File: compproc.cc

package info (click to toggle)
eclib 2014-09-21-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,216 kB
  • ctags: 4,287
  • sloc: cpp: 45,827; makefile: 222; sh: 108
file content (489 lines) | stat: -rw-r--r-- 14,406 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
// compproc.cc: declarations of functions using complex numbers
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
// 
// This file is part of the eclib package.
// 
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
// 
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// 
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
// 
//////////////////////////////////////////////////////////////////////////
 
#include <eclib/compproc.h> 
 
int is_real(const bigcomplex& z) {return(is_approx_zero(imag(z)));}
 
int is_small(bigfloat x) {return is_approx_zero(x);}
int is_small(const bigcomplex& z){return is_approx_zero(z);}

void orderreal(bigfloat& e1, bigfloat& e2, bigfloat& e3)  // puts in decreasing order
{ 
  bigfloat t;
  if      (e1 < e3) {t=e1; e1=e3; e3=t;}      //swap(e1,e3);
  if      (e1 < e2) {t=e1; e1=e2; e2=t;}      //swap(e1,e2);
  else if (e2 < e3) {t=e2; e2=e3; e3=t;}      //swap(e2,e3);
}
 
//#define DEBUG_CAGM

bigcomplex cagm(const bigcomplex& a, const bigcomplex& b)
{
  bigcomplex x=a, y=b, oldx;
#ifdef DEBUG_CAGM
  cout<<"cagm("<<x<<","<<y<<"):"<<endl;
#endif
  static bigfloat two=to_bigfloat(2);
  bigfloat theta, piby2=Pi()/two;
  while (1)
    { 
      oldx=x;
      x=(x+y)/two;
      y= sqrt(oldx*y);
      theta = arg(y/x);
      if ((theta>piby2) || (theta<=-piby2)) y=-y;   
#ifdef DEBUG_CAGM
      cout<<"Relative error = "<<abs((x-y)/x)<<endl;
#endif
      if(is_approx_zero(abs((x-y)/x))) return x;
    }
  return x;
}

bigcomplex normalize(bigcomplex& w1, bigcomplex& w2)
{
   bigcomplex tau = w1/w2, w3;
   if (tau.imag() < 0) { w1=-w1 ; tau=-tau ; }
   w1=w1-w2*round(tau.real());
   tau=w1/w2;
 
   for (int i=1;i<50 && (abs(tau)<1);i++)  
// {Just to stop infinite loop due to rounding}
   { w3=-w1; w1=w2; w2=w3; tau=w1/w2;
    w1=w1-w2*round(tau.real());
    tau=w1/w2;
   }
   return tau;
}
 
void getc4c6(const bigcomplex& w1, const bigcomplex& w2, 
	     bigcomplex& c4, bigcomplex &c6)
{
  bigcomplex tau= w1/w2;
  static bigfloat zero(to_bigfloat(0)), one(to_bigfloat(1)), two(to_bigfloat(2));
  bigfloat pi(Pi());
  bigfloat x = two*pi*tau.real();
  bigfloat y = two*pi*tau.imag();
  bigfloat nx = x, ny=y;
  bigcomplex q = exp(-y) *  bigcomplex(cos(x),sin(x));
  bigcomplex f = two*pi/w2;
  bigcomplex f2 = f*f;
  bigcomplex f4=f2*f2;
  
  bigcomplex term   = bigcomplex(one);
  bigcomplex qpower = bigcomplex(one);
  bigcomplex sum4   = bigcomplex(zero);
  bigcomplex sum6   = bigcomplex(zero);
  
  bigfloat n, n2;

  for (n=1;
#ifdef MPFP
       (n==1)|| (!is_approx_zero(term/sum6));
#else
       (n==1)|| (!is_zero(term/sum6));
#endif
       n+=1)
    {  n2      = n*n;
       qpower = exp(-ny) *  bigcomplex(cos(nx),sin(nx));
       nx += x; ny += y;
       term    = n*n2*qpower/(one-qpower);
       sum4   += term;
       term   *= n2;
       sum6   += term;
     }
  c4= (one +  to_bigfloat(240)*sum4)*f4;
  c6= (one -  to_bigfloat(504)*sum6)*f4*f2;
}
 
bigcomplex discriminant(const bigcomplex& b, const bigcomplex& c, const bigcomplex& d)
{
    bigcomplex bb = b*b, cc = c*c, bc = b*c;
    return to_bigfloat(27)*d*d - bc*bc +  to_bigfloat(4)*bb*b*d 
      -  to_bigfloat(18)*bc*d +  to_bigfloat(4)*c*cc;
}
 

bigcomplex cube_root(const bigcomplex& z)
{
#ifdef DEBUG_CUBIC
  cout << "Taking complex cube root of z = "<<z<<endl;
#endif
  if(is_zero(z)) return z;
  return exp(log(z)/to_bigfloat(3));
}

vector<bigcomplex> solvecubic(const bigcomplex& c1, const bigcomplex& c2, const bigcomplex& c3)
{
#ifdef DEBUG_CUBIC
cout << "In solvecubic with c1 = "<<c1<<", c2 = "<<c2<<", c3 = "<<c3<<"\n";
#endif
  long i, iter, niter=2; // number of iterations in Newton refinement of roots
  bigfloat three(to_bigfloat(3)), two(to_bigfloat(2)), one(to_bigfloat(1));
  bigfloat third = one/three;
   bigcomplex w =  bigcomplex(to_bigfloat(-1), sqrt(three))/two;
   bigcomplex disc = discriminant(c1,c2,c3);
   bigcomplex p3=  three*c2 - c1*c1;
   bigcomplex mc1over3 = -c1*third;
#ifdef DEBUG_CUBIC
cout << "p3 = "<<p3<<", -c1/3 = "<<mc1over3<<"\n";
#endif
   vector<bigcomplex> roots(3);
 
   if (is_zero(abs(disc))) 
     {if (is_zero(abs(p3)))     // triple root
        {roots[0]=roots[1]=roots[2]= mc1over3;
        }
      else           // double root
        {roots[0]=roots[1]= (c1*c2 -  to_bigfloat(9)*c3)/( p3+p3);
         roots[2]=-( roots[0] + roots[0]+c1);
        }
     }
   else              // distinct roots
     {
      bigcomplex q = (((mc1over3+c1)*mc1over3 +c2)*mc1over3 +c3); 
                    // = F(mc1over3);
      if (is_approx_zero(abs(p3)))       // pure cubic
        { 
	  roots[0]=-cube_root(q);
          roots[1]=w*roots[0];
          roots[2]=w*roots[1];
          roots[0]+=mc1over3;
          roots[1]+=mc1over3;
          roots[2]+=mc1over3;
        }
      else
        {bigcomplex d =  to_bigfloat(729)*q*q+ to_bigfloat(4)*p3*p3*p3;
#ifdef DEBUG_CUBIC
cout << "q = " << q << ", p3 = " << p3 << ", d = " << d << "\n";
#endif
         bigcomplex t1cubed = to_bigfloat(0.5)*(sqrt(d)- to_bigfloat(27)*q);
#ifdef DEBUG_CUBIC
	 cout << "t1cubed = " << t1cubed << endl;
#endif
      if (is_approx_zero(abs(t1cubed)))       // approximately pure cubic
	{
#ifdef DEBUG_CUBIC
	  cout << "t1cubed approx 0 so treating as pure cubic " << endl;
#endif
	  roots[0]=-cube_root(q);
          roots[1]=w*roots[0];
          roots[2]=w*roots[1];
          roots[0]+=mc1over3;
          roots[1]+=mc1over3;
          roots[2]+=mc1over3;
	  for(i=0; i<3; i++)
	    {
	      bigcomplex z = roots[i], fz, fdashz;
	      for(iter=0; iter<niter; iter++)
		{
		  fz = ((z+c1)*z+c2)*z+c3;
		  fdashz = (three*z+two*c1)*z+c2;
		  if(!is_zero(fdashz)) z -= fz/fdashz;
		}
	      roots[i] = z;
	    }
	}
      else
	{
	  bigcomplex t1 = cube_root(t1cubed);
	  bigcomplex t2 = t1*w;
	  bigcomplex t3 = t2*w;
#ifdef DEBUG_CUBIC
	  cout<<"t1cubed = "<<t1cubed<<"\n";
	  cout<<"t1 = "<<t1<<", t2 = "<<t2<<", t3 = "<<t3<<"\n";
#endif
	  roots[0] = (-c1+t1-p3/t1)* third;
	  roots[1] = (-c1+t2-p3/t2)* third;
	  roots[2] = (-c1+t3-p3/t3)* third;
	}
        }
    }
#ifdef DEBUG_CUBIC
cout << "refining roots using Newton with " << niter << "iterations\n";
cout << "unrefined roots: ";
for(i=0; i<3;i++) cout << roots[i] << "\n";
#endif
for(i=0; i<3; i++)
  {
    bigcomplex z = roots[i], fz, fdashz;
    for(iter=0; iter<niter; iter++)
      {
	fz = ((z+c1)*z+c2)*z+c3;
	fdashz = (three*z+two*c1)*z+c2;
	if(!is_zero(fdashz)) z -= fz/fdashz;
      }
    roots[i] = z;
  }
#ifdef DEBUG_CUBIC
cout << "refined roots: ";
for(i=0; i<3;i++) cout << roots[i] << "\n";
#endif

  return roots;
}

vector<bigcomplex> solverealquartic(const bigfloat& a, const bigfloat& b, const bigfloat& c, const bigfloat& d, const bigfloat& e)
{
#ifdef DEBUG
  cout<<"In solverealquartic with (a,b,c,d,e)=("<<a<<","<<b<<","<<c<<","<<d<<","<<e<<")\n";
#endif
  bigfloat three = to_bigfloat(3);
  bigfloat ii = 12*a*e - 3*b*d + c*c;
  bigfloat jj =  (72*a*e + 9*b*d - 2*c*c) * c - 27*(a*d*d + b*b*e);
#ifdef DEBUG
  cout<<"ii="<<ii<<"\njj="<<jj<<"\n";
#endif
  bigfloat disc = 4*ii*ii*ii-jj*jj;
  bigfloat  H = 8*a*c - 3*b*b, R = b*b*b + 8*d*a*a - 4*a*b*c;
  bigfloat  Q = H*H-16*a*a*ii;  // = 3*Q really
  int type;
  if(disc<0) 
    {type=3;}       // 2 real roots
  else 
    {
      if((H<0)&&(Q>0)) 
	{type=2;}   // 4 real roots
      else 
	{type=1;}   // 0 real roots
    }
  bigcomplex c1(to_bigfloat(0)), c2(-3*ii), c3(jj);
#ifdef DEBUG
  int nrr = (type=1? 0 : (type=2? 4 : 2));
  cout<<"Type = " << type << " ("<<nrr<<" real roots)\n";
  cout<<"Coeffs of resolvent cubic are:\n"<<c1<<"\n"<<c2<<"\n"<<c3<<endl;
#endif
  vector<bigcomplex> cphi = solvecubic( c1, c2, c3);
  vector<bigcomplex> roots(4);
  bigfloat a4=4*a;
  bigfloat oneover4a = to_bigfloat(1)/a4;
#ifdef DEBUG
  cout<<"Roots of cubic are:\n"<<cphi<<endl;
#endif
  
  if(type<3) 
    {
#ifdef DEBUG
      cout<<"Positive discriminant\n";
#endif
      // all the phi are real;  order them so that a*phi[i] decreases
      bigfloat phi1 = real(cphi[0]);
      bigfloat phi2 = real(cphi[1]);
      bigfloat phi3 = real(cphi[2]);
      if(a>0)      orderreal(phi1,phi2,phi3); 
      else         orderreal(phi3,phi2,phi1); 
#ifdef DEBUG
      cout<<"phi = "<<phi1<<", "<<phi2<<", "<<phi3<<"\n";
#endif

      if(type==2) // all roots are real
	{
#ifdef DEBUG
	  cout<<"Type 2\n";
#endif
	  bigfloat r1 = sqrt((a4*phi1-H)/three);
	  bigfloat r2 = sqrt((a4*phi2-H)/three);
	  bigfloat r3 = sqrt((a4*phi3-H)/three);
	  if(R<0)  r3 = -r3;
#ifdef DEBUG
	  cout<<"r_i = "<<r1<<", "<<r2<<", "<<r3<<"\n";
	  cout<<"product = "<<r1*r2*r3<<", R = "<<R<<endl;
#endif
	  roots[0] = bigcomplex(( r1 + r2 - r3 - b) * oneover4a);
	  roots[1] = bigcomplex(( r1 - r2 + r3 - b) * oneover4a);
	  roots[2] = bigcomplex((-r1 + r2 + r3 - b) * oneover4a);
	  roots[3] = bigcomplex((-r1 - r2 - r3 - b) * oneover4a);
	  // Those are all real and in descending order of size
	}
      else // no roots are real
	{
#ifdef DEBUG
	  cout<<"Type 1\n";
#endif
	  bigfloat r1 = sqrt((a4*phi1-H)/3);
	  bigfloat ir2 = sqrt(-((a4*phi2-H)/3));
	  bigfloat ir3 = sqrt(-((a4*phi3-H)/3));
	  if(R>0)  r1 = -r1;
#ifdef DEBUG
	  cout<<"r_i = "<<r1<<", "<<ir2<<"i, "<<ir3<<"i\n";
	  cout<<"product = "<<-r1*ir2*ir3<<", R = "<<R<<endl;
#endif
	  roots[0] = bigcomplex( r1-b,  ir2 - ir3) * oneover4a;
	  roots[1] = conj(roots[0]); // bigcomplex( r1-b,  ir2 - ir2) * oneover4a;
	  roots[2] = bigcomplex(-r1-b,  ir2 + ir3 ) * oneover4a;
	  roots[3] = conj(roots[2]); // bigcomplex(-r1-b, -ir2 - ir3 ) * oneover4a;
	}
    }
  else // disc < 0
    {
#ifdef DEBUG
      cout<<"Negative discriminant\nType 3\n";
#endif
      bigfloat realphi;       // will hold the real root, which will be cphi[2]
      if (is_real(cphi[1])) 
	{
	  realphi=real(cphi[1]);
	  cphi[1]=cphi[2];
	  cphi[2]=realphi;
	}
      else 
	if (is_real(cphi[2])) 
	  {
	    realphi=real(cphi[2]);
	  }
	else 
	  {
	    realphi=real(cphi[0]);
	    cphi[0]=cphi[2];
	    cphi[2]=realphi;
	  }
#ifdef DEBUG
      cout<<"Sorted roots of cubic (real one last) are \n";
      cout<<cphi[0]<<"\n"<<cphi[1]<<"\n"<<cphi[2]<<endl;
#endif
      bigcomplex r1 = sqrt((a4*cphi[0]-H)/three);
      bigfloat r3   = sqrt((a4*realphi-H)/three);
      if(R<0)  r3 = -r3;
#ifdef DEBUG
      cout<<"r_i = "<<r1<<", "<<conj(r1)<<", "<<r3<<"\n";
      cout<<"product = "<<r1*conj(r1)*r3<<", R = "<<R<<endl;
#endif
      roots[0] = bigcomplex( r3 - b, 2*imag(r1) ) * oneover4a;
      roots[1] = conj(roots[0]);
      roots[2] = bigcomplex(( 2*real(r1) - r3 - b)) * oneover4a;
      roots[3] = bigcomplex((-2*real(r1) - r3 - b)) * oneover4a;
      // roots[2] and roots[3] are real
    }
  return roots;
}

vector<bigcomplex> solvequartic(const bigcomplex& a, const bigcomplex& b, const bigcomplex& c, const bigcomplex& d)
{ bigcomplex p,q,r,aa,e,f1,f2;
  static bigfloat zero = to_bigfloat(0);
  static bigfloat two = to_bigfloat(2);
  static bigfloat three = to_bigfloat(3);
  static bigfloat four = to_bigfloat(4);
  static bigfloat eight = to_bigfloat(8);
  static bigfloat x16 = to_bigfloat(16);
  static bigfloat x64 = to_bigfloat(64);
  static bigfloat x256 = to_bigfloat(256);
  bigcomplex a4=a/four;
  vector<bigcomplex> roots(4);
  if(is_zero(d))
    { 
      roots[0]= zero;
      vector<bigcomplex> cuberoots=solvecubic(a,b,c);
      roots[1] = cuberoots[0];
      roots[2] = cuberoots[1];
      roots[3] = cuberoots[2];
    }
    else
      {
	p = b -  three*a*a / eight;
	q = ((a / two) * (a*a4 - b)) + c;
	r = ((x256*d) - (x64*a*c) + (x16*a*a*b) - (three*a*a*a*a)) / x256;
	if( is_approx_zero(q) ) 
	  {
	    bigcomplex s = sqrt(p*p - four*r);
	    roots[0] =  sqrt((-p + s) / two) - a4;
	    roots[1] = -sqrt((-p + s) / two) - a4;
	    roots[2] =  sqrt((-p - s) / two) - a4;
	    roots[3] = -sqrt((-p - s) / two) - a4;
	  }
      else
	{
	  vector<bigcomplex> aaroots= 
	    solvecubic(-p / two,-r,((p * r) / two - (q * q) / eight));
	  aa = aaroots[0];
	  if( is_approx_zero(aa) ) aa=zero;
	  e = sqrt(-p + two*aa);
	  f1 = (aa + q / (two*e));
	  f2 = (aa - q / (two*e));
	  bigcomplex s1 = sqrt(e*e -  four*f1);
	  bigcomplex s2 = sqrt(e*e -  four*f2);
	  roots[0] = (( e + s1) /  two) - a4;
	  roots[1] = (( e - s1) /  two) - a4;
	  roots[2] = ((-e + s2) /  two) - a4;
	  roots[3] = ((-e - s2) /  two) - a4;
	}
      }

  long i, iter, niter=2; // number of iterations in Newton refinement of roots
#ifdef DEBUG_QUARTIC
  cout << "refining roots using Newton with " << niter << "iterations\n";
  cout << "unrefined roots: ";
  for(i=0; i<4;i++) cout << roots[i] << "\n";
#endif
  for(i=0; i<4; i++)
    {
      bigcomplex z = roots[i], fz, fdashz;
      for(iter=0; iter<niter; iter++)
	{
	  fz = (((z+a)*z+b)*z+c)*z+d;
	  fdashz = ((four*z+three*a)*z+two*b)*z+c;
	  if(!is_zero(fdashz)) z -= fz/fdashz;
	}
      roots[i] = z;
    }
#ifdef DEBUG_QUARTIC
  cout << "refined roots: ";
  for(i=0; i<4;i++) cout << roots[i] << "\n";
#endif
  return roots;
}

void quadsolve(const bigfloat& p, const bigfloat& q, 
	       bigcomplex& root1, bigcomplex& root2)
{
  static bigfloat two = to_bigfloat(2);
  static bigfloat four = to_bigfloat(4);
  bigcomplex disc(p*p- four*q);
  bigcomplex rootdisc = sqrt(disc);
  root1 = ( rootdisc-p)/ two;
  root2 = (-rootdisc-p)/ two;
}
 
vector<long> introotscubic(long a, long b, long c, int& nr)
{ bigcomplex za(to_bigfloat(a)), zb(to_bigfloat(b)), zc(to_bigfloat(c));
  vector<bigcomplex> croots =  solvecubic(za,zb,zc);
  vector<long> iroots;
  int i; long x,cx;
  for (i=0; i<3; i++)
    {
      cout << "Complex root = " << croots[i] << endl;
      bigfloat xx = croots[i].real();
      Iasb(x,xx);
      cout << "Rounds to " << x << endl;
      if (x==0) {if (c==0) iroots.push_back(x);}
      else
        {
	  cx = c/x;
	  if (x*cx==c)
            if (((x+a)*x+b+cx) ==  0)
	      iroots.push_back(x);
        }
     }
  return iroots;  
}