File: data.py

package info (click to toggle)
eccodes-python 2%3A2.44.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,048 kB
  • sloc: python: 7,750; ansic: 280; sh: 94; makefile: 81; cpp: 30
file content (618 lines) | stat: -rw-r--r-- 23,605 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
# Copyright 2022- ECMWF.
#
# This software is licensed under the terms of the Apache Licence Version 2.0
# which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
# In applying this licence, ECMWF does not waive the privileges and immunities
# granted to it by virtue of its status as an intergovernmental organisation
# nor does it submit to any jurisdiction.

from functools import cached_property

from .coder import Coder
from .common import *
from .helpers import ensure_masked_array, flatten, missing_of
from .tree import (
    AssociationNode,
    LeafNode,
    Node,
    ReplicationNode,
    WrapperNode,
    build_tree,
)
from .view import View

# flake8: noqa: F405
#   ruff: noqa: F403


class Data(View):
    _coder: Coder
    _subset_count: int = 0
    _compressed: bool = False
    _entries: Dict[str, DataEntry]
    _associations: Dict[Tuple[str, int], Association]

    def __init__(self, coder: Coder) -> None:
        self._coder = coder
        self._entries = {}

    def __contains__(self, key: str) -> bool:
        return self._top_view.__contains__(key)

    def __eq__(self, other: object) -> bool:
        if isinstance(other, Data):
            eq = self._top_view.__eq__(other._top_view)
        else:
            eq = False
        return eq

    def __getitem__(self, subscript: Union[int, str]) -> Union["DataBlock", ValueLike]:
        return self._top_view.__getitem__(subscript)

    def __iter__(self) -> Iterator["DataBlock"]:
        yield from self._top_view.__iter__()

    def __len__(self) -> int:
        return self._top_view.__len__()

    def __setitem__(self, key: str, value: ValueLike) -> None:
        return self._top_view.__setitem__(key, value)

    def __str__(self) -> str:
        return self._top_view.__str__()

    def as_dict(self, ranked=False, depth=0, **kwds) -> Dict:
        """Returns dict-like representation of the data section items."""
        return self._top_view.as_dict(ranked, depth, **kwds)

    def copy_to(self, other: "Data") -> None:
        """Copies common keys/values in this data section to `other`."""
        self._coder.unpack()
        self._commit()
        codes_bufr_copy_data(self._coder._handle, other._coder._handle)
        # Workaround for ECC-2022
        self._top_view  # [1]
        for a in self._associations.values():
            if a.element_rank > 1:
                for g in a.entries.values():
                    other[g.name][:] = self[g.name][:]

        # [1] This ensures that we have built all bitmap associations.

    def get_count(self, key: str) -> int:
        """Returns the number of ranked items designated by the given key."""
        return self._top_view.get_count(key)

    def get_shape(self, key: str) -> Tuple[int, ...]:
        return self._top_view.get_shape(key)

    def get_size(self, key: str) -> int:
        return self._top_view.get_size(key)

    def is_missing(self, key: str) -> bool:
        return self._top_view.is_missing(key)

    def items(self, ranked=False, **kwds) -> Iterator[Tuple[str, ValueLike]]:
        yield from self._top_view.items(ranked, **kwds)

    def keys(self, ranked=False, **kwds) -> Iterator[str]:
        yield from self._top_view.keys(ranked, **kwds)

    def set(self, key: str, value: ValueLike) -> None:
        self._top_view.set(key, value)

    def set_missing(self, key: str) -> None:
        self._top_view.set_missing(key)

    def _commit(self) -> None:
        for entry in self._entries.values():
            if entry.array is None or entry.flags & (READ_ONLY | COMPUTED):
                continue
            else:
                self._coder.commit(entry)
                entry.array = None

    @cached_property
    def _top_view(self):
        self._subset_count = cast(int, self._coder.get("numberOfSubsets"))
        self._compressed = cast(bool, self._coder.get("compressedData"))
        root, self._entries, self._associations = build_tree(self._coder)  # [1]
        top_level = ()
        top_view = DataBlock(self, root, top_level)
        for entry in self._entries.values():
            try:
                slice = top_view._slices[entry.name]
            except KeyError:
                continue
            if entry.association:
                entry.shape = entry.primary.shape
            elif entry.flags & SCALAR:
                entry.shape = (slice.stop, 1)
                if entry.flags & FACTOR:
                    assert entry.array is not None  # [2]
            elif entry.flags & BITMAP:
                entry.shape = (slice.stop, None)  # [3]
            else:
                if self._compressed:
                    entry.shape = (slice.stop, self._subset_count)
                else:
                    entry.shape = (slice.stop,)
        self._coder._baked_template = True
        self._coder._subset_count = self._subset_count
        self._coder._compressed = self._compressed
        return top_view

        # [1] Note that it's the call to build_tree() which triggers unpacking!
        #     Because _top_view() is a cached property (and thus initialized lazily)
        #     the unpacking will be defered until when actually needed.
        #
        # [2] Note that arrays of delayed replication factors are constructed in build_tree().
        #
        # [3] At the moment the size of bitmap arrays is determined in Coder.checkout().
        #     Is there a way to infer it earlier? TODO


class DataBlock(View):
    def __init__(self, data: Data, node, index: MultiIndex) -> None:
        self._data: Data = data
        self._node = node
        self._index: MultiIndex = index
        self._slices: Dict[str, slice] = resolve_slices(node, index)
        self._sub_blocks: Dict[int, "DataBlock"] = {}

    def __contains__(self, subscript: str) -> bool:
        key = Key.from_string(subscript)
        try:
            entry = self._get_entry(key)
        except NotFoundError:
            contains = False
        else:
            if key.rank:
                slice = self._slices[entry.name]
                contains = key.rank <= slice.stop
            else:
                contains = True
        return contains

    def __eq__(self, other: object) -> bool:
        if isinstance(other, DataBlock):
            eq = False
            for (k1, v1), (k2, v2) in zip(self.items(), other.items()):
                if k1 != k2:
                    break
                if isinstance(v1, np.ndarray):
                    if not isinstance(v2, np.ndarray):
                        break
                    if v1.dtype.type == np.str_:
                        if not v2.dtype.type == np.str_:
                            break
                        if not np.char.compare_chararrays(v1, v2, "==", rstrip=True):
                            break
                    else:
                        if not np.all(v1.data == v2.data):
                            break
                else:
                    if v1 != v2:
                        break
            else:
                eq = True
        else:
            eq = False
        return eq

    def __len__(self) -> int:
        node = self._node
        if isinstance(node, AssociationNode):
            # Has no children. Should we add an empty list? TODO
            return 0
        elif node.children and isinstance(node.children[0], ReplicationNode):
            assert len(node.children) == 1
            replication = node.children[0]
            return replication.factors[self._index]
        else:
            return len(node.children)

    def __iter__(self) -> Iterator["DataBlock"]:
        node = self._node
        if node.children and isinstance(node.children[0], ReplicationNode):
            assert len(node.children) == 1
            replication = node.children[0]
            for factor in range(replication.factors[self._index]):
                index = self._index + (factor,)
                if len(replication.children) == 1 and isinstance(
                    replication.children[0], LeafNode
                ):
                    block = DataBlock(self._data, replication.children[0], index)
                else:
                    block = DataBlock(self._data, replication, index)
                yield block
        else:
            for child in node.children:
                yield DataBlock(self._data, child, self._index)

    def __getitem__(self, subscript: Union[int, str]) -> Union["DataBlock", ValueLike]:
        if isinstance(subscript, str):
            key = Key.from_string(subscript)
            entry = self._get_entry(key)
            sub = self._get_subscript(entry, key)
            if key.attribute:
                if entry.uniform_element:
                    value = getattr(entry.uniform_element, key.attribute)
                else:
                    if not entry.elements:
                        resolve_elements(
                            self._data._entries, self._data._top_view._node
                        )
                        assert entry.elements
                    if isinstance(sub, slice):
                        value = [getattr(e, key.attribute) for e in entry.elements[sub]]
                    else:
                        value = getattr(entry.elements[sub], key.attribute)
            else:
                array = self._get_array(entry)
                value = array[sub]
            return value
        elif type(ordinal := subscript) is int:
            node = self._node
            if node.children and isinstance(node.children[0], ReplicationNode):
                assert len(node.children) == 1
                replication = node.children[0]
                factor = replication.factors[self._index]
                ordinal = factor + ordinal if ordinal < 0 else ordinal
                if ordinal < 0 or ordinal >= factor:
                    raise IndexError(f"Subscript out of range: {subscript}")
                try:
                    block = self._sub_blocks[ordinal]
                except KeyError:
                    index = self._index + (ordinal,)
                    if len(replication.children) == 1 and isinstance(
                        replication.children[0], LeafNode
                    ):
                        block = DataBlock(self._data, replication.children[0], index)
                    else:
                        block = DataBlock(self._data, replication, index)
                    self._sub_blocks[ordinal] = block
            else:
                ordinal = len(node.children) + ordinal if ordinal < 0 else ordinal
                if ordinal < 0 or ordinal >= len(node.children):
                    raise IndexError(f"Subscript out of range: {subscript}")
                try:
                    block = self._sub_blocks[ordinal]
                except KeyError:
                    block = DataBlock(self._data, node.children[ordinal], self._index)
                    self._sub_blocks[ordinal] = block
            return block
        else:
            raise TypeError(
                "subscript must be either 'int' or 'str'; got %s" % type(subscript)
            )

    def __setitem__(self, key: str, value: ValueLike) -> None:
        key = Key.from_string(key)
        value = ensure_masked_array(value)
        entry = self._get_entry(key)
        if entry.flags & READ_ONLY or key.attribute:
            raise ReadOnlyError(f"{key.string}")
        array = self._get_array(entry)
        subscript = self._get_subscript(entry, key)
        if isinstance(subscript, slice):
            array[subscript] = value
        else:
            array[subscript : subscript + 1] = value

    def __str__(self) -> str:
        import pprint

        d = self.as_dict()
        return pprint.pformat(d, sort_dicts=False)

    def as_dict(self, ranked=False, depth=0, **kwds) -> Dict:
        """Returns dict-like representation of the DataBlock items."""
        if self._node.depth < depth and len(self) > 0:
            d = {}
            for i, block in enumerate(self):
                # block = cast('DataBlock', self[i])
                d[i] = block.as_dict(ranked, depth, **kwds)
        else:
            counts_only = kwds.pop("counts_only", False)
            shapes_only = kwds.pop("shapes_only", False)
            if counts_only:
                d = {k: self.get_count(k) for k in self.keys(ranked, **kwds)}
            elif shapes_only:
                d = {k: self.get_shape(k) for k in self.keys(ranked, **kwds)}
            else:
                d = dict(self.items(ranked, **kwds))
        return d

    def get_count(self, key: str) -> int:
        """Returns the number of elements designated by the given key."""
        key = Key.from_string(key)
        try:
            slice = self._slices[key.name]
        except KeyError:
            raise NotFoundError(key.string)
        else:
            rank_count = slice.stop - slice.start
            if key.rank:
                if key.rank <= rank_count:
                    count = 1
                else:
                    raise NotFoundError(key.string)
            else:
                count = rank_count
        return count

    def get_shape(self, key: str) -> Tuple[int, ...]:
        key = Key.from_string(key)
        entry = self._get_entry(key)
        subscript = self._get_subscript(entry, key)
        if isinstance(subscript, slice):
            shape = (subscript.stop - subscript.start,)
        else:
            shape = ()
        if key.attribute:
            if entry.uniform_element:
                shape = ()
        elif self._data._compressed and not entry.flags & Flags.SCALAR:
            shape += (self._data._subset_count,)
        return shape

    def get_size(self, key: str) -> int:
        shape = self.get_shape(key)
        size = 1
        for dim in shape:
            size *= dim
        return size

    def is_missing(self, key: str) -> bool:
        key = Key.from_string(key)
        if key.attribute:
            is_missing = False
        else:
            entry = self._get_entry(key)
            slice = self._get_slice(entry, key)
            if entry.array is None:
                is_missing = self._data._coder.is_missing(entry, slice)
            else:
                array = self._get_array(entry)
                array_view = array[slice]
                is_missing = np.all(array_view.mask)
        return is_missing

    def set(self, key: str, value: ValueLike) -> None:
        self.__setitem__(self, key, value)

    def set_missing(self, key: str) -> None:
        key = Key.from_string(key)
        if key.attribute:
            raise ValueCannotBeMissingError(
                f"Attribute '{key.string}' can't have missing value"
            )
        else:
            entry = self._get_entry(key)
            slice = self._get_slice(entry, key)
            if entry.array is None:
                self._data._coder.set_missing(entry, slice)
            else:
                array = self._get_array(entry)
                array_view = array[slice]
                array_view.mask = True

    def items(self, ranked=False, **kwds) -> Iterator[Tuple[str, ValueLike]]:
        for key in self.keys(ranked, **kwds):
            yield key, cast(ValueLike, self[key])

    def keys(self, ranked=False, **kwds) -> Iterator[str]:
        only_flags = ensure_flags(kwds.get("only", Flags.CODED))
        skip_flags = ensure_flags(kwds.get("skip", Flags(0)))
        if ranked:
            ranks = Counter()
            for key in iterate_keys(self._node, self._index):
                ranks[key.name] += 1
                rank = ranks[key.name]
                yield f"#{rank}#{key.name}"
        else:
            for name, slice in self._slices.items():
                if slice.stop <= slice.start:
                    continue  # Ignore keys inside empty replications
                try:
                    entry = self._data._entries[name]
                except KeyError:
                    continue  # Ignore unset associated keys
                if not entry.flags & only_flags:
                    continue
                if entry.flags & skip_flags:
                    continue
                yield name

    def _get_entry(self, key: Key) -> DataEntry:
        try:
            entry = self._data._entries[key.name]
        except KeyError:
            raise NotFoundError(key.string)
        return entry

    def _get_array(self, entry):
        if entry.array is None:
            array = self._data._coder.checkout(entry)
            if not self._data._coder._compressed:  # TODO: correct shape in Coder
                array = array.ravel()
            if array.dtype.type == np.str_ and np.__version__ < "1.24":
                array = np.ma.masked_where(array == "", array, copy=False)  # [1]
                array.fill_value = ""
            else:
                array = np.ma.masked_equal(array, missing_of(array.dtype), copy=False)
            entry.array = array
        if entry.flags & Flags.SCALAR:
            array = entry.array.ravel()
        else:
            array = entry.array
        return array

        # [1] This is a workaround for old versions of numpy where calling masked_equal()
        #     on a string array fails with:
        #     numpy.core._exceptions.UFuncTypeError: ufunc 'equal' did not contain a loop
        #     with signature matching types (dtype('<U64'), dtype('<U64')) -> dtype('bool')

    def _get_subscript(self, entry, key):
        slice = self._get_slice(entry, key)
        slice_len = slice.stop - slice.start
        if key.rank:
            assert slice_len == 1
            subscript = slice.start
        elif slice_len == 1:
            max_level = self._node.max_levels[entry.name]
            if self._node.level == max_level:  # [1]
                subscript = slice.start
            else:
                subscript = slice
        else:
            subscript = slice
        return subscript

        # [1] Make sure we don't flatten single-rank array views unless they are
        #     accessed from the bottom-most DataBlock. This is important because
        #     otherwise shapes of array views could change depending on the values
        #     of replication factors. We want to provide 1d array views only in those
        #     cases where it's guaranteed there is always going to be only one rank for
        #     the given key in the current DataBlock, irrespective of replication
        #     factors.

    def _get_slice(self, entry, key):
        slice_ = self._slices[entry.name]
        if key.rank:
            rank_count = slice_.stop - slice_.start
            if key.rank > rank_count:
                message = (
                    "Rank %d is out of bounds; max. rank of '%s' in this view is %d"
                )
                raise NotFoundError(message % (key.rank, entry.name, rank_count))
            start = slice_.start + key.rank - 1
            slice_ = slice(start, start + 1)
        return slice_


def iterate_keys(node, index: MultiIndex) -> Iterator[Key]:
    """Recursively iterates over keys of `node` and all of its sub-nodes given
    the replication index.
    """
    if isinstance(node, LeafNode):
        yield from node.keys
    elif isinstance(node, ReplicationNode):
        if len(index) == node.factors.ndim + 1:
            for child in node.children:
                yield from iterate_keys(child, index)
        else:
            for i in range(node.factors[index]):
                child_index = index + (i,)
                for child in node.children:
                    yield from iterate_keys(child, child_index)
    elif isinstance(node, WrapperNode):
        for child in node.children:
            yield from iterate_keys(child, index)
    elif isinstance(node, AssociationNode):
        yield from node.keys
    else:
        assert False


def resolve_slices(node, index: MultiIndex) -> Dict[str, slice]:
    """Given the replication index, resolves ranks for each entry in the node."""
    try:
        slices = node.slices[index]
    except KeyError:
        slices = {}
        starts = resolve_starts(node, index)
        counts = resolve_counts(node, index)
        for name, count in counts.items():
            start = starts[name]
            stop = start + count
            slices[name] = slice(start, stop)
        node.slices[index] = slices
    return slices


def resolve_starts(node, index: MultiIndex) -> Counter:
    """Given the replication index, resolves rank starts for each entry in the node."""
    try:
        starts = node.starts[index]
    except KeyError:
        if not node.parent:
            starts = Counter()
        elif not isinstance(node, ReplicationNode):
            if node.ordinal > 0:
                upper_sibling = node.parent.children[node.ordinal - 1]
                starts = resolve_starts(upper_sibling, index).copy()
                counts = resolve_counts(upper_sibling, index)
                starts += counts
            else:
                starts = resolve_starts(node.parent, index)
        else:
            if index[-1] == 0:
                starts = resolve_starts(node.parent, index[:-1])
            else:
                lower_index = index[:-1] + (index[-1] - 1,)
                starts = resolve_starts(node, lower_index).copy()
                counts = resolve_counts(node, lower_index)
                starts += counts
        node.starts[index] = starts
    return starts


def resolve_counts(node, index: MultiIndex) -> Counter:
    """Given the replication index, resolves rank counts for each entry in the node."""
    try:
        counts = node.counts[index]
    except KeyError:
        if isinstance(node, (LeafNode, AssociationNode)):
            counts = Counter((k.name for k in node.keys))
            node.counts[index] = counts
        else:
            counts = Counter()
            for child in node.children:
                counts += resolve_counts(child, index)
            if len(index) == node.level:
                node.counts[index] = counts
    if (
        isinstance(node, LeafNode)
        and isinstance(node.parent, ReplicationNode)
        and len(index) < node.level
    ):
        total_factor = sum(flatten(node.parent.factors[index]))
        counts = counts.copy()
        for name in counts:
            counts[name] *= total_factor
    return counts


def resolve_elements(entries, root: Node):
    """Traverses nodes of the data tree and gathers lists of expanded elements
    for each of the entries.
    """

    def recurse(node, index):
        if isinstance(node, WrapperNode):
            for child in node.children:
                recurse(child, index)
        elif isinstance(node, ReplicationNode):
            assert node.level == len(index)
            for i in range(node.factors[index]):
                for child in node.children:
                    recurse(child, index + (i,))
        elif isinstance(node, (LeafNode, AssociationNode)):
            for key in node.keys:
                try:
                    entry = entries[key.name]
                except KeyError:  # [1]
                    continue
                if not entry.uniform_element:
                    entry.elements.append(key.element)
        else:
            assert False

    recurse(root, index=())

    # [1] Currently we append associated keys for each and every primary key
    #     of the LeafNode, but we add them to entries only if there is at least
    #     one rank covered by the bitmap. Check if this is OK or whether it needs
    #     to be optimized. TODO