1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
|
// cperiods.cc: implementations of class Cperiods and period lattice functions
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
#include <eclib/cperiods.h>
//#define DEBUG 1
#ifndef MPFP
void swap(bigcomplex& a, bigcomplex& b)
{
bigcomplex c(a); a=b; b=c;
}
#define SMALL(x) is_zero((x))
#else
#define SMALL(x) is_approx_zero((x))
//#define SMALL(x) (abs(x)<1.0e-14)
//#define SMALL(x) is_zero((x))
#endif
// Reorders 3 complex nos so real parts are decreasing
void reorder1(bigcomplex& a, bigcomplex& b, bigcomplex& c)
{
if (real(a) < real(c)) swap(a,c);
if (real(a) < real(b)) swap(a,b);
else if (real(b) < real(c)) swap(b,c);
}
//reorders 3 complex nos so e1 is real if any (
void reorder2(bigcomplex& e1, bigcomplex& e2, bigcomplex& e3)
{
#if(0)
if (is_real(e1)) return;
else if (is_real(e2)) {swap(e1,e2); return;}
else if (is_real(e3)) {swap(e1,e3); return;}
#endif
#if(0)
cout<<"Entering reorder2() with \n";
cout<<"e1="<<e1<<"\n";
cout<<"e2="<<e2<<"\n";
cout<<"e3="<<e3<<"\n";
#endif
if(abs(imag(e1))>abs(imag(e3))) {swap(e1,e3);}
if(abs(imag(e1))>abs(imag(e2))) {swap(e1,e2);}
else if(abs(imag(e2))>abs(imag(e3))) {swap(e2,e3);}
#if(0)
cout<<"Leaving reorder2() with \n";
cout<<"e1="<<e1<<"\n";
cout<<"e2="<<e2<<"\n";
cout<<"e3="<<e3<<"\n";
#endif
}
bigcomplex cagm1(const bigcomplex& a, const bigcomplex& b);
//Computes periods of a curve given the 3 2-division points (i.e. the three
//roots of the cubic)
// For real curves, here either the ei are real with e1<e2<e3 so a,b,c
// are real, w1 is real and w2 pure imaginary; or e3 is real and
// e1=conj(e2), in which case agm1 is real and w1 is real
void eiperiods(bigcomplex e1, bigcomplex e2, bigcomplex e3,
bigcomplex& w1, bigcomplex& w2)
{
bigcomplex a(sqrt(e3-e1));
bigcomplex b(sqrt(e3-e2));
bigcomplex c(sqrt(e2-e1));
#ifdef DEBUG
cout<<"In eiperiods with a = " << a << ", b = "<<b<< ", c = " << c << endl;
#endif
bigcomplex agm1 = cagm1(a,b);
bigcomplex agm2 = cagm1(a,c);
#ifdef DEBUG
cout<<"agm1=agm(a,b)="<<agm1<<endl;
cout<<"agm2=agm(a,c)="<<agm2<<endl;
#endif
bigfloat pi = Pi();
w1= bigcomplex(pi,to_bigfloat(0))/agm1;
w2= bigcomplex(to_bigfloat(0),pi)/agm2;
#ifdef DEBUG
cout<<"Leaving eiperiods with w1 = " << w1 << ", w2 = "<<w2 << endl;
#endif
}
//#define DEBUG_CUBIC
bigcomplex* solve_nonsingular_cubic(const bigint& c1, const bigint& c2, const bigint& c3)
//Returns an array of 3 complex roots.
{
#ifdef DEBUG_CUBIC
cout << "In solve_nonsingular_cubic with c1 = "<<c1<<", c2 = "<<c2<<", c3 = "<<c3<<"\n";
#endif
bigfloat rc1=I2bigfloat(c1);
bigfloat rc2=I2bigfloat(c2);
bigfloat rc3=I2bigfloat(c3);
static bigfloat three(to_bigfloat(3)),
two(to_bigfloat(2)), one(to_bigfloat(1));
bigfloat third = one/three;
bigcomplex w = bigcomplex(to_bigfloat(-1), sqrt(three))/two;
bigint p3= 3*c2 - c1*c1;
bigint q = c1*(2*sqr(c1)-9*c2)+27*c3;
bigfloat rq=I2bigfloat(q), rp3=I2bigfloat(p3);
bigcomplex *roots = new bigcomplex[3];
long i;
#ifdef DEBUG_CUBIC
cout << "c1 = " << c1 << ", rc1 = " << rc1 << endl;
cout << "p3 = " << p3 << ", rp3 = " << rp3 << endl;
cout << "q = "<<q<<", rq = "<<rq<<"\n";
#endif
if (is_zero(p3)) // pure cubic
{
#ifdef DEBUG_CUBIC
// cout << "In pure cubic case\n";
// cout << "About to take cube root of q = " << (q)
// << " by pow(-,third) where third = " << third << endl;
#endif
// bigcomplex rootq = pow(bigcomplex(rq),bigcomplex(third));
#ifdef DEBUG_CUBIC
cout << "In pure cubic case\n";
cout << "About to take cube root of q = " << (q)
<< " by exp(log(-)/three) where three = " << three << endl;
#endif
bigcomplex rootq = exp(log(bigcomplex(rq))/three);
#ifdef DEBUG_CUBIC
cout << "returns result " << roots[0] << endl;
#endif
roots[0]=-(rootq+rc1)/three;
rootq*=w;
roots[1]=-(rootq+rc1)/three;
rootq*=w;
roots[2]=-(rootq+rc1)/three;
}
else
{
//NB It is important to compute d EXACTLY and then convert to
//floating point, rather than work with f.p. values for q and
//p3, since otherwise bad cancellation can occur!
bigint d = q*q+ 4*p3*sqr(p3);
bigfloat rd=I2bigfloat(d);
bigcomplex t1cubed = (sqrt(bigcomplex(rd)) - rq)/two;
bigcomplex t2cubed = (sqrt(bigcomplex(rd)) + rq)/two;
#ifdef DEBUG_CUBIC
// cout << "d = " << d << "\n";
// cout << "About to take cube root of t1cubed = " << t1cubed
// << " by power(-,third) where third = " << third << endl;
#endif
// bigcomplex t1 = pow(t1cubed,third);
#ifdef DEBUG_CUBIC
cout << "d = " << d << "\n";
cout << "sqrt(d) = " << sqrt(bigcomplex(rd)) << endl;
cout << "sqrt(d)-rq = " << sqrt(bigcomplex(rd))-rq << endl;
cout << "sqrt(d)+rq = " << sqrt(bigcomplex(rd))+rq << endl;
cout << "About to take cube root of t1cubed = " << t1cubed
<< " by exp(log(-)/three) where three = " << three << endl;
#endif
bigcomplex t1 = exp(log(t1cubed)/three);
bigcomplex t2 = exp(log(t2cubed)/three);
#ifdef DEBUG_CUBIC
cout << "returns result " << t1 << endl;
cout << "t1^3-t1cubed = " << t1*t1*t1-t1cubed << endl;
#endif
if(abs(t1)<abs(t2))
{
t1=rp3/t2;
#ifdef DEBUG_CUBIC
cout << "resetting t1=p3/t2= " << t2 << endl;
#endif
}
roots[0] = (-rc1+t1-rp3/t1)* third;
t1*=w;
roots[1] = (-rc1+t1-rp3/t1)* third;
t1*=w;
roots[2] = (-rc1+t1-rp3/t1)* third;
if(d<0) // then all roots should be real so we set this manually
// in case rounding disguises this:
{
for(i=0; i<3; i++) roots[i]=real(roots[i]);
}
}
int niter=3;
#ifdef DEBUG_CUBIC
cout << "refining roots using Newton with " << niter << " iterations\n";
cout << "unrefined roots: ";
for(i=0; i<3;i++) cout << roots[i] << "\n";
#endif
for(i=0; i<3; i++)
{
bigcomplex z = roots[i], fz, fdashz;
for(int iter=0; iter<niter; iter++)
{
fz = ((z+rc1)*z+rc2)*z+rc3;
fdashz = (three*z+two*rc1)*z+rc2;
if(!is_zero(fdashz)) z -= fz/fdashz;
}
roots[i] = z;
}
#ifdef DEBUG_CUBIC
cout << "refined roots: ";
for(i=0; i<3;i++) cout << roots[i] << "\n";
#endif
return roots;
}
// Gets the 3 2-division points given the coefficients
void getei(const Curvedata& E, bigcomplex& e1, bigcomplex& e2, bigcomplex& e3)
{
bigint b2,b4,b6,b8;
E.getbi(b2,b4,b6,b8);
#ifdef DEBUG
cout<<"Solving monic cubic with coeffs "<<b2<<","<<(8*b4)<<","<<16*b6<<endl;
#endif
bigcomplex* ei = solve_nonsingular_cubic(b2,8*b4,16*b6);
#ifdef DEBUG
cout<<"ei = "<<ei[0]<<","<<ei[1]<<","<<ei[2]<<endl;
#endif
bigfloat four(to_bigfloat(4));
e1 = ei[0]/four; e2 = ei[1]/four; e3 = ei[2]/four;
#ifdef DEBUG
cout<<"After rescaling,\n";
cout<<"ei = "<<e1<<","<<e2<<","<<e3<<endl;
#endif
delete [] ei;
}
Cperiods::Cperiods(const Curvedata& E)
{
lattice_type = getconncomp(E);
#ifdef DEBUG
cout<<"Lattice type = "<<lattice_type<<endl;
#endif
getei(E,e1,e2,e3);
#ifdef DEBUG
cout<<"Before reordering,\n";
cout<<"ei = "<<e1<<","<<e2<<","<<e3<<endl;
#endif
if (lattice_type==2) reorder1(e3,e2,e1); // if all real, make e1<e2<e3
else reorder2(e3,e2,e1); // to make e3 real
// this ordering ensures that eiperiods will give wR,wRI:
// wR real, and either (type 2) wRI pure imag or (type 1) Re(wRI)=wR/2
#ifdef DEBUG
if(lattice_type==2)
{
cout << "e1 = " << real(e1) << "\ne2 = "
<< real(e2) << "\ne3 = "
<< real(e3) << "\n";
cout << "(all real, e1<e2<e3)"<<endl;
}
else
{
cout << "e1 = " << (e1) << "\ne2 = "
<< (e2) << "\ne3 = "
<< (e3) << "\n";
cout << "(e3 real, e1=conj(e2))"<<endl;
}
#endif
eiperiods(e1,e2,e3,wR,wRI);
#ifdef DEBUG
cout << "After eiperiods, \n";
cout << "wR = " << wR << " (should be real)\n";
cout << "wRI = " << wRI << " \n";
#endif
if(lattice_type==1)
{
while(real(wRI)/real(wR)<0) wRI+=wR;
while(real(wRI)/real(wR)>1) wRI+=wR;
wI = bigcomplex(to_bigfloat(0),2*imag(wRI));
}
else
{
wI=wRI;
}
w1=wR; w2=wRI;
#ifdef DEBUG
cout << "Before lattice normalization, \n";
cout << "wR = " << wR << " (should be real)\n";
cout << "wI = " << wI << " \n";
cout << "wRI = " << wRI << " \n";
cout << "real(wRI)/real(wR) = "<<real(wRI)/real(wR)<<endl;
#endif
tau = normalize(w2,w1); // NB reverse params; from compproc.h
#ifdef DEBUG
cout << "wR = " << wR << " (should be real)\n";
cout << "wI = " << wI << " (should be imag)\n";
if(lattice_type==1)
cout << "wRI = " << wRI << " (real part should be half wR)\n";
else
cout << "wRI = " << wRI << " (real part should be 0)\n";
cout << "w1 = " << w1 << "\n";
cout << "w2 = " << w2 << "\n";
cout << "tau = "<<tau<<" (abs(tau)="<<abs(tau)<<")\n";
#endif
store_sums();
}
void Cperiods::store_sums()
{
static bigfloat one(to_bigfloat(1));
qtau = q(tau);
if(abs(qtau)>0.99)
{
cout << "Warning from Cperiods::store_sums: qtau = "
<< qtau << " is not small!\n";
}
w1squared = w1*w1;
w1cubed = w1*w1squared;
bigcomplex term = one, qtm = qtau;
sum3=to_bigfloat(0);
for (bigfloat m=to_bigfloat(1); ! SMALL(term); m+=1)
{
term = qtm*m / (one - qtm);
qtm *= qtau;
sum3 += term;
#ifdef DEBUG
cout<<"term = "<<term<<", sum3 = "<<sum3<<endl;
#endif
}
#ifdef DEBUG
cout<<"final sum3 = "<<sum3<<endl;
#endif
sum3 = one/to_bigfloat(12) - to_bigfloat(2)*sum3;
#ifdef DEBUG
cout<<"stored sum3 = "<<sum3<<endl;
#endif
}
//#define DEBUG_XY
bigcomplex Cperiods::X_coord(const bigcomplex& qz)
{
static bigfloat one(to_bigfloat(1));
bigcomplex sum(sum3), term(one), qtm(one), w;
while ( ! SMALL(term/sum) )
{ w = qtm*qz;
term = w / pow((one - w), 2);
qtm *= qtau;
sum += term;
#ifdef DEBUG_XY
cout<<"qtm = "<<qtm<<", X-term = "<<term<<", sum = "<<sum<<endl;
#endif
}
#ifdef DEBUG_XY
cout<<"--at end of 1st loop, term/sum = "<<(term/sum)<<" "<<is_approx_zero(term/sum)<<endl;
#endif
term = one; qtm = qtau;
while ( ! SMALL(term/sum) )
{ w = qtm / qz;
qtm *= qtau;
term = w / pow((one - w), 2);
sum += term;
#ifdef DEBUG_XY
cout<<"qtm = "<<qtm<<", X-term = "<<term<<", sum = "<<sum<<endl;
#endif
}
#ifdef DEBUG_XY
cout<<"--at end of 2nd loop, term/sum = "<<(term/sum)<<" "<<is_approx_zero(term/sum)<<endl;
#endif
bigcomplex ans = sum*TWOPIEYE*TWOPIEYE;
#ifdef DEBUG_XY
cout<<"X_coord returning ans = "<<ans<<endl;
#endif
return ans;
}
bigcomplex Cperiods::Y_coord(const bigcomplex& qz)
{
static bigfloat one(to_bigfloat(1));
bigcomplex sum(to_bigfloat(0)), term(one), qtm(one), w;
// we are summing w*qt^m(1+w*qt^m)/(1-w*qt^m)^3 for m in Z
// m=0 term
w=qz;
sum = w*(one + w) / pow((one - w), 3);
qtm *= qtau;
#ifdef DEBUG_XY
cout<<"m=0 gives sum = "<<sum<<endl;
#endif
// positive m terms; qtm=qt^m
while ( ! SMALL(term/sum) )
{ w = qtm*qz;
term = w*(one + w) / pow((one - w), 3);
qtm *= qtau;
sum += term;
#ifdef DEBUG_XY
cout<<"Y-term = "<<term<<", sum = "<<sum<<" "<<is_approx_zero(term/sum)<<endl;
#endif
}
#ifdef DEBUG_XY
cout<<"--at end of 1st loop, term/sum = "<<(term/sum)<<" "<<is_approx_zero(term/sum)<<endl;
#endif
// negative m terms; qtm=qt^n where n=-m
qtm = qtau; term = one;
while ( ! SMALL(term/sum) )
{ w = qtm / qz;
term = w*(one + w) / pow((w - one), 3);
qtm *= qtau;
sum += term;
#ifdef DEBUG_XY
cout<<"Y-term = "<<term<<", sum = "<<sum<<endl;
#endif
}
#ifdef DEBUG_XY
cout<<"--at end of 2nd loop, term/sum = "<<(term/sum)<<endl;
#endif
bigcomplex ans = sum * TWOPIEYE * TWOPIEYE * TWOPIEYE;
#ifdef DEBUG_XY
cout<<"Y_coord returning ans = "<<ans<<endl;
#endif
return ans;
}
void Cperiods::XY_coords(bigcomplex& X, bigcomplex& Y, const bigcomplex& z)
{
#ifdef DEBUG_XY
cout<<"In XY-coords with z = " << z << endl;
#endif
// first adjust z w.r.t. lattice [wR,wI]:
bigcomplex z1 = z;
z1-=wR*floor(real(z1)/real(wR));
z1-=wI*floor(imag(z1)/imag(wI));
z1/=w1;
bigcomplex qz = q(z1);
// while(abs(qz)>0.9) qz*=qtau;
// while(abs(qz)>1.1) qz*=qtau;
#ifdef DEBUG_XY
cout<<"In XY-coords with z = " << z << ", z1 = " << z1 << endl;
cout<<"qtau = " << qtau << ", qz = " << qz << endl;
cout<<"abs(qtau) = " << abs(qtau) << ", abs(qz) = " << abs(qz) << endl;
cout<<"w1 = " << w1 << ", w2 = " << w2 << endl;
#endif
X = X_coord(qz) / w1squared;
Y = Y_coord(qz) / w1cubed;
#ifdef DEBUG_XY
cout<<"XY-coords returns X = " << X << ", Y = " << Y << endl;
#endif
return;
}
vector<bigcomplex> Cperiods::ellztopoint(const bigcomplex& z, const bigcomplex& a1, const bigcomplex& a2, const bigcomplex& a3)
{
vector<bigcomplex> xy(2);
XY_coords(xy[0],xy[1],z);
xy[0] -= (a1*a1+to_bigfloat(4)*a2)/to_bigfloat(12);
xy[1] -= (a1*xy[0] + a3); xy[1]/=to_bigfloat(2);
return xy;
}
//#define DEBUG_CAGM
bigcomplex cagm1(const bigcomplex& a, const bigcomplex& b)
{
bigcomplex x=a, y=b, oldx;
#ifdef DEBUG_CAGM
cout<<"cagm("<<x<<","<<y<<"):"<<endl;
#endif
static bigfloat two=to_bigfloat(2);
bigfloat theta, piby2=Pi()/two;
while (1)
{
oldx=x;
x=(x+y)/two;
y= sqrt(oldx*y);
theta = arg(y/x);
if ((theta>piby2) || (theta<=-piby2)) y=-y;
#ifdef DEBUG_CAGM
cout<<"x = "<<x<<"\ty = "<<y<<endl;
cout<<"Relative error = "<<abs((x-y)/x)<<endl;
#endif
#ifdef MPFP
if(is_approx_zero(abs((x-y)/x))) return x;
#else
if(is_zero(abs((x-y)/x))) return x;
#endif
}
return x;
}
// end of file cperiods.cc
|