1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
|
# BUFR Snippets
This document seeks to compile a collection of code snippets demonstrating common
(but also less common) BUFR-handling tasks, utilising both the low-level and the
high-level interface.
## Reading from file
### The low-level way
Read a single message:
```python
bufr = codes_bufr_new_from_file(file)
```
Iterate over all messages in the file:
```python
while bufr := codes_bufr_new_from_file(file):
...
codes_release(bufr)
```
### The high-level way
Read a single message:
```python
bufr = BUFRMessage(file)
```
Iterate over all messages in the file:
```python
for bufr in FileReader(path, eccodes.CODES_PRODUCT_BUFR):
...
```
We can also use Python's `with` statement (aka context manager) to ensure
that `BUFRMessage` resources are properly released after its use:
```python
for bufr in FileReader(path, eccodes.CODES_PRODUCT_BUFR):
with bufr:
...
```
## Accessing items
### The low-level way
Get value of a header key:
```python
value = codes_get(bufr, 'numberOfSubsets')
```
Get value of a data key:
```python
codes_set(bufr, 'unpack', 1)
value = codes_get_array(bufr, 'latitude')
```
### The high-level way
Get value of a header key:
```python
value = bufr['numberOfSubsets']
```
Get value of a data key:
```python
value = bufr['latitude']
```
Note that we didn't need to do explicit unpacking in order to access data section keys.
This was done for us automatically.
However, had we had a needed for a more precise control over when and where the message
gets unpacked, we could do that manually by calling the `unpack()` method:
```python
bufr.unpack()
# guaranteed to be in the unpacked state henceforth
```
After the first invocation, subsequent calls to `unpack()` will have no effect.
## Iterating over items
### The low-level way
```python
codes_set(bufr, 'unpack', 1)
it = codes_bufr_keys_iterator_new(bufr)
while codes_bufr_keys_iterator_next(it):
key = codes_bufr_keys_iterator_get_name(it)
try:
value = codes_get(bufr, key)
except ArrayTooSmallError:
value = codes_get_array(bufr, key)
...
codes_bufr_keys_iterator_release(it)
```
### The high-level way
```python
for key, value in bufr.items():
...
```
## Iterating over data items only
### The low-level way
```python
codes_set(bufr, 'unpack', 1)
it = codes_bufr_keys_iterator_new(bufr)
while codes_bufr_keys_iterator_next(it):
key = codes_bufr_keys_iterator_get_name(it)
if codes_bufr_key_is_header(bufr, key):
continue
try:
value = codes_get(bufr, key)
except ArrayTooSmallError:
value = codes_get_array(bufr, key)
...
codes_bufr_keys_iterator_release(it)
```
### The high-level way
```python
for key, value in bufr.data.items():
...
```
## Creating a new message from samples
### The low-level way
Note that 'numberOfSubsets', 'compressedData' and 'input...ReplicationFactor' must
be set _before_ the 'unexpandedDescriptor' key!
```python
bufr = codes_bufr_new_from_samples('BUFR4_local')
codes_set('masterTablesVersionNumber', 18)
codes_set('numberOfSubsets', 5)
codes_set('compressedData', 1)
codes_set_array('inputShortDelayedDescriptorReplicationFactor', [1, 1, 1, 1, 1, 1])
codes_set_array('unexpandedDescriptors', [311010])
```
### The high-level way
The same restrictions apply in the high-level case:
```python
bufr = BUFRMessage('BUFR4_local')
bufr['masterTablesVersionNumber'] = 18
bufr['numberOfSubsets'] = 5
bufr['compressedData'] = 1
bufr['inputShortDelayedDescriptorReplicationFactor'] = [1, 1, 1, 1, 1, 1]
bufr['unexpandedDescriptors'] = [311010]
```
(In the future version of eccodes-python we are planning to relax some of these restrictions.
Specifically, the need to set 'input...ReplicationFactor' upfront.)
## Creating a message copy with ECMWF's local section 2
### The low-level way
```python
old = codes_bufr_new_from_file(foreign_file)
new = codes_bufr_new_from_samples('BUFR4_local_satellite')
# Copy header keys (section 1 only)
it = codes_bufr_keys_iterator_new(old)
codes_skip_read_only(it)
while codes_bufr_keys_iterator_next(it):
key = codes_bufr_keys_iterator_get_name(it)
if key == 'unexpandedDescriptors':
break
value = codes_get(old, key)
codes_set(new, value)
# Copy template-related keys
codes_set(old, 'unpack', 1)
value = codes_get_array(old, 'dataPresentIndicator')
codes_set_array(new, 'inputDataPresentIndicator', value)
value = codes_get_array(old, 'delayedDescriptorReplicationFactor')
codes_set_array(new, 'inputDelayedDescriptorReplicationFactor', value)
value = codes_get_array(old, 'unexpandedDescriptors')
codes_set_array(new, 'unexpandedDescriptors', value)
# Copy data keys
codes_copy_data(old, new)
# Set section 2 header keys
...
value = codes_get_array(old, 'latitude')'
codes_set(new, 'localLatitude1', min(value))
codes_set(new, 'localLatitude2', max(value))
...
codes_set(new, 'satelliteID', 123)
```
### The high-level way
```python
old = BUFRMessage(foreign_file)
new = BUFRMessage('BUFR4_local_satellite')
old.copy_to(new)
new['satelliteID'] = 123
```
Note that unlike in the low-level example, we don't need to set every section 2 key
explicitly. The only exception is the 'satelliteID' (or, in the case of uncompressed
messages, the 'ident' key).
All other section 2 keys are set automatically on message packing.
## Iterating over subsets of uncompressed multi-subset messages
### The low-level way
```python
subset_count = codes_get(bufr, 'numberOfSubsets')
codes_set(bufr, 'unpack', 1)
for n in range(1, subset_count + 1):
print(f'Working on subset {n}')
block_number = codes_get(bufr, f'/subsetNumber={n}/blockNumber')
...
# BUT THIS IS CURRENTLY NOT ALLOWED!!!
# pressure1 = codes_get(bufr, f'/subsetNumber={n}/#1#pressure')
...
```
### The high-level way
```python
for n, subset in enumerate(bufr.data, start=1):
print(f'Working on subset {n}')
block_number = subset['blockNumber']
...
pressure1 = subset['#1#pressure']
...
```
## Working with uncompressed multi-subset messages with nested replications
The following is an example of a wind profiler BUFR message (see tests/sample-data/rwp\_jma.bufr).
Each subset in this uncompressed BUFR message represents a unique station.
Within each subset there is one static block at the top which contains some
common metadata, followed by a doubly-nested delayed replication block with
the actual profile data.
The outer replication corresponds to profiles measured at different times, and
the inner replication contains the individual level data for each of the profiles.
The tricky part about this message is that the number of profiles and the number
of levels varies across stations, which means we can't navigate the structure by doing a simple
rank arithmetic.
We have to employ more involved calculations in order to navigate the structure correctly.
### The low-level way
```python
subset_count = codes_get(bufr, 'numberOfSubsets')
codes_set(bufr, 'unpack', 1)
for n in range(1, subset_count + 1):
codes_set(bufr, 'extractSubset', n)
codes_set(bufr, 'doExtractSubsets', 1)
sbufr = codes_clone(bufr)
codes_set(sbufr, 'unpack', 1)
# Station info
...
latitude = codes_get(sbufr, 'latitude')
...
factors = codes_get_array(sbufr, 'delayedDescriptorReplicationFactor')
station_counts = factors[0]
level_counts = factors[1:]
assert len(level_counts) == station_counts
level_offsets = [0] + list(itertools.accumulate(level_counts[:-1]))
us = codes_get_array(sbufr, 'u')
vs = codes_get_array(sbufr, 'u')
...
for prof, (off, len) in enumerate(zip(level_offsets, level_counts)):
# Profile info
...
hour = codes_get_array(sbufr, 'hour')[prof]
...
# Profile data
...
u = np.ma.masked_equal(us[off:off+len], CODES_MISSING_DOUBLE)
v = np.ma.masked_equal(vs[off:off+len], CODES_MISSING_DOUBLE)
...
codes_release(sbufr)
```
### The high-level way
With the high-level interface, navigating the hierarchical structure is much simpler:
```python
for subset in bufr.data:
station_info, station_profiles = subset
# Station info
...
latitude = station_info['latitude']
...
for (profile_info, profile_data) in station_profiles:
# Profile info
...
hour = profile_info['hour']
...
# Profile data
...
u = profile_data['u']
...
```
## Extracting subsets by index
### The low-level way
```python
codes_set(bufr, 'unpack', 1)
codes_set(bufr, 'extractSubsetList', [2, 4, 8])
codes_set(bufr, 'doExtractSubsets', 1)
new = codes_clone(bufr)
```
### The high-level way
```python
new = bufr.copy(subsets=[1, 3, 7])
```
Note that unlike in the low-level example where we used 1-based subset
numbers, here we use subset indices which are 0-based!
## Extracting subsets by range / slice
### The low-level way
```python
codes_set(bufr, 'unpack', 1)
codes_set(bufr, 'extractSubsetIntervalStart', 2)
codes_set(bufr, 'extractSubsetIntervalEnd', 8)
codes_set(bufr, 'doExtractSubsets', 1)
new = codes_clone(bufr)
```
### The high-level way
```python
new = bufr.copy(subsets=range(1, 9))
```
or
```python
new = bufr.copy(subsets=slice(1, 9))
```
Note that the bounds in the high-level example follow standard Python
convention, whereas in the low-level example they are 1-based and inclusive!
## Extracting subsets by date & time
### The low-level way
```python
codes_set(bufr, 'unpack', 1)
start = datetime(2000, 2, 4, 8, 16)
end = start + timedelta(seconds=32)
for suffix, value in zip(('Start', 'End'), (start, end)):
codes_set(bufr, 'extractDateTimeYear' + suffix, value.year)
codes_set(bufr, 'extractDateTimeMonth' + suffix, value.month)
codes_set(bufr, 'extractDateTimeDay' + suffix, value.day)
codes_set(bufr, 'extractDateTimeHour' + suffix, value.hour)
codes_set(bufr, 'extractDateTimeMinute' + suffix, value.minute)
codes_set(bufr, 'extractDateTimeSecond' + suffix, value.second)
codes_set(bufr, 'doExtractDateTime', 1)
new = codes_clone(bufr)
```
### The high-level way
```python
start = datetime(2000, 2, 4, 8, 16)
end = start + timedelta(seconds=32)
new = bufr.copy(subsets=slice(start, end))
```
Note that the bounds of datetime slices are inclusive on both sides!
## Extracting subsets within a lat-lon area
### The low-level way
```python
codes_set(bufr, 'unpack', 1)
codes_set(bufr, 'extractAreaNorthLatitude', 64.0)
codes_set(bufr, 'extractAreaSouthLatitude', 32.0)
codes_set(bufr, 'extractAreaEastLongitude', 16.0)
codes_set(bufr, 'extractAreaWestLongitude', 8.0)
codes_set(bufr, 'doExtractArea', 1)
new = codes_clone(bufr)
```
### The high-level way
Unlike in the previous examples, there is no built-in option to extract subsets by area.
However, we can pass an arbitrary boolean mask argument to the `copy()`
method, which provides unlimited flexibility:
```python
lat = bufr['latitude']
lon = bufr['longitude']
lat_mask = np.logical_and(lat <= 64.0, lat >= 32.0)
lon_mask = np.logical_and(lon <= 16.0, lon >= 8.0)
mask = np.logical_and(lat_mask, lon_mask)
new = bufr.copy(subsets=mask)
```
## Thinning subsets
### The low-level way
```python
codes_set(bufr, 'unpack', 1)
codes_set(bufr, 'simpleThinningSkip', 4)
codes_set(bufr, 'doSimpleThinning', 1)
new = codes_clone(bufr)
```
This will extract subset numbers 1, 6, 11, etc.
### The high-level way
Although the high-level interface doesn't provide bespoke option for
the thinning, we can achieve the same by using slices:
```python
new = bufr.copy(subsets=slice(None, None, 5))
```
Note that the slice step must be 1 larger than the thinning step to get the
same result.
## Writing to file
### The low-level way
```python
file = open('output.bufr', 'wb')
codes_set(bufr, 'pack', 1)
codes_write(bufr, file)
```
### The high-level way
```python
file = open('output.bufr', 'wb')
bufr.write_to(file)
```
Notice that in contrast to the low-level example, we didn't need to
pack the message explicitly before writing.
This was done for us automatically.
But, if needed, packing can also be triggered manually at any time by calling
the `pack()` method.
|