File: arith.cc

package info (click to toggle)
eclib 2014-09-21-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,216 kB
  • ctags: 4,287
  • sloc: cpp: 45,827; makefile: 222; sh: 108
file content (551 lines) | stat: -rw-r--r-- 12,764 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
// arith.cc: definitions of arithmetic functions (single precision)
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
// 
// This file is part of the eclib package.
// 
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
// 
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// 
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
// 
//////////////////////////////////////////////////////////////////////////
 
#include <eclib/arith.h>


/* Prime number procs; adapted from Pari  */

// These have not been stl-ized at all since they work just fine...

primeclass the_primes;    // The one and only instance

primeclass::primeclass() 
{
  pdiffptr=0; // will be allocated in init()
  ifstream pfile("MAXPRIME");
  if(!pfile)
    {
      init(1000000);  // default value
    } 
  else
    {
      long maxnum;
      pfile>>maxnum;
      init(maxnum);
    }
}

primeclass::primeclass(long maxnum) 
{
  pdiffptr=0; // will be allocated in init()
  init(maxnum);
}

void primeclass::init(long maxnum)  /* initializes variable pdiffptr */
                                    /* to give primes up to maxnum  */
{
  register long k,size=(maxnum+257)>>1;
  if(pdiffptr) delete [] pdiffptr;
  byteptr p= new unsigned char[size+1];
  if (!p) {cout<<"Out of memory in primeclass::init!"<<endl;abort();}
  memset(p, 0, size + 1); 
  register byteptr q,r,s,fin=p+size;
  for(r=q=p,k=1;r<fin;)
    {
      do {r+=k; k+=2; r+=k;} while (*++q);
      for(s=r;s<fin;s+=k) *s=1;
    }
  r=p; *r++=2; *r++=1;  /* 2 and 3 */
  for(s=q=r-1;; s=q)
    {
      do q++; while (*q);
      if (q>=fin) break;
      *r++=(q-s)<<1;
      s=q;
    }
  *r++=0;
  NPRIMES=r-p-1;
  BIGGESTPRIME=((s - p) << 1) + 1;
  //    cout<<"Near end of init, NPRIMES = "<<NPRIMES<<endl;
  //    cout<<"Significant elements of pdiffptr: ";
  //    for(k=0; k<NPRIMES+1; k++) cout<<(int)p[k]<<" "; cout<<endl;
//  cout<<"BIGGESTPRIME = "<< BIGGESTPRIME << endl;
  pdiffptr = new unsigned char[NPRIMES+1];
  q=p; r=pdiffptr; k=NPRIMES+1;  
  while(k--) {*r = *q; r++; q++;}
  delete [] p;
  reset();
//  cout<<"At end of init, NPRIMES = "<<NPRIMES<<endl;
  //    cout<<"First few elements of pdiffptr: ";
  //    for(k=0; k<10; k++) cout<<(int)pdiffptr[k]<<" "; cout<<endl;
}

primeclass::~primeclass()
{
  delete [] pdiffptr;
}

void primeclass::reset(void) {p_ind=0; p_val=0; p_aptr=pdiffptr;}
int primeclass::at_end(void) {return *p_aptr==0;}
int primeclass::advance(void) 
{
    unsigned char d=*p_aptr;
    if(d) {p_ind++; p_val+=d; p_aptr++; return 1;}
    else  {return 0;}
}

long primeclass::number(long n)  
// returns n'th prime from list, starting at n=1 for p=2
{
//  cout << "In primeclass::number("<<n<<")"<<endl;
  if(n<p_ind) reset();
  int ok=1;
//  cout << "Advancing to the "<<n<<"th prime...\n";
  while((p_ind<n)&&ok) 
    {
      //      cout<<"ind="<<ind<<"\tval="<<val<<"\td="<<(int)(*aptr)<<endl;
      ok=advance();
    }
  if(!ok)
    {
	cout<<"Not enough primes in primeclass.number("<<n<<") !"<<endl;
	abort();
    }
  return p_val;
}

vector<long> primeclass::getfirst (long n)  /* returns list of first n primes */
{
//  cout << "In primeclass::getfirst("<<n<<")"<<endl;
  vector<long> ans;
  reset();
  int ok=1;
  for (long i=0; (i<n)&&ok; i++)
    {
      ok=advance();
      ans.push_back(p_val);
    }
  if(!ok)
    {
	cout<<"Not enough primes in primeclass.getfirst("<<n<<") !"<<endl;
	abort();
    }
  return ans;
}

// returns i>=0 such that p is the i'th prime
long prime_pi(long p)
{
  primevar pr;
  int ip=0;
  while ((long)pr<p) {pr++; ip++;}
  return ip;
}


long primdiv(long aa)
{
 primevar pr;
 long p=0,q;
 long a = labs(aa);
 while (pr.ok() && p==0)
   {q=pr; pr++;
    if (a%q==0) p = q;
    else if (q*q>a) p=a;   // N.B. this causes a=1 to return 1.  Beware!
   }
 if (p==0) {p=a; 
            cout<<"No prime divisor found for "<<aa<<" so assuming prime!\n";
           }
 return p;
}


vector<long> pdivs(long aa)
{vector<long> plist;
 primevar pr; long a = abs(aa);long p;
 while ( (a>1) && (pr.ok()))
 { p = pr; pr++;
 if (a%p==0) 
   {
     plist.push_back(p);
     while (a%p==0) a/=p;      //divide out by all the p's in a
   }
 else if (p*p>a) 
   {
     plist.push_back(a); a=1;
   }
 }
 if (a>1) {plist.push_back(a);}  //In case of p-factors outside range, assume
                                //the cofactor is prime.
 return plist;
}


vector<long> posdivs(long a, const vector<long>& plist)
{
// cout << "In posdivs with a = " << a << endl;
// cout << plist.size() << " primes: " <<endl; cout << plist << endl;
 long j,k,p,e,nd = 1;
 vector<long> dlist(1,1);  // cout << "Divisor 0 = 1" << endl;
 vector<long>::const_iterator pr = plist.begin();
 while(pr!=plist.end())
   {
     p=*pr++; e = val(p,a);
     dlist.resize((e+1)*dlist.size());
     for (j=0; j<e; j++)
       for (k=0; k<nd; k++)
	 dlist[nd*(j+1)+k] = p*dlist[nd*j+k];
     nd*=(e+1);
   } 
 return dlist;
}

vector<long> alldivs(long a, const vector<long>& plist)
{//cout << "In alldivs with a = " << a << endl;
// cout << plist.size() << " primes: " <<endl; cout << plist << endl;
 long j,k,p,e,nd = 2;
 vector<long> dlist(1,1);  // cout << "Divisor 0 =  1" << endl;
 dlist.push_back(-1);      // cout << "Divisor 1 = -1" << endl;
 vector<long>::const_iterator pr = plist.begin();
 while(pr!=plist.end())
 {
   p = *pr++; e = val(p,a);
   dlist.resize((e+1)*dlist.size());
   for (j=0; j<e; j++)
     for (k=0; k<nd; k++)
       dlist[nd*(j+1)+k] = p*dlist[nd*j+k];
   nd*=(e+1);
 }
 return dlist;
}

vector<long> sqdivs(long a, const vector<long>& plist)
{
 long j,k,p,e,nd = 1;
 vector<long> dlist(1,1);
 vector<long>::const_iterator pr = plist.begin();
 while(pr!=plist.end())
   {
     p = *pr++; e = val(p,a)/2;
     dlist.resize((e+1)*dlist.size());
     for (j=0; j<e; j++)
       for (k=0; k<nd; k++)
	 dlist[nd*(j+1)+k] =  p*dlist[nd*j+k];
     nd*=(e+1);
   }
 return dlist;
}

vector<long> sqfreedivs(long a, const vector<long>& plist)
{
 long j,k,p,e,nd = 1;
 vector<long> dlist(1,1);
 vector<long>::const_iterator pr = plist.begin();
 while(pr!=plist.end())
 {
  p = *pr++; e = 1;
  dlist.resize((e+1)*dlist.size());
  for (j=0; j<e; j++)
    for (k=0; k<nd; k++)
      dlist[nd*(j+1)+k] = p*dlist[nd*j+k];
  nd*=(e+1);
 }
 return dlist;
}

long mod(long a, long b)
{long c;
 if (b<0) b=-b;
 if (a>=0) c=a%b; else c=b-((-a)%b);
 if (c>(b>>1)) c-=b;
 return(c);
}

long posmod(long a, long b)
{
  long c=a%b;  
  if (c<0) return(c+b);
  return(c);
}

long gcd(long a, long b)
{
  long c;
  while (b!=0) {c=a%b; a=b; b=c;}
  return abs(a);
}

int gcd(int a, int b)
{
  int c;
  while (b!=0) {c=a%b; a=b; b=c;}
  return abs(a);
}

long lcm(long a, long b)
{
  long g=gcd(a,b);
  if(g==0) return 0;
  return a*(b/g);
}

long bezout(long aa, long bb, long& xx, long& yy)
{long a,b,c,x,oldx,newx,y,oldy,newy,q;
 oldx = 1; oldy = 0; x = 0; y = 1; a = aa; b = bb;
 while (b!=0)
 { q = a/b; 
   c    = a    - q*b; a    = b; b = c;
   newx = oldx - q*x; oldx = x; x = newx;
   newy = oldy - q*y; oldy = y; y = newy;
  }
 if (a<0) {xx=-oldx; yy=-oldy; return(-a);}
 else     {xx= oldx; yy= oldy; return( a);}
}
 
long invmod(long a, long p)
{long g,x,y;
 g=bezout(a,p,x,y);
 if (g==1) return x;
 else 
   {
     cout << "invmod called with " << a << " and " << p << " -- not coprime!\n"; 
     abort();
     return 0;
   }
}

int modrat(int n, int m, float lim, int& a, int& b)
{
  long la,lb,ln=n,lm=m;
  int ans = modrat(ln,lm,lim,la,lb);
  a=la; b=lb;
  return ans;
}

//#define DEBUG_MODRAT

int modrat(long n, long m, float lim, long& a, long& b)
{long q,r,t,qq,rr,tt,quot;
#ifdef DEBUG_MODRAT
 cout<<"modrat("<<n<<","<<m<<")\n";
#endif
 q=m; r=posmod(n,m); qq=0; rr=1; t=0; tt=0; a=r; b=1; 
 if (r<lim) 
   { 
#ifdef DEBUG_MODRAT
     cout<<" = "<<a<<"/"<<b<<"\n";
#endif
     return 1;
   }
 while (r!=0) 
 { 
   quot = q/r;
#ifdef DEBUG_MODRAT
   cout<<"q,r,t = "<<q<<" "<<r<<" "<<t<<"\n";
#endif
   t  =  q-quot*r;   q = r;   r = t;
   tt = qq-quot*rr; qq = rr; rr = tt;
   if (r<lim)
     {
       if (abs(rr)<lim) 
         {
           a=r; b=rr; 
#ifdef DEBUG_MODRAT
           cout<<" success:  "<<a<<"/"<<b<<"\n";
#endif
           return 1;
         }
#ifdef DEBUG_MODRAT
       cout << "\nmodrat error: no reconstruction for " << n << " mod " << m << "\n";
#endif
       return 0;
     }
 }
#ifdef DEBUG_MODRAT
 cout << "\nmodrat error: common factor with " << n << " mod " << m << "\n";
#endif
 return 0;
}

long val(long factor, long number)
{
 long n = abs(number), f = abs(factor);
 if ((n==0) || (f<2)) return 99999;  // error condition! N.B. This value 
                                     // must be unlikely and POSITIVE.
 long e = 0;
 while (n%f==0) {e++; n/=f;}
 return e;
}

int intbezout(int aa, int bb, int& xx, int& yy)
{int a,b,c,x,oldx,newx,y,oldy,newy,q;
 oldx = 1; oldy = 0; x = 0; y = 1; a = aa; b = bb;
 while (b!=0)
 { q = a/b; 
   c    = a    - q*b; a    = b; b = c;
   newx = oldx - q*x; oldx = x; x = newx;
   newy = oldy - q*y; oldy = y; y = newy;
  }
 if (a<0) {xx=-oldx; yy=-oldy; return(-a);}
 else     {xx= oldx; yy= oldy; return( a);}
}

long chi2(long a)
{ static long table8[8] = {0,1,0,-1,0,-1,0,1};
  return table8[posmod(a,8)];
}
 
long chi4(long a)
{ static long table4[4] = {0,1,0,-1};
  return table4[posmod(a,4)];
} 

long hilbert2(long a, long b)
{ static long table44[4][4] = {{0,0,0,0},
                              {0,1,0,1},
                              {0,0,0,0},
                              {0,1,0,-1}};
  return table44[posmod(a,4)][posmod(b,4)];
}

long leg(long a, long b)  //nb this function is not intended for public use
{ long aa = a;
  long bb = b;
  long ans = 1;
  while (bb>1) 
  {     aa = aa % bb;
        if (aa<0)       {aa=-aa; ans*=chi4(bb);}
        while (!(aa%4)) {aa/=4;}
        if (!(aa%2))    {aa/=2; ans *= chi2(bb);}
        ans*=hilbert2(aa,bb);
        long c=bb; bb=aa; aa=c;
  }
  return ans;
}
 
long legendre(long a, long b)
{ 
  return (((gcd(a,b)==1) && (b%2)) ? leg(a,b) : 0);
}
 
// Function which returns 1 and sets e such that 2**e=n if n is a power of 2.
// If the "roundup" flag is set and n is not a power of 2 it increases n to
// the next power of 2 (and returns 0)

int intlog2(long& n, long& e, int roundup)
{ 
  e = 0;
  if (n<1) {if(roundup) n=1; return 0;}
  long m=n;
  while (m) { m >>= 1; e++; }
  e--;
  m=1<<e;
//                     at this point m=2^e <= n < 2^(e+1)
  if(m==n) return 1;
  if(roundup) {n=m<<1; e++;}
  return 0;
}

// stolen from pari: base_math/arith1.cc

static const int longis64bit = sizeof(long)==4;

// The following function returns valuation(z,2) for a long int z:

long val2(unsigned long z);

long kronecker(long x, long y)
{
  long r,s=1,x1,z;

  if (y<=0)
  {
    if (y) { y= -y; if (x<0) s = -1; }
    else  return (labs(x)==1);
  }
  r=val2(y);              // = valuation(y,2)
  if (r)
  {
    if (odd(x))
    {
      if (odd(r) && labs((x&7)-4) == 1) s = -s;
      y>>=r;
    }
    else return 0;
  }
  x1=x%y; if (x1<0) x1+=y;
  while (x1)
  {
    r=val2(x1);
    if (r)
    {
      if (odd(r) && labs((y&7)-4) == 1) s= -s;
      x1>>=r;
    }
    if (y&2 && x1&2) s= -s;
    z=y%x1; y=x1; x1=z;
  }
  return (y==1)? s: 0;
}

long val2(unsigned long z)
{
  int v=0;
  while (!(z&1)) {v++; z>>=1;}
  return v;
}

int is_squarefree(long n)
{
  if(n%4==0) return 0;
  if(n%9==0) return 0;
  if(n%25==0) return 0;
  if(n%49==0) return 0;
  vector<long>plist = pdivs(n);
  for(unsigned int i=0; i<plist.size(); i++) 
    if(val(plist[i],n)>1) return 0;
  return 1;
}

int is_valid_conductor(long n)
{
  long m=n, p, e;
  e=0; while(!(m&1)) {e++; m>>=1;}  if(e>8) return 0;
  e=0; while(!(m%3)) {e++; m/=3;}   if(e>5) return 0;
  vector<long>plist = pdivs(m);
  for(unsigned int i=0; i<plist.size(); i++) 
    {
      p = plist[i]; 
      e=0; while(!(m%p)) {e++; m/=p;} if(e>2) return 0;
    }
  return 1;
}




// The following is no longer used

long old_kronecker(long d, long n)
{ long ans=0; long m=n, d4=d%4; if(d4<0)d4+=4;
  if ((gcd(d,n)==1) && ((d4==0)||(d4==1)))
  { ans=1;
    while (!(m%4)) m/=4;
    if (!(m%2)) {m/=2; ans*=((d-1)%8 ? -1 : 1);}
    ans *= legendre(d,m);
  }
  return ans;
}

/* END OF FILE */