File: md5.ec

package info (click to toggle)
ecere-sdk 0.44.15-1
  • links: PTS
  • area: main
  • in suites: sid, stretch
  • size: 97,712 kB
  • ctags: 54,695
  • sloc: ansic: 593,042; makefile: 12,250; yacc: 4,955; lex: 707; objc: 259; python: 252; xml: 102
file content (311 lines) | stat: -rw-r--r-- 10,067 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
/*
 * md5.ec -- An eC adaptation of Alexander Peslyak public domain MD5 implementation
 * --------------------------------------------------------------------------------
 * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
 * MD5 Message-Digest Algorithm (RFC 1321).
 *
 * Homepage:
 * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
 *
 * Author:
 * Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
 *
 * This software was written by Alexander Peslyak in 2001.  No copyright is
 * claimed, and the software is hereby placed in the public domain.
 * In case this attempt to disclaim copyright and place the software in the
 * public domain is deemed null and void, then the software is
 * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
 * general public under the following terms:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted.
 *
 * There's ABSOLUTELY NO WARRANTY, express or implied.
 *
 * (This is a heavily cut-down "BSD license".)
 *
 * This differs from Colin Plumb's older public domain implementation in that
 * no exactly 32-bit integer data type is required (any 32-bit or wider
 * unsigned integer data type will do), there's no compile-time endianness
 * configuration, and the function prototypes match OpenSSL's.  No code from
 * Colin Plumb's implementation has been reused; this comment merely compares
 * the properties of the two independent implementations.
 *
 * The primary goals of this implementation are portability and ease of use.
 * It is meant to be fast, but not as fast as possible.  Some known
 * optimizations are not included to reduce source code size and avoid
 * compile-time configuration.
 */

struct MD5_CTX
{
   uint32 lo, hi;
   uint32 a, b, c, d;
   byte buffer[64];
   uint32 block[16];
} MD5_CTX;

/*
 * The basic MD5 functions.
 *
 * F and G are optimized compared to their RFC 1321 definitions for
 * architectures that lack an AND-NOT instruction, just like in Colin Plumb's
 * implementation.
 */
#define F(x, y, z)         ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z)         ((y) ^ ((z) & ((x) ^ (y))))
#define H(x, y, z)         (((x) ^ (y)) ^ (z))
#define H2(x, y, z)        ((x) ^ ((y) ^ (z)))
#define I(x, y, z)         ((y) ^ ((x) | ~(z)))

/*
 * The MD5 transformation for all four rounds.
 */
#define STEP(f, a, b, c, d, x, t, s) \
   (a) += f((b), (c), (d)) + (x) + (t); \
   (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
   (a) += (b);

/*
 * SET reads 4 input bytes in little-endian byte order and stores them
 * in a properly aligned word in host byte order.
 *
 * The check for little-endian architectures that tolerate unaligned
 * memory accesses is just an optimization.  Nothing will break if it
 * doesn't work.
 */
#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
#  define SET(n) (*(uint32 *)&ptr[(n) * 4])
#  define GET(n) SET(n)
#else
#  define SET(n) \
      (ctx.block[(n)] = \
      (uint32)ptr[(n) * 4] | \
      ((uint32)ptr[(n) * 4 + 1] << 8) | \
      ((uint32)ptr[(n) * 4 + 2] << 16) | \
      ((uint32)ptr[(n) * 4 + 3] << 24))
#  define GET(n) (ctx.block[(n)])
#endif

/*
 * This processes one or more 64-byte data blocks, but does NOT update
 * the bit counters.  There are no alignment requirements.
 */
static const void *body(MD5_CTX ctx, const void *data, uint size)
{
   const byte *ptr = (const byte *)data;
   uint32 a = ctx.a, b = ctx.b, c = ctx.c, d = ctx.d;
   do
   {
      uint32 saved_a = a, saved_b = b, saved_c = c, saved_d = d;

      // Round 1
      STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7)
      STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12)
      STEP(F, c, d, a, b, SET(2), 0x242070db, 17)
      STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22)
      STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7)
      STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12)
      STEP(F, c, d, a, b, SET(6), 0xa8304613, 17)
      STEP(F, b, c, d, a, SET(7), 0xfd469501, 22)
      STEP(F, a, b, c, d, SET(8), 0x698098d8, 7)
      STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12)
      STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17)
      STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22)
      STEP(F, a, b, c, d, SET(12), 0x6b901122, 7)
      STEP(F, d, a, b, c, SET(13), 0xfd987193, 12)
      STEP(F, c, d, a, b, SET(14), 0xa679438e, 17)
      STEP(F, b, c, d, a, SET(15), 0x49b40821, 22)

      // Round 2
      STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5)
      STEP(G, d, a, b, c, GET(6), 0xc040b340, 9)
      STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14)
      STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20)
      STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5)
      STEP(G, d, a, b, c, GET(10), 0x02441453, 9)
      STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14)
      STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20)
      STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5)
      STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9)
      STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14)
      STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20)
      STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5)
      STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9)
      STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14)
      STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20)

      // Round 3
      STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4)
      STEP(H2, d, a, b, c, GET(8), 0x8771f681, 11)
      STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16)
      STEP(H2, b, c, d, a, GET(14), 0xfde5380c, 23)
      STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4)
      STEP(H2, d, a, b, c, GET(4), 0x4bdecfa9, 11)
      STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16)
      STEP(H2, b, c, d, a, GET(10), 0xbebfbc70, 23)
      STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4)
      STEP(H2, d, a, b, c, GET(0), 0xeaa127fa, 11)
      STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16)
      STEP(H2, b, c, d, a, GET(6), 0x04881d05, 23)
      STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4)
      STEP(H2, d, a, b, c, GET(12), 0xe6db99e5, 11)
      STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16)
      STEP(H2, b, c, d, a, GET(2), 0xc4ac5665, 23)

      // Round 4
      STEP(I, a, b, c, d, GET(0), 0xf4292244, 6)
      STEP(I, d, a, b, c, GET(7), 0x432aff97, 10)
      STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15)
      STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21)
      STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6)
      STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10)
      STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15)
      STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21)
      STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6)
      STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10)
      STEP(I, c, d, a, b, GET(6), 0xa3014314, 15)
      STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21)
      STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6)
      STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10)
      STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15)
      STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21)

      a += saved_a;
      b += saved_b;
      c += saved_c;
      d += saved_d;

      ptr += 64;
   } while (size -= 64);

   ctx.a = a;
   ctx.b = b;
   ctx.c = c;
   ctx.d = d;

   return ptr;
}

void MD5Init(MD5_CTX ctx)
{
   ctx =
   {
      a = 0x67452301;
      b = 0xefcdab89;
      c = 0x98badcfe;
      d = 0x10325476;
   };
}

void MD5Update(MD5_CTX ctx, const byte *data, uint size)
{
   uint32 saved_lo = ctx.lo;
   uint used = saved_lo & 0x3f;

   if((ctx.lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
      ctx.hi++;
   ctx.hi += size >> 29;

   if(used)
   {
      uint available = 64 - used;

      if(size < available)
      {
         memcpy(&ctx.buffer[used], data, size);
         return;
      }

      memcpy(&ctx.buffer[used], data, available);
      data = (const byte *)data + available;
      size -= available;
      body(ctx, ctx.buffer, 64);
   }

   if(size >= 64)
   {
      data = body(ctx, data, size & ~(uint)0x3f);
      size &= 0x3f;
   }

   memcpy(ctx.buffer, data, size);
}

void MD5Final(byte *result, MD5_CTX ctx)
{
   uint used = ctx.lo & 0x3f;
   uint available = 64 - used;

   ctx.buffer[used++] = 0x80;

   if(available < 8)
   {
      memset(&ctx.buffer[used], 0, available);
      body(ctx, ctx.buffer, 64);
      used = 0;
      available = 64;
   }

   memset(&ctx.buffer[used], 0, available - 8);

   ctx.lo <<= 3;
   ctx.buffer[56] = (byte)ctx.lo;
   ctx.buffer[57] = ctx.lo >> 8;
   ctx.buffer[58] = ctx.lo >> 16;
   ctx.buffer[59] = ctx.lo >> 24;
   ctx.buffer[60] = (byte)ctx.hi;
   ctx.buffer[61] = ctx.hi >> 8;
   ctx.buffer[62] = ctx.hi >> 16;
   ctx.buffer[63] = ctx.hi >> 24;

   body(ctx, ctx.buffer, 64);

   result[0] = (byte)ctx.a;
   result[1] = ctx.a >> 8;
   result[2] = ctx.a >> 16;
   result[3] = ctx.a >> 24;
   result[4] = (byte)ctx.b;
   result[5] = ctx.b >> 8;
   result[6] = ctx.b >> 16;
   result[7] = ctx.b >> 24;
   result[8] = (byte)ctx.c;
   result[9] = ctx.c >> 8;
   result[10] = ctx.c >> 16;
   result[11] = ctx.c >> 24;
   result[12] = (byte)ctx.d;
   result[13] = ctx.d >> 8;
   result[14] = ctx.d >> 16;
   result[15] = ctx.d >> 24;

   memset(ctx, 0, sizeof(MD5_CTX));
}

void MD5Digest(const char * string, int len, char * output)
{
   byte bytes[16];
   int c;
   MD5_CTX ctx;
   MD5Init(&ctx);
   MD5Update(&ctx, (byte *)string, len);
   MD5Final(bytes, &ctx);
   len = 0;
   for(c = 0; c<16; c++)
   {
      sprintf(output + len, "%02x", bytes[c]);
      len += 2;
   }
}

void MD5Digest64(const char * string, int len, uint64 * output)
{
   byte bytes[16];
   MD5_CTX ctx;
   MD5Init(&ctx);
   MD5Update(&ctx, (byte *)string, len);
   MD5Final(bytes, &ctx);
   output[0] = ((uint64)bytes[ 0] << 56) | ((uint64)bytes[ 1] << 48) | ((uint64)bytes[ 2] << 40) | ((uint64)bytes[ 3] << 32) |
               ((uint64)bytes[ 4] << 24) | ((uint64)bytes[ 5] << 16) | ((uint64)bytes[ 6] <<  8) | ((uint64)bytes[ 7]      );
   output[1] = ((uint64)bytes[ 8] << 56) | ((uint64)bytes[ 9] << 48) | ((uint64)bytes[10] << 40) | ((uint64)bytes[11] << 32) |
               ((uint64)bytes[12] << 24) | ((uint64)bytes[13] << 16) | ((uint64)bytes[14] <<  8) | ((uint64)bytes[15]      );
}