1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
# Copyright 2022- ECMWF.
#
# This software is licensed under the terms of the Apache Licence Version 2.0
# which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
# In applying this licence, ECMWF does not waive the privileges and immunities
# granted to it by virtue of its status as an intergovernmental organisation
# nor does it submit to any jurisdiction.
import datetime as dt
import enum
from collections import Counter, abc, defaultdict # noqa
from contextlib import contextmanager
from copy import deepcopy
from dataclasses import dataclass, field, fields # noqa
from enum import auto
from typing import ( # noqa
Any,
BinaryIO,
Callable,
Dict,
Iterator,
List,
Optional,
Sequence,
Set,
Tuple,
Union,
cast,
)
import numpy
import numpy as np
from numpy.ma import MaskedArray # noqa
from numpy.typing import DTypeLike, NDArray # noqa
from eccodes.eccodes import KeyValueNotFoundError as NotFoundError
from eccodes.eccodes import * # noqa
from .tables import Element
@dataclass
class Behaviour:
assumed_scalar_elements: Set = field(default_factory=set) # [1]
on_assumed_scalar_element_invalid_size: str = "warn" # [2]
autorelease_handle: bool = True # [3]
update_header_from_data_before_packing: bool = True # [4]
# [1] By default, values of data elements in uncompressed, multi-subset messages
# are one-/two-dimensional arrays, even if there is only one common value for
# all subsets. This is done in order to provide "stable" view of data elements
# which doesn't depend on the encoding details. However, for situations where
# the user can guarantee that an element, or a set of elements, will always
# have only a single value (per rank), this option can be used to reduce
# memory usage.
#
# [2] If an assumed scalar element is encoded with more than one value (per rank),
# either print a warning ('warn'), raise an exception ('raise'), or just carry
# on as if nothing hapened ('ignore').
#
# [3] Whether to release Coder's C handle automatically. The only reason you might
# want to set this option to False is if you need to interoperate with the
# low-level API, but you must know what you're doing.
#
# [4] This option controls whether to call Message's update_header_from_data()
# method automatically before packing. This method sets some of the header
# keys such as 'typicalYear', 'localMonth', 'localLatitude', etc.
DEFAULT_BEHAVIOUR = Behaviour(
assumed_scalar_elements=set(
[
# 'originatorOfRetrievedAtmosphericConstituent',
# 'satelliteChannelBandWidth',
# 'satelliteChannelCentreFrequency',
# 'satelliteIdentifier',
# 'satelliteInstruments',
]
)
)
current_behaviour = deepcopy(DEFAULT_BEHAVIOUR)
def get_behaviour():
global current_behaviour # noqa
return deepcopy(current_behaviour)
def set_behaviour(new_behaviour):
global current_behaviour # noqa
for f in fields(new_behaviour):
setattr(current_behaviour, f.name, getattr(new_behaviour, f.name))
@contextmanager
def change_behaviour():
global current_behaviour # noqa
saved_behaviour = get_behaviour()
try:
yield current_behaviour
finally:
set_behaviour(saved_behaviour)
MultiIndex = Tuple[int, ...]
DateLike = Union[dt.date, dt.datetime, np.datetime64, str]
TimeLike = Union[DateLike, dt.timedelta, np.timedelta64]
ValueLike = Union[bool, int, float, str, List, NDArray]
class Flags(enum.Flag):
CODED = auto()
COMPUTED = auto()
FACTOR = auto()
READ_ONLY = auto()
BITMAP = auto()
SCALAR = auto()
CODED = Flags.CODED
COMPUTED = Flags.COMPUTED
FACTOR = Flags.FACTOR
READ_ONLY = Flags.READ_ONLY
BITMAP = Flags.BITMAP
SCALAR = Flags.SCALAR
FLAGS = dict(
coded=CODED, computed=COMPUTED, factor=FACTOR, read_only=READ_ONLY, bitmap=BITMAP
)
FlagsLike = Optional[Union[Flags, str, Sequence[str]]]
def ensure_flags(value: FlagsLike) -> Flags:
if value is None:
flags = Flags(0)
elif isinstance(value, Flags):
flags = value
elif isinstance(name := value, str):
try:
flags = FLAGS[name]
except KeyError:
raise ValueError(f"'{name}' is not a valid flag name")
elif isinstance(value, Sequence):
names = list(value)
flags = Flags(0)
while names:
name = names.pop()
try:
flags |= FLAGS[name]
except KeyError:
raise ValueError(f"'{name}' is not a valid flag name")
else:
raise TypeError("Invalid type: %s", type(value))
return flags
@dataclass
class Key:
name: str
rank: Optional[int] = None
primary: str = ""
secondary: str = ""
attribute: str = ""
string: str = ""
element: Optional[Element] = None
flags: Flags = CODED
@staticmethod
def from_string(string: str):
name, rank, primary, secondary, attribute = "", None, "", "", ""
if string.startswith("/"):
raise NotFoundError(
f"{string}: Search keys with the '/<query>/<name>' syntax are not supported yet"
)
elif string.startswith("#"):
second_hash = string.find("#", 2)
if second_hash == -1:
raise NotFoundError(f"'{string}': Missing second '#' character")
rank = int(string[1:second_hash])
if rank <= 0:
raise NotFoundError(f"'{string}': Rank must be a positive number")
else:
second_hash = -1
last_arrow = string.rfind("->", -11, -4)
if last_arrow != -1:
if string[last_arrow + 2 :] in (
"code",
"units",
"reference",
"scale",
"width",
):
attribute = string[last_arrow + 2 :]
else:
last_arrow = -1
else:
last_arrow = len(string)
first_arrow = string.find("->", second_hash + 1, last_arrow)
if first_arrow != -1:
secondary = string[first_arrow + 2 : last_arrow]
else:
first_arrow = last_arrow
primary = string[second_hash + 1 : first_arrow]
name = string[second_hash + 1 : last_arrow]
key = Key(name, rank, primary, secondary, attribute, string)
return key
def __post_init__(self):
if not self.string:
if self.rank:
self.string = f"#{self.rank}#"
self.string += self.name
if self.attribute:
self.string += f"->{self.attribute}"
if not self.primary:
self.primary = self.name
@dataclass
class Association:
element: Element
element_rank: int
element_dtype: DTypeLike
bitmap: NDArray
bitmap_offset: int
indices: Dict[str, NDArray]
slices: Dict[str, slice] = field(init=False, default_factory=dict) # [1]
entries: Dict[str, "DataEntry"] = field(init=False, default_factory=dict) # [2]
# [1] Slices of elements sequence numbers which are within the scope of the bitmap.
#
# [2] A dict of secondary/associated entries keyed by the primary group name,.
# Only applies to those primary entries where at least one of the ranks is
# is set in the bitmap.
def __post_init__(self) -> None:
# Consider only those elements that are within the scope
# of the bitmap.
for key, indices in self.indices.items():
bitmap_stop = self.bitmap.size + self.bitmap_offset
start = numpy.searchsorted(indices >= self.bitmap_offset, True)
stop = indices.size - numpy.searchsorted(indices[::-1] < bitmap_stop, True)
self.slices[key] = slice(start, stop)
def rank_mask(self, key: str):
"""Returns a mask indicating which ranks of the given primary key have
an actual associated value.
"""
slice = self.slices[key]
indices = self.indices[key] # all
mask = numpy.repeat(
False, len(indices)
) # the default for ranks outside bitmap's scope
indices = indices[slice] # only within bitmap's scope
indices = indices - self.bitmap_offset # relative to bitmap
mask[slice] = self.bitmap[indices]
return mask
def any_rank_set(self, key: str) -> bool:
"""Returns `True` if any rank of the given primary key has an actual
associated value.
"""
try:
mask = self.rank_mask(key)
except KeyError: # key was defined *after* the bitmap association
return False
return bool(numpy.any(mask))
@dataclass
class DataEntry:
name: str
shape: Tuple = ()
uniform_element: Optional[Element] = None
elements: List[Element] = field(default_factory=list)
array: Optional[NDArray] = None
association: Optional[Association] = None
primary: Optional["DataEntry"] = None
flags: Flags = CODED
@property
def size(self) -> int:
assert len(self.shape) == 2
return self.shape[0] * self.shape[1]
|