File: curvemod.cc

package info (click to toggle)
eclib 2014-09-21-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,216 kB
  • ctags: 4,287
  • sloc: cpp: 45,827; makefile: 222; sh: 108
file content (201 lines) | stat: -rw-r--r-- 5,665 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
// curvemod.cc: implementation of class curvemodq for elliptic curve mod q 
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
// 
// This file is part of the eclib package.
// 
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
// 
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// 
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
// 
//////////////////////////////////////////////////////////////////////////
 

#include <eclib/curve.h>
#include <eclib/points.h>
#include <eclib/polys.h>
#include <eclib/curvemod.h>
#include <eclib/pointsmod.h>

// constructors 
curvemodq::curvemodq(void) 
{
  Fq=0;
  //  cout<<"In curvemodq default constructor, Fq = "<<Fq<<endl;
}

curvemodq::curvemodq(const Curve& E, const bigint& qq)
{
  q=qq; Fq=new galois_field(q);
  //  cout<<"In curvemodq constructor, Fq = "<<Fq<<endl;
  bigint A1,A2,A3,A4,A6;
  E.getai(A1,A2,A3,A4,A6);
  GFSetZ(a1,A1);
  GFSetZ(a2,A2);
  GFSetZ(a3,A3);
  GFSetZ(a4,A4);
  GFSetZ(a6,A6);
  order=BIGINT(0);
}

curvemodq::~curvemodq() 
{
  //  cout<<"In curvemodq destructor, Fq = "<<Fq<<endl;
  if(Fq) delete Fq;
}

curvemodq::curvemodq(const curvemodq& C) // copy constructor
{
  q=C.q; 
  Fq = new galois_field(q); // Not enough to copy the pointer
  //  cout<<"In curvemodq copy constructor, Fq = "<<Fq<<endl;
  a1=C.a1; a2=C.a2; a3=C.a3; a4=C.a4; a6=C.a6; 
  order=C.order;
}

void curvemodq::operator=(const curvemodq& C) // assignment
{
  q=C.q; 
  delete Fq;
  Fq = new galois_field(q); // Not enough to copy the pointer
  //  cout<<"In curvemodq operator=, Fq = "<<Fq<<endl;
  a1=C.a1; a2=C.a2; a3=C.a3; a4=C.a4; a6=C.a6; 
  order=C.order;
}

void curvemodq::set_group_order_via_legendre()  
{
  // Do NOT make these static as the modulus might change!
  gf_element two=to_ZZ_p(2);
  gf_element four=two+two;
  if(!is_zero(order)) return; // order already set!
  order=BIGINT(1);  // point at infinity
  gf_element b2 = a1*a1 + four*a2; 
  gf_element b4 = two*a4 + a1*a3;
  gf_element b6 = a3*a3 + four*a6; 
  bigint ix; NewGF(*Fq,x); NewGF(*Fq,d);
  for(ix=BIGINT(0); ix<q; ix++)
    {
      GFSetZ(x,ix);
      d = ((four*x+b2)*x+(two*b4))*x+b6;
      order+=(1+legendre(rep(d),q));
    }
}

void curvemodq::set_group_order()  
{
  if(((this->q)<100)||((this->q)==181)||((this->q)==331)||((this->q)==547))
    {
      set_group_order_via_legendre();
      return;
    }
  pointmodq P1, P2;
  bigint n1, n2, n;
  my_isomorphism_type(*this,n1,n2,P1,P2);
  order=n1*n2;
}

// Division poly functions:


FqPoly makepdivpol(const curvemodq& C, int p)
{
  if(p==2)
    {
      gf_element a1,a2,a3,a4,a6;
      C.get_ai(a1,a2,a3,a4,a6);
      NewFqPoly(get_field(C),f);
      SetDegree(f,3);
      SetCoeff(f,0,a3*a3 + 4*a6);
      SetCoeff(f,1,2*(2*a4 + a1*a3));
      SetCoeff(f,2,a1*a1 + 4*a2);
      SetCoeff(f,3,ItoGF(get_field(C),4));
      return f;
    }

  // default for odd p: use recursive method

  return div_pol_odd(C,p);
}

// div_pol_odd(C,n) returns the polynomial in x whose zeros are the
// (x-coordinates of the) non-zero points P on C satisfying nP=0 (for
// odd n)

// The poly itself is found recursively
 
FqPoly div_pol_odd_rec(const curvemodq& C, int n);

FqPoly div_pol_odd(const curvemodq& C, int n)
{
  return div_pol_odd_rec(C,n);
}

FqPoly div_pol_odd_rec(const curvemodq& C, int n)
{
  const galois_field Fq=get_field(C);
  NewFqPoly(Fq,X);  FqPolyAssignX(X);
  gf_element a1,a2,a3,a4,a6;
  C.get_ai(a1,a2,a3,a4,a6);
  FqPoly f1 = X*(X*(X+a2)+a4)+a6;
  FqPoly f2 = a1*X+a3;
  FqPoly psi24=(ItoGF(Fq,4)*f1+f2*f2); psi24*=psi24;
  NewFqPoly(Fq,ans);
  switch(n) {
  case 0: 
    FqPolyAssign0(ans); return ans;
  case 1: case 2: 
    FqPolyAssign1(ans); return ans;
  case 3:
    SetDegree(ans,4);
    SetCoeff(ans,4,3);
    SetCoeff(ans,3,a1*a1+4*a2);
    SetCoeff(ans,2,3*a1*a3+6*a4);
    SetCoeff(ans,1,3*a3*a3+12*a6);
    SetCoeff(ans,0,a1*a1*a6-a1*a3*a4+a2*a3*a3+4*a2*a6-a4*a4);
    return ans;
  case 4:
    SetDegree(ans,6);
    SetCoeff(ans,6,2);
    SetCoeff(ans,5,a1*a1+4*a2);
    SetCoeff(ans,4,5*a1*a3+10*a4);
    SetCoeff(ans,3,10*a3*a3+40*a6);
    SetCoeff(ans,2,10*a1*a1*a6-10*a1*a3*a4+10*a2*a3*a3+40*a2*a6-10*a4*a4);
    SetCoeff(ans,1,a1*a1*a1*a1*a6-a1*a1*a1*a3*a4+a1*a1*a2*a3*a3+8*a1*a1*a2*a6-a1*a1*a4*a4-4*a1*a2*a3*a4-a1*a3*a3*a3-4*a1*a3*a6+4*a2*a2*a3*a3+16*a2*a2*a6-4*a2*a4*a4-2*a3*a3*a4-8*a4*a6);
    SetCoeff(ans,0,a1*a1*a1*a3*a6-a1*a1*a3*a3*a4+2*a1*a1*a4*a6+a1*a2*a3*a3*a3+4*a1*a2*a3*a6-3*a1*a3*a4*a4+2*a2*a3*a3*a4+8*a2*a4*a6-a3*a3*a3*a3-8*a3*a3*a6-2*a4*a4*a4-16*a6*a6);
    return ans;
  default: // general case, use recursion
    // If n is odd, n=2m+1:
    if(n%2==1)
      {
	int m=(n-1)/2;
	FqPoly t1=div_pol_odd_rec(C,m);
	t1=div_pol_odd_rec(C,m+2)*t1*t1*t1;
	FqPoly t2=div_pol_odd_rec(C,m+1);
	t2=div_pol_odd_rec(C,m-1)*t2*t2*t2;
	if(m%2==1) return t1-psi24*t2;
	return psi24*t1-t2;
      }
    else // n is even, n=2m:
      {
	int m=n/2;
	FqPoly t1=div_pol_odd_rec(C,m-1);
	t1=div_pol_odd_rec(C,m+2)*t1*t1;
	FqPoly t2=div_pol_odd_rec(C,m+1);
	t2=div_pol_odd_rec(C,m-2)*t2*t2;
	return div_pol_odd_rec(C,m)*(t1-t2);
      }
  }
}