0" width="100%">
<tr>
<td>
<pre class="PROGRAMLISTING">
static void
gnome_canvas_re_render (GnomeCanvasItem *item,
GnomeCanvasBuf *buf)
{
GnomeCanvasRE *re;
guint32 fg_color, bg_color;
re = GNOME_CANVAS_RE (item);
if (re->fill_svp != NULL) {
gnome_canvas_render_svp (buf, re->fill_svp, re->fill_color);
}
if (re->outline_svp != NULL) {
gnome_canvas_render_svp (buf, re->outline_svp, re->outline_color);
}
}
</pre>
</td>
</tr>
</table>
<p>
As you can see, most of the work takes place in <tt
class="FUNCTION">gnome_canvas_render_svp()</tt>, another
function from <tt class="FILENAME">
libgnomeui/gnome-canvas-util.h</tt>; here is its
implementation:
</p>
<table border="0" bgcolor="#E0E0E0" width="100%">
<tr>
<td>
<pre class="PROGRAMLISTING">
void
gnome_canvas_render_svp (GnomeCanvasBuf *buf, ArtSVP *svp, guint32 rgba)
{
guint32 fg_color, bg_color;
if (buf->is_bg) {
bg_color = buf->bg_color;
fg_color = rgba >> 8;
art_rgb_svp_aa (svp,
buf->rect.x0, buf->rect.y0, buf->rect.x1, buf->rect.y1,
fg_color, bg_color,
buf->buf, buf->buf_rowstride,
NULL);
buf->is_bg = 0;
buf->is_buf = 1;
} else {
art_rgb_svp_alpha (svp,
buf->rect.x0, buf->rect.y0, buf->rect.x1, buf->rect.y1,
rgba,
buf->buf, buf->buf_rowstride,
NULL);
}
}
</pre>
</td>
</tr>
</table>
<p>
To understand <tt class="FUNCTION">
gnome_canvas_render_svp()</tt>, or to do your own RGB
buffer drawing (without using <tt class="APPLICATION">
libart_lgpl</tt>), you will need to know what a <span
class="STRUCTNAME">GnomeCanvasBuf</span> is:
</p>
<table border="0" bgcolor="#E0E0E0" width="100%">
<tr>
<td>
<pre class="PROGRAMLISTING">
typedef struct {
guchar *buf;
int buf_rowstride;
ArtIRect rect;
guint32 bg_color;
unsigned int is_bg : 1;
unsigned int is_buf : 1;
} GnomeCanvasBuf;
</pre>
</td>
</tr>
</table>
<p>
The <span class="STRUCTNAME">buf</span> member is an RGB
buffer, as explained in <a href="z132.html#SEC-GDKRGB">
the section called <i>RGB Buffers</i> in the chapter
called <i>GDK Basics</i></a>. The <span class=
"STRUCTNAME">buf_rowstride</span> is the buffer's
rowstride, also explained in <a href=
"z132.html#SEC-GDKRGB">the section called <i>RGB
Buffers</i> in the chapter called <i>GDK Basics</i></a>.
An <span class="STRUCTNAME">ArtIRect</span> is an integer
rectangle; <span class="STRUCTNAME">rect</span> defines
the redraw region in canvas pixel coordinates that this
buffer represents. <span class="STRUCTNAME">
rect.x0</span> and <span class="STRUCTNAME">
rect.y0</span> are the buffer offsets and correspond to
row 0, column 0 in the RGB buffer; you can convert from
canvas pixel coordinates to RGB buffer coordinates by
subtracting these values.
</p>
<p>
As an optimization, the canvas does not initialize the
RGB buffer with the background color, because the first
canvas item might cover the entire background anyway.
Thus, if your canvas item is the first one to render, you
must put some pixel value in every pixel of the redraw
region defined by the buffer's <span class="STRUCTNAME">
rect</span>. If your item does not cover a pixel, you
should fill that pixel with the <span class="STRUCTNAME">
bg_color</span>; <span class="STRUCTNAME">bg_color</span>
is a packed RGB value (no alpha). If you do this
manually, unpack an RGB value <span class="STRUCTNAME">
rgb</span> like this:
</p>
<table border="0" bgcolor="#E0E0E0" width="100%">
<tr>
<td>
<pre class="PROGRAMLISTING">
guchar r, g, b;
r = (rgb >> 16) & 0xff;
g = (rgb >> 8) & 0xff;
b = rgb & 0xff;
</pre>
</td>
</tr>
</table>
<p>
However, a convenience function is provided to fill a
<span class="STRUCTNAME">GnomeCanvasBuf</span> with its
<span class="STRUCTNAME">bg_color</span>:
</p>
<table border="0" bgcolor="#E0E0E0" width="100%">
<tr>
<td>
<pre class="PROGRAMLISTING">
void
gnome_canvas_buf_ensure_buf (GnomeCanvasBuf *buf)
{
guchar *bufptr;
int y;
if (!buf->is_buf) {
bufptr = buf->buf;
for (y = buf->rect.y0; y < buf->rect.y1; y++) {
art_rgb_fill_run (bufptr,
buf->bg_color >> 16,
(buf->bg_color >> 8) & 0xff,
buf->bg_color & 0xff,
buf->rect.x1 - buf->rect.x0);
bufptr += buf->buf_rowstride;
}
buf->is_buf = 1;
}
}
</pre>
</td>
</tr>
</table>
<p>
As you can see from the implementation of <tt class=
"FUNCTION">gnome_canvas_buf_ensure_buf()</tt>, <span
class="STRUCTNAME">is_bg</span> is a flag indicating that
the RGB buffer still contains random memory garbage; it
has not been initialized with RGB pixels. <span class=
"STRUCTNAME">is_buf</span> indicates that the buffer <i
class="EMPHASIS">has</i> been initialized, and subsequent
items should only draw themselves, ignoring background
pixels. These two flags are mutually exclusive; if your
item receives a buffer with <span class="STRUCTNAME">
is_bg</span> set, it should take steps to fill the
buffer, unset <span class="STRUCTNAME">is_bg</span>, and
set <span class="STRUCTNAME">is_buf</span>:
</p>
<table border="0" bgcolor="#E0E0E0" width="100%">
<tr>
<td>
<pre class="PROGRAMLISTING">
if (buf->is_bg)
{
gnome_canvas_buf_ensure_buf(buf);
buf->is_bg = FALSE;
}
</pre>
</td>
</tr>
</table>
<div class="SECT3">
<h3 class="SECT3">
<a name="Z190">Speed and RGB Rendering</a>
</h3>
<p>
If you have a large number of objects, RGB mode can be
faster than GDK mode. Drawing to an RGB buffer is a
simple matter of assigning to an array, which is much,
much faster than making a GDK call (since GDK has to
contact the X server and ask it to do the actual
drawing). The expensive part is copying the RGB buffer
to the X server when you're done. However, the copy
takes the same amount of time no matter how many canvas
items you have, since it is done only once, when all
the items have been rendered.
</p>
<p>
This is a big win in an application called "Guppi" I'm
in the process of writing. Guppi is a plot program. One
of the things it has to do is render a scatter plot
with tens of thousands of points. Each point is a small
colored shape; if I called GDK to render each, there
would be tens of thousands of trips to the X server,
possibly across a network. Instead, I use the canvas in
RGB mode, with a custom canvas item representing the
scatter plot. This allows me to do all the rendering on
the client side, and then the canvas copies the RGB
buffer to the server in a single burst. It's quite fast
and responsive. For less speed-intensive elements of
the plot, such as the legend, I can save time and use
the built-in canvas items.
</p>
<p>
The one difficulty with direct-to-RGB rendering is that
you need a rasterization library comparable to the GDK
drawing primitives if you want to draw anything
interesting. <tt class="APPLICATION">libart_lgpl</tt>
is a very high-quality antialiased rasterization
library, used by the default canvas items. You can use
it in your custom items as well, and it is the best
choice if you will only be drawing hundreds of shapes.
If you're drawing thousands of shapes, however, you'll
quickly see the need for something faster. Fortunately,
this is available; the maintainers of a package called
GNU Plotutils extracted the rasterization library from
the X distribution, and during the development of Guppi
I extracted it from Plotutils and hacked it to work
with the canvas's RGB buffers. I also added alpha
transparency support. The resulting library allows you
to draw on an RGB buffer much as you would draw using
GDK. The library is distributed under the same license
as the X Window System, and is free for anyone to
include with their application.
</p>
<p>
Raph Levien, author of <span class="STRUCTNAME">
libart_lgpl</span> and the GdkRGB module, tells me that
still faster routines could be written; if you need
more speed, consider this a challenge.
</p>
</div>
</div>
<div class="SECT2">
<h2 class="SECT2">
<a name="Z191">The Draw Method (GDK Mode)</a>
</h2>
<p>
Drawing with GDK is much less complicated than drawing
with <tt class="APPLICATION">libart_lgpl</tt>, though it
is also less flexible and produces lower-quality results.
Here is the <span class="STRUCTNAME">
GnomeCanvasRect</span> implementation of the draw method:
</p>
<table border="0" bgcolor="#E0E0E0" width="100%">
<tr>
<td>
<pre class="PROGRAMLISTING">
static void
gnome_canvas_rect_draw (GnomeCanvasItem *item, GdkDrawable *drawable,
int x, int y, int width, int height)
{
GnomeCanvasRE *re;
double i2w[6], w2c[6], i2c[6];
int x1, y1, x2, y2;
ArtPoint i1, i2;
ArtPoint c1, c2;
re = GNOME_CANVAS_RE (item);
/* Get canvas pixel coordinates */
gnome_canvas_item_i2w_affine (item, i2w);
gnome_canvas_w2c_affine (item->canvas, w2c);
art_affine_multiply (i2c, i2w, w2c);
i1.x = re->x1;
i1.y = re->y1;
i2.x = re->x2;
i2.y = re->y2;
art_affine_point (&c1, &i1, i2c);
art_affine_point (&c2, &i2, i2c);
x1 = c1.x;
y1 = c1.y;
x2 = c2.x;
y2 = c2.y;
if (re->fill_set) {
if (re->fill_stipple)
gnome_canvas_set_stipple_origin (item->canvas, re->fill_gc);
gdk_draw_rectangle (drawable,
re->fill_gc,
TRUE,
x1 - x,
y1 - y,
x2 - x1 + 1,
y2 - y1 + 1);
}
if (re->outline_set) {
if (re->outline_stipple)
gnome_canvas_set_stipple_origin (item->canvas, re->outline_gc);
gdk_draw_rectangle (drawable,
re->outline_gc,
FALSE,
x1 - x,
y1 - y,
x2 - x1,
y2 - y1);
}
}
</pre>
</td>
</tr>
</table>
<p>
The draw method receives a drawable (the buffer), the
buffer offsets (<span class="STRUCTNAME">x</span> and
<span class="STRUCTNAME">y</span>---the canvas pixel
coordinates of the buffer), and the buffer's size (<span
class="STRUCTNAME">width</span> and <span class=
"STRUCTNAME">height</span>). <span class="STRUCTNAME">
GnomeCanvasRect</span>'s draw method obtains the
item-to-world and world-to-canvas affines, then composes
(multiplies) them to create an item-to-canvas affine.
(See <a href="z174.html#SEC-AFFINES">the section called
<i>Affine Transformations</i> in the chapter called <i>
<tt class="CLASSNAME">GnomeCanvas</tt></i></a> for more
on affines.) Using this affine, it converts the
rectangle's corner points to canvas pixel coordinates;
then it draws the rectangle, converting the canvas
coordinates to buffer coordinates by subtracting the
buffer offsets.
</p>
</div>
</div>
<div class="NAVFOOTER">
<br>
<br>
<table width="100%" border="0" bgcolor="#ffffff" cellpadding=
"1" cellspacing="0">
<tr>
<td width="25%" bgcolor="#ffffff" align="left">
<a href="cha-canvasitem.html"><font color="#0000ff"
size="2"><b><<< Previous</b></font></a>
</td>
<td width="25%" colspan="2" bgcolor="#ffffff" align=
"center">
<font color="#0000ff" size="2"><b><a href="ggad.html">
<font color="#0000ff" size="2"><b>
Home</b></font></a></b></font>
</td>
<td width="25%" bgcolor="#ffffff" align="right">
<a href="z192.html"><font color="#0000ff" size="2"><b>
Next >>></b></font></a>
</td>
</tr>
<tr>
<td colspan="2" align="left">
<font color="#000000" size="2"><b>Writing a <span
class="STRUCTNAME">GnomeCanvasItem</span></b></font>
</td>
<td colspan="2" align="right">
<font color="#000000" size="2"><b>Other
Methods</b></font>
</td>
</tr>
</table>
</div>
</body>
</html>
|