File: desc2.cc

package info (click to toggle)
eclib 2014-09-21-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,216 kB
  • ctags: 4,287
  • sloc: cpp: 45,827; makefile: 222; sh: 108
file content (493 lines) | stat: -rw-r--r-- 15,768 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
// desc2.cc:  implementation of second descent (via 2-isogeny) procedure
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
// 
// This file is part of the eclib package.
// 
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
// 
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// 
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
// 
//////////////////////////////////////////////////////////////////////////
 
#include <eclib/mquartic.h>
#include <eclib/unimod.h>
#include <eclib/quadratic.h>
#include <eclib/conic.h>
#include <eclib/mlocsol.h>
#include <eclib/mglobsol.h>
#include <eclib/transform.h>
#include <eclib/minim.h>
#include <eclib/reduce.h>
#include <eclib/sqfdiv.h>
#include <eclib/desc2.h>
#include <eclib/timer.h>  // for timing of conic solving
#include <eclib/hilbert.h>

#ifndef QSIEVE_OPT
#define QSIEVE_OPT 0 // uses Stoll's sieve
#endif

int process_d3(const quadratic& q0, const bigint& d3, 
	       const vector<bigint>& plist, const vector<bigint>& factorbase, double hlim,
	       const quadratic& q1, const quadratic& q3,
	       bigint& x, bigint& y, bigint& z, int verb, int selmer_only=0);
// Processes an individual d3
// Returns -1 if not els
//          0 if els but no point found
//         +1 if els and point found
//
// if selmer_only==1, returns 0 or -1, with no point searching
//
// We only pass d3 to process_d3 if the Hilbert symbols tests show
// that both q1=d3 and q3=d3 are soluble (but this does not yet imply
// that they are simultaneously soluble).

int desc2(const bigint& c, const bigint& d1, const bigint& d2,
	  const vector<bigint>& plist, const vector<bigint>& supp, const vector<bigint>& bgens,
	  long mask,  double hlim,
	  bigint& x, bigint& y, bigint& z, int verb, int selmer_only, int alldesc)
// Works on homogeneous space (d1,0,c,0,d2) (assumed ELS)
// Returns 
//   -1 if it certainly has no points (if no ELS descendents)
//   +1 if it has a point (coordinates returned in x, y, z)
//    0 if undecided (ELS descendents exist but no rational points were found)
//
//  plist is a complete list of bad primes (including 2)
//  supp is a list of primes (and -1) dividing d'
//  bgens is a list of generators of the "opposite" Selmer group B', a subgroup
//        of group A' = the span of supp
//  mask enables one to loop over A' modulo B'
//
// if alldesc==1 it does not stop when it finds one descendent with a point on it,
// but goes on to look at all the others.
//
// if selmer_only==1 it only checks whether els descendents exist,
// returning -1 or 0, but does no global point searching.
//
{
  int xverb = (verb>1), res;
  if(verb) 
    {
      cout<<"Using desc2("<<d1<<","<<c<<","<<d2<<")\n";
      cout<<"supp="<<supp<<"; mask="<<mask<<"; bgens="<<bgens<<endl;
    }
  bigint x0,z0,d0, p, result;
  bigint d = d1*d2, cdash = -2*c, ddash = sqr(c)-4*d;
  static const bigint one = BIGINT(1);
  static const bigint two = BIGINT(2);
  int add2tosupp = (val(2,ddash)==4);  
  if(add2tosupp) add2tosupp = (find(supp.begin(),supp.end(),two)==supp.end());  
// For we are on E' and the original d was odd

  // Step 1: solve the conic d1*x0^2 + c*x0*z0 + d2*z0^2 = y0^2 
  // Step 2: with parametrization

  int ddash_is_square = isqrt(ddash,d0);

  quadratic q0(d1,c,d2), q1, q2, q3;
  
  res = solve_conic_param(q0,one,plist,q1,q2,q3);

  if(!res) {cout<<"solve_conic failed -- should not happen!\n"; return -1;}
  x0=q1[0]; z0=q3[0];
  vector<bigint> factorbase = plist;
  int factorbase_enlarged=0;

  // We only need to factorize x0, z0 if some d3 passes the Hilbert
  // symbol test, since we use their factorizations to solve q1=d3 but
  // NOT to test whether q1=d3 and q3=d3 are soluble.  We'll carry out
  // the following only when necessary:

  //  factorbase=vector_union(factorbase,pdivs(x0));
  //  factorbase=vector_union(factorbase,pdivs(z0));

  // The quadratics q1, q3 have discriminants 4*d2, 4*d1, and resultant d'.

  if(xverb) 
    {
      cout<<"q1-coeffs: "<<q1<<"\n";
      cout<<"q3-coeffs: "<<q3<<"\n";
      result = resultant(q1,q3);
      cout<<"resultant(q1,q3)   = "<<result;
      if(result==ddash) cout<<" = d'\n";
      else cout<<" = "<<(result/ddash)<<" * d'\n";
      cout<<"support of d': "<<supp<<endl;
    }

  // Step 3
  long nsupp = supp.size();
  long nd3=1<<nsupp, id3;

  // Step 4: For all square-free divisors of the resultant, attempt to
  //         form a descendent quartic

  bigint d3, keepd3, s0, t0, u0, s1, t1, u1;
  int looking=1, found=0, hres;

  for(id3=0; (id3<nd3)&&(looking||alldesc); id3++) // must start at 0
    {
      d3=makenum(supp,id3);
      if(id3&mask) continue;

// We first test whether q1=d3 and q3=d3 are soluble using Hilbert symbols:
      hres = global_hilbert(q1,d3,factorbase,p) || 
	     global_hilbert(q3,d3,factorbase,p);
      if(!hres)
	{
	  if(verb) cout<<"d3= "<<d3<<" passes Hilbert symbol tests\n";
	  if(xverb) cout<<"About to factorize "<<x0<<" and "<<z0<<endl;
	  if(!factorbase_enlarged)
	    {
   //	      cout<<"Before enlarging, factorbase = "<<factorbase<<endl;
	      factorbase = vector_union(factorbase,pdivs(x0));
	      factorbase = vector_union(factorbase,pdivs(z0));
	      factorbase_enlarged=1;
   //	      cout<<"After enlarging, factorbase = "<<factorbase<<endl;
	    }
	  res = process_d3(q0,d3,plist,factorbase,hlim,q1,q3,x,y,z,verb,selmer_only);
	  if(xverb) cout<<"process_d3("<<d3<<") returns "<<res<<endl;
	}
      else 
	{
	  //	  if(xverb) 
	  //	    cout<<"d3= "<<d3<<" fails Hilbert symbol tests (p="<<p<<")\n";
	  res=-1;
	}
      if(res!=-1)  // descendent is els, lift to S^(2) exists
	{
	  looking=0; 
	  keepd3=d3;
	}
      if(res==1)   // descendent is gls, lift to E/2E exists
	{
	  found=1;
	}

      if((looking||alldesc)&&add2tosupp)
	{
	  d3=2*d3;
// We first test whether q1=d3 and q3=d3 are soluble using Hilbert symbols:
  	  hres = global_hilbert(q1,d3,factorbase,p) || 
  	         global_hilbert(q3,d3,factorbase,p);
	  if(!hres)
	    {
	      if(verb) cout<<"d3= "<<d3<<" passes Hilbert symbol tests\n";
	      if(!factorbase_enlarged)
		{
		  if(xverb)
		    cout<<"About to factorize "<<x0<<" and "<<z0<<endl;
  //	          cout<<"Before enlarging, factorbase = "<<factorbase<<endl;
		  factorbase = vector_union(factorbase,pdivs(x0));
		  factorbase = vector_union(factorbase,pdivs(z0));
		  factorbase_enlarged=1;
  //	          cout<<"After enlarging, factorbase = "<<factorbase<<endl;
		}
	      res = process_d3(q0,d3,plist,factorbase,hlim,q1,q3,x,y,z,verb,selmer_only);
	      if(xverb) cout<<"process_d3("<<d3<<") returns "<<res<<endl;
	    }
	  else 
	    {
	      //	      if(xverb) 
	      //		cout<<"d3= "<<d3<<" fails Hilbert symbol tests (p="<<p<<")\n";
	      res=-1;
	    }
	  if(res!=-1)  // descendent is els, lift to S^(2) exists
	    {
	      looking=0; 
	      keepd3=d3;
	    }
	  if(res==1)   // descendent is gls, lift to E/2E exists 
	    {
	      found=1;
	    }
	}
    }
  if(found) 
    {
      if(verb) 
	cout<<"Found a descendent with a rational point so terminating second descent step.\n";
      return +1;   // Found an els descendent with a point on it
    }
  if(looking) return -1; // No els descendents exist
  
  if(selmer_only) return 0;

  //
  // Go on searching on other descendents...
  //
  if(verb) cout<<"Found an els descendent but no rational point on it...\n";

  nd3=1<<bgens.size();
  long d3step=(2-ddash_is_square);
  long ndesc=nd3/d3step;
  if(nd3==d3step)
    {
      if(verb) cout<<"No further descendents.\n";
      return 0;
    }
  if(verb) 
    cout<<"We now construct and search the "<<(ndesc-1)<<" other descendents...\n";
  for(id3=d3step; (id3<nd3); id3+=d3step)
    {
      d3 = sqfmul(keepd3,makenum(bgens,id3));
      int res = process_d3(q0,d3,plist,factorbase,hlim,q1,q3,x,y,z,verb);
      if(xverb) cout<<"process_d3("<<d3<<") returns "<<res<<endl;
      if(res==1)   // descendent is gls, lift to E/2E exists
	{
	  found=1;
	  if(verb) 
	    cout<<"Found a descendent with a rational point so terminating second descent step.\n";
	  if(!alldesc) return +1;
	}
    }
  if(verb&&(!found)) cout<<"No rational point found on any of the other descendents...\n";
  return found;
  //
  //
  //
}  // end of desc2()


int process_d3(const quadratic& q0, const bigint& d3, 
	       const vector<bigint>& plist, const vector<bigint>& factorbase, double hlim,
	       const quadratic& q1, const quadratic& q3,
	       bigint& x, bigint& y, bigint& z, int verb, int selmer_only)
// Processes an individual d3
// Returns -1 if not els
//          0 if els but no point found
//         +1 if els and point found
//
// if selmer_only==1, returns 0 or -1, with no point searching
//
// We only pass d3 to process_d3 if the Hilbert symbols tests show
// that both q1=d3 and q3=d3 are soluble (but this does not yet imply
// that they are simultaneously soluble).
{
  int xverb=verb>1;
  if(verb) cout<<"Processing d3 = "<<d3<<": \t";
  //  if(xverb) cout<<"\nplist = "<<plist<<"\n";
  bigint s1,u1,t1,ga,gb,gc,gd,ge,cont;
  bigint p,ggI,ggJ,ggD;
  static const bigint one = BIGINT(1), zero = BIGINT(0);
  vector<bigint> ggbadp, ggextrap;
  quadratic Q1, Q2, Q3;
  int resd3 = solve_conic_param(q1,d3,factorbase,Q1,Q2,Q3);

  if(!resd3)
    {
      cout<<"Problem solving q1=d3!\n"<<endl;
      cout<<"q1 = "<<q1<<endl;
      cout<<"d3 = "<<d3<<endl;
      cout<<"factorbase= "<<factorbase<<endl;
      if(verb) cout<<"q1=d3 not soluble.\n";
      return -1;
    } 
  if(verb) cout<<"q1=d3 is soluble.\t";

  resd3 = solve_conic(q3,d3,factorbase,s1,u1,t1);

  if(!resd3)
    {
      cout<<"Problem solving q3=d3!\n"<<endl;
      cout<<"q3 = "<<q3<<endl;
      cout<<"d3 = "<<d3<<endl;
      cout<<"factorbase= "<<factorbase<<endl;
      if(verb) cout<<"q3=d3 not soluble.\n";
      return -1;
    }
  if(verb) cout<<"q1=d3 and q3=d3 both soluble, forming quartic.\n";

  // g(x,y)=q3(Q1(x,y),Q3(x,y)):
	      
  ga = q3(Q1[0],Q3[0]);
	  
  gb = q3[0]*(2*Q1[0]*Q1[1]) + q3[1]*(Q1[0]*Q3[1]+Q1[1]*Q3[0]) + q3[2]*(2*Q3[0]*Q3[1]);
	  
  gc = q3[0]*(sqr(Q1[1]) + 2*Q1[0]*Q1[2]) 
    + q3[1]*(Q1[0]*Q3[2] + Q1[1]*Q3[1] + Q1[2]*Q3[0]) 
    + q3[2]*(sqr(Q3[1]) + 2*Q3[0]*Q3[2]);
	  
  gd = q3[0]*(2*Q1[1]*Q1[2]) + q3[1]*(Q1[1]*Q3[2] + Q1[2]*Q3[1]) + q3[2]*(2*Q3[1]*Q3[2]);
	  
  ge = q3(Q1[2],Q3[2]);

  ga*=d3; gb*=d3; gc*=d3; gd*=d3; ge*=d3;
	  
  // Simplify quartic by dividing by square-part of content
  cont = g_content(ga,gb,gc,gd,ge);
	  
  if(cont>1)
    {
      if(xverb) cout<<"Dividing quartic by "<<cont<<" squared\n";
      cont=sqr(cont);
      ga/=cont; gb/=cont; gc/=cont; gd/=cont; ge/=cont;
    }
	  
  bigint ga0=ga, gb0=gb, gc0=gc, gd0=gd, ge0=ge;
  quartic gg(ga,gb,gc,gd,ge);
  ggI = gg.getI();
  ggJ = gg.getJ();
  ggD = abs(gg.getdisc());
  ggbadp=plist;
  for(unsigned long ip=0; ip<plist.size(); ip++) divide_out(ggD,plist[ip]);
  int extras=(ggD>1);
  if(extras) // then we have introduced some extra bad primes
    {
      if(xverb) cout<<"Having to factorize ggD = "<<ggD<<endl;
      ggextrap = pdivs(ggD);
      ggbadp = vector_union(ggbadp,ggextrap);
    }
  if(xverb)
    {
      cout<<"Quartic gg is " << gg << endl;
      cout<<"I(gg) = "<<ggI<<endl;
      cout<<"J(gg) = "<<ggJ<<endl;
      if(extras) cout<<"extra bad primes = "<<ggextrap<<endl;
      cout<<"bad primes = "<<ggbadp<<endl;
    }
	  
// NB the full minimalization procedure ONLY works for locally soluble quartics
//    so we have to check solubility before minimalizing.
// But we can partially minimise anyway, which helps local solubility test
		  
  scaled_unimod m;
  
  if(xverb) cout << "preliminary minimalization of gg...\n";
  minim_all(ga,gb,gc,gd,ge,ggI,ggJ,ggbadp,m,0,xverb);
  gg.assign(ga,gb,gc,gd,ge);  // must reset roots before searching
  if(xverb) 
    {
      cout<<"transform "<<m<<"\n";
      cout<<"After preliminary minimalizing, gg = "<<gg<<endl;
      cout<<"I(gg) = "<<ggI<<endl;
      cout<<"J(gg) = "<<ggJ<<endl;
      if(check_transform(ga0,gb0,gc0,gd0,ge0,m,ga,gb,gc,gd,ge))
	{cout<<"transform check OK\n";}
      else
	{cout<<"transform check fails!\n";}
    }
  
  if(!locallysoluble(gg,plist,p))
    {
      if(verb) cout<<"Not locally soluble (p="<<p<<")\n";
      return -1;
    }

  if(selmer_only) return 0;

  if(xverb) 
    {
      cout << "Everywhere locally soluble, ";
      cout << "minimalizing gg...\n";
    }
  minim_all(ga,gb,gc,gd,ge,ggI,ggJ,ggbadp,m,1,xverb);
  gg.assign(ga,gb,gc,gd,ge);  // must reset roots before searching
  if(xverb) 
    {
      cout<<"transform "<<m<<"\n";
      cout<<"After minimalizing, gg = "<<gg<<endl;
      cout<<"I(gg) = "<<ggI<<endl;
      cout<<"J(gg) = "<<ggJ<<endl;
      if(check_transform(ga0,gb0,gc0,gd0,ge0,m,ga,gb,gc,gd,ge))
	{cout<<"transform check OK\n";}
      else
	{cout<<"transform check fails!\n";}
      cout<<"Descendent quartic (before reduction) = "
	  <<gg<<endl;
      cout<<"Now reducing gg...\n";
    }
  int better=1, ired;
  bigint oldga(ga), oldgb(gb), oldgc(gc), oldgd(gd), oldge(ge);
  unimod n;
  for(ired=0; (ired<5)&&better; ired++)
    {
      reduce(ga,gb,gc,gd,ge,n);
      better = (abs(ga)<=abs(oldga))&&!((gb==oldgb)&&(gc==oldgc)&&(gd==oldgd)&&(ge==oldge));
      if(better||(ired==0))
	{
	  m*=n;
	  n.reset();
	  oldga=ga; oldgb=gb; oldgc=gc; oldgd=gd; oldge=ge;
	  gg.assign(ga,gb,gc,gd,ge);
	  if(xverb) 
	    {
	      cout<<"Descendent quartic (after "<<(ired+1)
		  <<" reductions) = "<<gg<<endl;
	      if(check_transform(ga0,gb0,gc0,gd0,ge0,m,ga,gb,gc,gd,ge))
		{cout<<"transform check OK\n";}
	      else
		{cout<<"transform check fails!\n";}
	    }
	}
    }
  if(xverb) 
    {
      cout<<"transform "<<m<<"\n";
      if(check_transform(ga0,gb0,gc0,gd0,ge0,m,
			 gg.geta(),gg.getb(),gg.getcc(),gg.getd(),gg.gete()))
	{cout<<"transform check OK\n";}
      else
	{cout<<"transform check fails!\n";}
    }
  if(verb) 
    cout<<"Descendent quartic (after reduction) = "<<gg<<endl;
  
// Step 5: We have an ELS descendent quartic;
//         now attempt to find a rational point on it
  
  quartic_sieve qs(&gg,QSIEVE_OPT,0);
  if(verb) 
    cout << "Searching for points on gg up to height "<<hlim<<endl;
  
  //	      if(qs.search(hlim,1000000))
  if(!qs.search(hlim))
    {
      if(verb) cout << "No point found.\n";
      return 0;
    }
  qs.getpoint(x,y,z);
  if(verb)
    {
      show_xyz(x,y,z);
      cout<<"...mapping this point back to original quartic...\n";
    }
  bigint x3 = m(1,1)*x+m(1,2)*z;
  bigint z3 = m(2,1)*x+m(2,2)*z;
  bigint fac = gcd(x3,z3); if(fac>1) {x3/=fac; z3/=fac;}
  //	  cout<<"x3="<<x3<<"\n";
  //	  cout<<"z3="<<z3<<"\t should lie on original quartic\n";
  bigint q1xz = Q1(x3,z3);
  bigint q3xz = Q3(x3,z3);
  fac=gcd(q1xz,q3xz); if(fac>1) {q1xz/=fac; q3xz/=fac;}
  
  bigint x2 = abs(q1(q1xz,q3xz));
  bigint z2 = abs(q3(q1xz,q3xz));
  //NB These abs() are OK because x2,z2 do have the same sign
  fac=gcd(x2,z2);  if(fac>1) {x2/=fac; z2/=fac;}
  bigint y2 = q0(x2,z2);
  
  if(isqrt(x2,x)&&isqrt(z2,z)&&isqrt(y2,y))
    {
      if(verb) 
	{
	  cout<<"Point on original quartic is "; 
	  show_xyz(x,y,z);
	  cout<<endl;
	}
      return +1;
    }
  cout<<"process_d3 failed! x2="<<x2<<", z2="<<z2<<", y2="<<y2<<".\n";
  return 0;
}