1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
// curve.cc: implementations of elliptic curve class Curve
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
// originally adapted from Elliptic.cc by Oisin McGuiness
#include <eclib/curve.h>
//Kraus' conditions:
int valid_invariants(const bigint& c4, const bigint& c6)
{
bigint disc = c4*c4*c4; disc -= c6*c6;
if (sign(disc)==0) return 0;
if (ndiv(1728,disc)) return 0; // need c4^3-c6^2=1728D, with D|=0
long x6= mod(c6,27);
if((x6==9)||(x6==-9)) return 0; // need c6 != +-9 (mod 27)
x6 = mod(c6,4);
if(x6==-1) return 1; // OK if c6 = -1 (mod 4)
if(ndiv(16,c4)) return 0; // else need c4=0 (mod 16)
x6=mod(c6,32); // and
return ((x6==0) || (x6==8)); // c6 = 0,8 (mod 32).
}
void c4c6_to_ai(const bigint& c4, const bigint& c6,
bigint& a1, bigint& a2, bigint& a3, bigint& a4,
bigint& a6,
bigint& b2, bigint& b4, bigint& b6, bigint& b8)
{
// cout<<"In c4c6_to_ai() with c4="<<c4<<" and c6="<<c6<<endl;
bigint I12; I12=12;
b2 = mod(-c6,I12); // cout<<"...b2="<<b2<<endl;
const bigint& b22 = b2*b2;
b4 = (b22-c4)/24; // cout<<"...b4="<<b4<<endl;
b6 = (-b2*b22+36*b2*b4-c6)/216; // cout<<"...b6="<<b6<<endl;
b8 = (b2*b6 - b4*b4) / 4; // cout<<"...b8="<<b8<<endl;
a1 = (odd(b2) ? 1 : 0);
a3 = (odd(b6) ? 1 : 0);
a2 = (b2-a1)/4; // N.B. a1 == a1*a1 (= 0,1)
a4 = (b4-a1*a3)/2;
a6 = (b6-a3)/4; // N.B. a3 == a3*a3 (= 0,1)
// cout<<"...returning a1="<<a1<<", a2="<<a2<<", a3="<<a3
// <<", a4="<<a4<<", a6="<<a6<<endl;
}
void c4c6_to_ai(const bigint& c4, const bigint& c6,
bigint& a1, bigint& a2, bigint& a3, bigint& a4,
bigint& a6)
{
bigint b2, b4, b6, b8;
c4c6_to_ai(c4,c6,a1,a2,a3,a4,a6,b2,b4,b6,b8);
}
void minimise_c4c6(const bigint& c4, const bigint& c6, const bigint& discr,
bigint& newc4, bigint& newc6, bigint& newdiscr, bigint& u)
{
bigint p,g; long a,b,d;
u = 1; int u_is_1 = 1;
newc4=c4; newc6=c6;
const bigint& c62 = sqr(c6);
newdiscr = (sqr(c4)*c4-c62)/1728; // this must be set before returning
g=gcd(c4,c6); if(is_one(g)) return;
g = gcd( c62, newdiscr ); if(is_one(g)) return;
const vector<bigint>& p_list = pdivs(g);
// cout<<"g = "<<g<<endl;
vector<bigint>::const_iterator pr = p_list.begin();
while ( pr!=p_list.end() )
{
p = *pr++;
d = (long)floor(val(p,g)/12.0);
// cout<<"With p="<<p<<", initial d="<<d<<endl;
if (p==2)
{
a = mod(c4 >> (4*d) , 16);
b = mod(c6 >> (6*d) , 32); if(b<0) b+=32;
// cout<<"a="<<a<<", b="<<b<<endl;
if (( (b%4)!=3) && !( (a==0) && (( b==0) || (b==8) )))
{
d--;
}
}
else if (p==3) if (val(3,c6)==(6*d + 2)) d--;
if(d>0) {u *= pow(p,d); u_is_1 = 0;}
// cout<<"With p="<<p<<", final d = "<<d<<", u="<<u<<endl;
}
if(u_is_1) return;
bigint u2, u4, u6, u12;
mulx(u,u,u2); mulx(u2,u2,u4); mulx(u2,u4,u6); mulx(u6,u6,u12);
newc4 = c4 / u4;
newc6 = c6 / u6;
newdiscr /= u12;
}
//constructor for curve with invariants as argument
Curve::Curve(const bigint& c4, const bigint& c6)
{
if (valid_invariants(c4, c6))
{
c4c6_to_ai(c4,c6,a1,a2,a3,a4,a6);
}
else
{
// cout << " ## attempt to call Curve constructor"
// << " with invalid invariants c4 = "<<c4<<", c6 = "<<c6
// << ": reading as null curve\n";
a1=0; a2=0; a3=0; a4=0; a6=0;
}
}
void Curve::input(istream& is)
{
char c; // to eat commas and detect [ from {;
// `{' flags curve input by invariants, eg {1,3}
// `[' by coeffs a1--a6, eg [1,2,3,4,6]
// seperators and terminators must then be present
// (any nonnumeric will do after the first { or [ )
// else assumes a1 a2 a3 a4 a6 separated by whitespace
is>>skipws;
is>>c;
// cout<<"First char read = "<<c<<"\n";
switch (c) {
case '{':
{
// cout<<"Reading {c4,c6}...\n";
bigint c4, c6;
is >> c4 >> c;
if(c!=',')
{
cout << "syntax error on curve input" << endl;
abort();
}
is >> c6 >> c;
if(c!='}')
{
cout << "syntax error on curve input" << endl;
abort();
}
if (valid_invariants(c4, c6))
{
const bigint& b2 = BIGINT(mod(-c6,12));
const bigint& b22 = b2*b2;
const bigint& b4 = (b22-c4)/24;
const bigint& b6 = (-b2*b22+36*b2*b4-c6)/216;
a1 = (odd(b2) ? 1 : 0);
a3 = (odd(b6) ? 1 : 0);
a2 = (b2-a1*a1)/4;
a4 = (b4-a1*a3)/2;
a6 = (b6-a3*a3)/4;
}
else
{
cout << " ## invalid invariants, reading as null curve\n";
a1=0; a2=0; a3=0;a4=0; a6=0;
}
}
break;
case '[':
// cout<<"Reading [a1,a2,a3,a4,a6]...\n";
is >> a1 >> c;
if(c!=',')
{
cout << "syntax error on curve input" << endl;
abort();
}
is >> a2 >> c;
if(c!=',')
{
cout << "syntax error on curve input" << endl;
abort();
}
is >> a3 >> c;
if(c!=',')
{
cout << "syntax error on curve input" << endl;
abort();
}
is >> a4 >> c;
if(c!=',')
{
cout << "syntax error on curve input" << endl;
abort();
}
is >> a6 >> c;
if(c!=']')
{
cout << "syntax error on curve input" << endl;
abort();
}
// cout<<"["<<a1<<","<<a2<<","<<a3<<","<<a4<<","<<a6<<"]"<<endl;
break;
default:
// cout<<"Reading a1 a2 a3 a4 a6 ...\n";
is.unget();
is >> a1 >> a2 >> a3 >> a4 >> a6;
// cout<<"["<<a1<<","<<a2<<","<<a3<<","<<a4<<","<<a6<<"]"<<endl;
}
}
// puts out TeX-ed equation of curve
void Curve::tex_print(ostream &os) const
{
os << "$y^2" ;
if(a1==0){
;
} else {
if(a1==1) os << " + xy" ;
else if(a1==-1) os << " - xy" ;
else if(a1 > 0) os << " +" << a1 << "xy" ;
else os << " " << a1 << " xy" ;
}
if(a3==0){
;
} else {
if(a3==1) os << " + y" ;
else if(a3==-1) os << " - y" ;
else if(a3 > 0) os << " +" << a3 << "y" ;
else os << " " << a3 << " y" ;
}
os << " = x^3" ;
if(a2==0){
;
} else {
if(a2==1) os << " + x^2" ;
else if(a2==-1) os << " - x^2" ;
else if(a2 > 0) os << " +" << a2 << "x^2" ;
else os << " " << a2 << " x^2" ;
}
if(a4==0){
;
} else {
if(a4==1) os << " + x" ;
else if(a4==-1) os << " - x" ;
else if(a4 > 0) os << " +" << a4 << "x" ;
else os << " " << a4 << " x" ;
}
if(a6==0){
;
} else {
if(a6==1) os << " + 1" ;
else if(a6==-1) os << " - 1" ;
else if(a6 > 0) os << " +" << a6 ;
else os << " " << a6 ;
}
os << "$" ;
return ;
}
// end of file: curve.cc
//
// The following functions from OM's code are never used
//
// /* number of solutions to y^2+ay=b mod p */
// long quadroots(const bigint& a, const bigint& b, long p )
// {
// if (p == 2) {
// if (!odd(a)) return(1) ;
// if (!odd(b)) return(2) ;
// return(0) ;
// }
// else {
// long d = I2long((a*a+4*b)%p);
// if (d==0) return 1;
// if (legendre(d,p)==1) return 2;
// return 0;
// }
// }
// // for finding number of points mod 2 and 3
// long pointsmod(long p, const Curve& E)
// {
// bigint a1,a2,a3,a4,a6;
// E.getai(a1,a2,a3,a4,a6);
// if (p == 2)
// return( 1 + quadroots(a3, a6, 2) +
// quadroots(a1 + a3, 1 + a2 + a4 + a6, 2)) ;
// if (p ==3)
// return( 1 + quadroots(a3, a6, 3) +
// quadroots(a1 + a3, 1 + a2 + a4 + a6, 3)
// + quadroots(-a1 + a3, -1 + a2 - a4 + a6, 3)) ;
// // Now p>3
// long count=0;
// for (long x=0;x<p;x++) count+=quadroots(x*a1+a3,x*(x*(x+a2)+a4)+a6, p);
// return count;
// }
|