1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
|
# BUFR Tour
This document showcases some of the features of the high-level BUFR interface.
To follow along make sure you've imported `eccodes.highlevel` module:
```python
>>> from eccodes.highlevel import *
```
### Reading messages from a file
To read a BUFR message from a file, pass the file object to the `BUFRMessage` constructor:
```python
>>> file = open('sample-data/temp.bufr', 'rb'):
>>> bufr = BUFRMessage(file)
>>> bufr
<eccodes.highlevel.BUFRMessage object at 0x7f01e8d52820>
```
Each time we call the `BUFRMessage` constructor (on the same file) we will get
the next BUFR message; that is until we reached the EOF.
A more idiomatic way to iterate through a file is to use the `FileReader` class:
```python
>>> for bufr in FileReader('file.bufr', eccodes.CODES_PRODUCT_BUFR):
...
```
Note that we didn't have to release any resources explicitly.
The `BUFRMessage` object, with its underlying C handle, will be released
automatically when collected by the Python's garbage collector.
The `BUFRMessage` object can also be used as a context manager:
```python
>>> for bufr in FileReader('file.bufr', eccodes.CODE_PRODUCT_BUFR):
with bufr:
...
```
This will ensure that `BUFRMessage` resources (including the underlying C handle)
are properly released _right after use_, even in the occurrence of exception.
### Inspecting messages
The most straightforward way to inspect the contents of a BUFR message is by
printing it with the built-in `print()` function:
```python
>>> print(bufr)
...
```
This pretty prints the message in a dict-like representation which is obtain
via the `as_dict()` method.
We can call the `as_dict()` method ourselves, which will return the actual
dictionary, not a string:
```
```python
>>> bufr.as_dict()
...
```
`as_dict()` provides many useful options such as listing keys with their rank
prefixes or changing the depth of expansion of hierarchical data section blocks.
### Getting and setting values
The `BUFRMessage` class provides a dict-like interface for accessing keys and values:
```python
>>> bufr['stationNumber']
60
>>> bufr['someUndefinedKey']
Traceback (most recent call last):
...
eccodes.KeyValueNotFoundError: 'someUndefinedKey'
>> bufr.get('someUndefinedKey', 12345)
12345
```
Note that array values are always returned as masked arrays:
```python
>>> bufr['airTemperature']
masked_array(data=[--, 272.3, --, --, 270.5, --, 266.90000000000003, --,
--, --, --, 257.90000000000003, --, --, --, --, --, --,
--, --, --, 238.70000000000002, --, --, --, --, --, --,
--, 225.3, --],
mask=[ True, False, True, True, False, True, False, True,
True, True, True, False, True, True, True, True,
True, True, True, True, True, False, True, True,
True, True, True, True, True, False, True],
fill_value=-1e+100)
```
Individual elements can be accessed using a special key syntax with a rank prefix:
```python
>>> bufr['#2#airTemperature']
272.3
```
Setting values is straightforward:
```python
>>> bufr['airTemperature'] = 273.15
masked_array(data=[273.15, 273.15, 273.15, 273.15, 273.15, 273.15, 273.15,
273.15, 273.15, 273.15, 273.15, 273.15, 273.15, 273.15,
273.15, 273.15, 273.15, 273.15, 273.15, 273.15, 273.15,
273.15, 273.15, 273.15, 273.15, 273.15, 273.15, 273.15,
273.15, 273.15, 273.15],
mask=[False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False],
fill_value=-1e+100)
```
We can use the `update()` method to update multiple items at once, for instance:
```python
>>> bufr.update(year=2022, month=11, day=22)
```
Mappings and iterables are also supported:
```python
>>> mapping = {'blockNumber': 12, 'stationNumber': 345}
>>> bufr.update(mapping)
>>> iterable = [('blockNumber', 12), ('stationNumber', 345)]
>>> bufr.update(iterable)
```
Another common use of the `update()` method is to copy items within a given data block
from one message the another:
```python
>>> other = BUFRMessage(open('other.bufr', 'rb'))
>>> bufr.data[1].update(other.data[1])
```
### Iterating over keys & values
We can iterate over the combined header and data keys:
```python
>>> for key in bufr.keys():
... print(key)
edition
# more header keys...
unexpandedDescriptors
blockNumber
# more data keys...
windSpeed
```
or just over the header (or data) keys separately:
```python
>>> for key in bufr.header.keys():
... print(key)
edition
# more header keys...
unexpandedDescriptors
>>>
>>> for key in bufr.data.keys():
... print(key)
blockNumber
# more data keys...
windSpeed
```
We can also iterate over the key-value pairs:
```python
>>> for item in bufr.data.items():
... print(item)
('blockNumber', 6)
# more data items...
('windSpeed', masked_array(data=[--, 6.0, 12.0, 16.0, 15.0, 14.0, 14.0, 14.0, 12.0,
12.0, 12.0, 13.0, 13.0, 13.0, 9.0, 9.0, 9.0, 7.0, 5.0,
4.0, 7.0, 7.0, 7.0, 6.0, 7.0, 8.0, 6.0, 6.0, 5.0, 4.0,
3.0],
mask=[ True, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False],
fill_value=-1e+100))
```
### Selecting items in hierarchically structured messages
If the message contains one or more delayed replications, the data section is divided
into blocks delineated by the replication block bounds.
We can think of blocks as groups of adjacent data section items.
A similar principle applies to uncompressed multi-subset messages where items of
individual subsets are grouped into blocks - one block per subset.
Blocks can also be nested which happens when a message contains nested replications.
This division into blocks is especially useful when working with complex hierarchical
structures where the same item can appear in multiple places in the message.
As an example, let's take the following wind profiler message which has 4 outer
replication blocks.
Each of these blocks represents a different station:
```python
>>> bufr = BUFRMessage(open('sample-data/rwp_jma.bufr', 'rb'))
>>> len(bufr.data)
4
>>> [each['stationNumber'] for each in bufr.data]
[755, 891, 893, 898]
```
Now, each of the outer blocks (stations) has another two inner blocks:
```python
>>> [len(each) for each in bufr.data]
[2, 2, 2, 2]
```
The first sub-block contains station metadata:
```python
# 1st station's 1st sub-block (metadata)
>>> list(bufr.data[0][0].keys())
['blockNumber', 'stationNumber', 'latitude', 'longitude', 'heightOfStation', 'measuringEquipmentType']
```
and the second sub-block represents the profile data:
```python
>>> list(bufr.data[0][1].keys())
['year', 'month', 'day', 'hour', 'minute', 'timeSignificance', 'timePeriod', 'heightAboveStation', 'u', 'v', 'w', 'signalToNoiseRatio']
```
If we now try to get values of, say, key 'u', from the top-level view, we
will be presented with an array which is a concatenation of all values
across all replication blocks (i.e., all profiles of all stations combined together):
```python
>>> bufr.data['u']
masked_array(data=[--, --, --, -6.4, -0.5, --, --, --, -8.5, --, --, --,
--, -3.4000000000000004, --, --, --,
-5.1000000000000005, --, --, --, --, --, --,
0.7000000000000001, --, -5.4, -9.0, -7.7, --, --, --,
# ... 300 more values
```
This is not very helpful, though.
In practice, what we really want is values of a particular profile.
The easiest way to do that is to use a subscripting to get hold of the desired data blocks:
```python
>>> station = bufr.data[0]
>>> station_info = station[0]
>>> profile = station[1]
>>> profile['u']
masked_array(data=[--, --, --, -6.4, -0.5, --, --, --, -8.5, --, --, --,
--, -3.4000000000000004, --, --, --,
-5.1000000000000005, --, --, --, --, --, --,
0.7000000000000001],
mask=[ True, True, True, False, False, True, True, True,
False, True, True, True, True, False, True, True,
True, False, True, True, True, True, True, True,
False],
fill_value=-1e+100)
```
Just a side note: using rank prefix syntax (e.g., '#1#u') wouldn't help in this case
because each profile can have different number of levels, which makes the computation
of the correct ranks more complicated; we won't get away with a simple arithmetic
based on rank offsets in this case.
To make this work we would need to calculate the ranks based on the outer and
the inner replication factors, which is tedious and error prone.
### Creating a new message
Let's create a new `BUFRMessage` object from a sample:
```python
>>> bufr = BUFRMessage('BUFR3_local_satellite')
```
Before setting keys from the data section we first need to set the relevant template-related keys:
```python
>>> bufr['masterTablesVersionNumber'] = 18
>>> bufr['numberOfSubsets'] = 5
>>> bufr['compressedData'] = 1
>>> bufr['inputShortDelayedDescriptorReplicationFactor'] = [1, 1, 1, 1, 1, 1]
>>> bufr['unexpandedDescriptors'] = [311010]
```
Note that once the 'unexpandedDescriptors' key has been set, the template is
"baked" and can't be modified afterwards!
After this we can finally proceed with setting the data section keys:
```python
>>> bufr['year'] = 2022
>>> bufr['latitude'] = [45.61, 45.62, 45.63, 45.64, 45.65]
>>> ...
```
Another way of creating new messages is by copying the template from an existing message:
```python
>>> old = BUFRMessage(open('old.bufr', 'rb'))
>>> new = BUFRMessage('BUFR3_local_satellite')
>>> old.copy_to(new, header_only=True)
>>> old['year'] = 2022
>>> ...
```
### Writing to file
To write `BUFRMessage` to a file, use the `write_to()` method.
```python
>>> bufr.write_to(open('output.bufr', 'wb'))
581
```
Use `get_buffer()` to get the contents of the encoded message:
```python
>>> bufr.get_buffer()
b'BUFR\x00...\xc07777'
```
### Copying
We can create a copy of the entire message with all its subsets by calling the
`copy()` method:
```python
>>> new = bufr.copy()
>>> bufr['md5Data']
'8769d91b03a00ee26f1fa1f56bb6284c'
>>> new['md5Data']
'8769d91b03a00ee26f1fa1f56bb6284c'
```
Specific subsets can be extracted by either passing a sequence of (0-based)
subset indices or a slice/range to the `copy()` method:
```python
>>> new1 = bufr.copy(subsets=np.array([0, 2, 4]))
>>> new2 = bufr.copy(subsets=[8, 16, 32])
>>> new3 = bufr.copy(subsets=range(0, 32, 4))
>>> new4 = bufr.copy(subsets=slice(0, 64, 8))
```
For convenience, a subsets slice can also be comprised of built-in `datetime` or numpy
`datetime64` objects, in which case it's interpreted as a date-time range.
Note that that the bounds of such slices are inclusive on both sides.
```python
>>> new = bufr.copy(subsets=slice(datetime(2000, 2, 4, 8), datetime(2000, 2, 4, 16)))
```
### Miscellaneous
Use `get_datetime()` method to get `numpy.datetime64` array whose values are
derived from datetime-related keys (e.g. 'year', 'month', etc.).
```python
>>> bufr = BUFRMessage(open('sample-data/hdob.bufr', 'rb'))
>>> bufr.get_datetime()
masked_array(data=[['2022-05-29T16:00:30', '2022-05-29T16:01:00',
'2022-05-29T16:01:30', '2022-05-29T16:02:00',
...
'2022-05-29T16:08:30', '2022-05-29T16:09:00',
'2022-05-29T16:09:30', '2022-05-29T16:10:00']],
mask=False,
fill_value=numpy.datetime64('NaT'),
dtype='datetime64[s]')
```
|