1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
|
// desc2.cc: implementation of second descent (via 2-isogeny) procedure
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
#include <eclib/mquartic.h>
#include <eclib/unimod.h>
#include <eclib/quadratic.h>
#include <eclib/conic.h>
#include <eclib/mlocsol.h>
#include <eclib/mglobsol.h>
#include <eclib/transform.h>
#include <eclib/minim.h>
#include <eclib/reduce.h>
#include <eclib/sqfdiv.h>
#include <eclib/desc2.h>
#include <eclib/timer.h> // for timing of conic solving
#include <eclib/hilbert.h>
#ifndef QSIEVE_OPT
#define QSIEVE_OPT 0 // uses Stoll's sieve
#endif
int process_d3(const quadratic& q0, const bigint& d3,
const vector<bigint>& plist, const vector<bigint>& factorbase, double hlim,
const quadratic& q1, const quadratic& q3,
bigint& x, bigint& y, bigint& z, int verb, int selmer_only=0);
// Processes an individual d3
// Returns -1 if not els
// 0 if els but no point found
// +1 if els and point found
//
// if selmer_only==1, returns 0 or -1, with no point searching
//
// We only pass d3 to process_d3 if the Hilbert symbols tests show
// that both q1=d3 and q3=d3 are soluble (but this does not yet imply
// that they are simultaneously soluble).
int desc2(const bigint& c, const bigint& d1, const bigint& d2,
const vector<bigint>& plist, const vector<bigint>& supp, const vector<bigint>& bgens,
long mask, double hlim,
bigint& x, bigint& y, bigint& z, int verb, int selmer_only, int alldesc)
// Works on homogeneous space (d1,0,c,0,d2) (assumed ELS)
// Returns
// -1 if it certainly has no points (if no ELS descendents)
// +1 if it has a point (coordinates returned in x, y, z)
// 0 if undecided (ELS descendents exist but no rational points were found)
//
// plist is a complete list of bad primes (including 2)
// supp is a list of primes (and -1) dividing d'
// bgens is a list of generators of the "opposite" Selmer group B', a subgroup
// of group A' = the span of supp
// mask enables one to loop over A' modulo B'
//
// if alldesc==1 it does not stop when it finds one descendent with a point on it,
// but goes on to look at all the others.
//
// if selmer_only==1 it only checks whether els descendents exist,
// returning -1 or 0, but does no global point searching.
//
{
int xverb = (verb>1), res;
if(verb)
{
cout<<"Using desc2("<<d1<<","<<c<<","<<d2<<")\n";
cout<<"supp="<<supp<<"; mask="<<mask<<"; bgens="<<bgens<<endl;
}
bigint x0,z0,d0, p, result;
bigint d = d1*d2, cdash = -2*c, ddash = sqr(c)-4*d;
static const bigint one = BIGINT(1);
static const bigint two = BIGINT(2);
int add2tosupp = (val(2,ddash)==4);
if(add2tosupp) add2tosupp = (find(supp.begin(),supp.end(),two)==supp.end());
// For we are on E' and the original d was odd
// Step 1: solve the conic d1*x0^2 + c*x0*z0 + d2*z0^2 = y0^2
// Step 2: with parametrization
int ddash_is_square = isqrt(ddash,d0);
quadratic q0(d1,c,d2), q1, q2, q3;
res = solve_conic_param(q0,one,plist,q1,q2,q3);
if(!res) {cout<<"solve_conic failed -- should not happen!\n"; return -1;}
x0=q1[0]; z0=q3[0];
vector<bigint> factorbase = plist;
int factorbase_enlarged=0;
// We only need to factorize x0, z0 if some d3 passes the Hilbert
// symbol test, since we use their factorizations to solve q1=d3 but
// NOT to test whether q1=d3 and q3=d3 are soluble. We'll carry out
// the following only when necessary:
// factorbase=vector_union(factorbase,pdivs(x0));
// factorbase=vector_union(factorbase,pdivs(z0));
// The quadratics q1, q3 have discriminants 4*d2, 4*d1, and resultant d'.
if(xverb)
{
cout<<"q1-coeffs: "<<q1<<"\n";
cout<<"q3-coeffs: "<<q3<<"\n";
result = resultant(q1,q3);
cout<<"resultant(q1,q3) = "<<result;
if(result==ddash) cout<<" = d'\n";
else cout<<" = "<<(result/ddash)<<" * d'\n";
cout<<"support of d': "<<supp<<endl;
}
// Step 3
long nsupp = supp.size();
long nd3=1<<nsupp, id3;
// Step 4: For all square-free divisors of the resultant, attempt to
// form a descendent quartic
bigint d3, keepd3, s0, t0, u0, s1, t1, u1;
int looking=1, found=0, hres;
for(id3=0; (id3<nd3)&&(looking||alldesc); id3++) // must start at 0
{
d3=makenum(supp,id3);
if(id3&mask) continue;
// We first test whether q1=d3 and q3=d3 are soluble using Hilbert symbols:
hres = global_hilbert(q1,d3,factorbase,p) ||
global_hilbert(q3,d3,factorbase,p);
if(!hres)
{
if(verb) cout<<"d3= "<<d3<<" passes Hilbert symbol tests\n";
if(xverb) cout<<"About to factorize "<<x0<<" and "<<z0<<endl;
if(!factorbase_enlarged)
{
// cout<<"Before enlarging, factorbase = "<<factorbase<<endl;
factorbase = vector_union(factorbase,pdivs(x0));
factorbase = vector_union(factorbase,pdivs(z0));
factorbase_enlarged=1;
// cout<<"After enlarging, factorbase = "<<factorbase<<endl;
}
res = process_d3(q0,d3,plist,factorbase,hlim,q1,q3,x,y,z,verb,selmer_only);
if(xverb) cout<<"process_d3("<<d3<<") returns "<<res<<endl;
}
else
{
// if(xverb)
// cout<<"d3= "<<d3<<" fails Hilbert symbol tests (p="<<p<<")\n";
res=-1;
}
if(res!=-1) // descendent is els, lift to S^(2) exists
{
looking=0;
keepd3=d3;
}
if(res==1) // descendent is gls, lift to E/2E exists
{
found=1;
}
if((looking||alldesc)&&add2tosupp)
{
d3=2*d3;
// We first test whether q1=d3 and q3=d3 are soluble using Hilbert symbols:
hres = global_hilbert(q1,d3,factorbase,p) ||
global_hilbert(q3,d3,factorbase,p);
if(!hres)
{
if(verb) cout<<"d3= "<<d3<<" passes Hilbert symbol tests\n";
if(!factorbase_enlarged)
{
if(xverb)
cout<<"About to factorize "<<x0<<" and "<<z0<<endl;
// cout<<"Before enlarging, factorbase = "<<factorbase<<endl;
factorbase = vector_union(factorbase,pdivs(x0));
factorbase = vector_union(factorbase,pdivs(z0));
factorbase_enlarged=1;
// cout<<"After enlarging, factorbase = "<<factorbase<<endl;
}
res = process_d3(q0,d3,plist,factorbase,hlim,q1,q3,x,y,z,verb,selmer_only);
if(xverb) cout<<"process_d3("<<d3<<") returns "<<res<<endl;
}
else
{
// if(xverb)
// cout<<"d3= "<<d3<<" fails Hilbert symbol tests (p="<<p<<")\n";
res=-1;
}
if(res!=-1) // descendent is els, lift to S^(2) exists
{
looking=0;
keepd3=d3;
}
if(res==1) // descendent is gls, lift to E/2E exists
{
found=1;
}
}
}
if(found)
{
if(verb)
cout<<"Found a descendent with a rational point so terminating second descent step.\n";
return +1; // Found an els descendent with a point on it
}
if(looking) return -1; // No els descendents exist
if(selmer_only) return 0;
//
// Go on searching on other descendents...
//
if(verb) cout<<"Found an els descendent but no rational point on it...\n";
nd3=1<<bgens.size();
long d3step=(2-ddash_is_square);
long ndesc=nd3/d3step;
if(nd3==d3step)
{
if(verb) cout<<"No further descendents.\n";
return 0;
}
if(verb)
cout<<"We now construct and search the "<<(ndesc-1)<<" other descendents...\n";
for(id3=d3step; (id3<nd3); id3+=d3step)
{
d3 = sqfmul(keepd3,makenum(bgens,id3));
int res = process_d3(q0,d3,plist,factorbase,hlim,q1,q3,x,y,z,verb);
if(xverb) cout<<"process_d3("<<d3<<") returns "<<res<<endl;
if(res==1) // descendent is gls, lift to E/2E exists
{
found=1;
if(verb)
cout<<"Found a descendent with a rational point so terminating second descent step.\n";
if(!alldesc) return +1;
}
}
if(verb&&(!found)) cout<<"No rational point found on any of the other descendents...\n";
return found;
//
//
//
} // end of desc2()
int process_d3(const quadratic& q0, const bigint& d3,
const vector<bigint>& plist, const vector<bigint>& factorbase, double hlim,
const quadratic& q1, const quadratic& q3,
bigint& x, bigint& y, bigint& z, int verb, int selmer_only)
// Processes an individual d3
// Returns -1 if not els
// 0 if els but no point found
// +1 if els and point found
//
// if selmer_only==1, returns 0 or -1, with no point searching
//
// We only pass d3 to process_d3 if the Hilbert symbols tests show
// that both q1=d3 and q3=d3 are soluble (but this does not yet imply
// that they are simultaneously soluble).
{
int xverb=verb>1;
if(verb) cout<<"Processing d3 = "<<d3<<": \t";
// if(xverb) cout<<"\nplist = "<<plist<<"\n";
bigint s1,u1,t1,ga,gb,gc,gd,ge,cont;
bigint p,ggI,ggJ,ggD;
static const bigint one = BIGINT(1), zero = BIGINT(0);
vector<bigint> ggbadp, ggextrap;
quadratic Q1, Q2, Q3;
int resd3 = solve_conic_param(q1,d3,factorbase,Q1,Q2,Q3);
if(!resd3)
{
cout<<"Problem solving q1=d3!\n"<<endl;
cout<<"q1 = "<<q1<<endl;
cout<<"d3 = "<<d3<<endl;
cout<<"factorbase= "<<factorbase<<endl;
if(verb) cout<<"q1=d3 not soluble.\n";
return -1;
}
if(verb) cout<<"q1=d3 is soluble.\t";
resd3 = solve_conic(q3,d3,factorbase,s1,u1,t1);
if(!resd3)
{
cout<<"Problem solving q3=d3!\n"<<endl;
cout<<"q3 = "<<q3<<endl;
cout<<"d3 = "<<d3<<endl;
cout<<"factorbase= "<<factorbase<<endl;
if(verb) cout<<"q3=d3 not soluble.\n";
return -1;
}
if(verb) cout<<"q1=d3 and q3=d3 both soluble, forming quartic.\n";
// g(x,y)=q3(Q1(x,y),Q3(x,y)):
ga = q3(Q1[0],Q3[0]);
gb = q3[0]*(2*Q1[0]*Q1[1]) + q3[1]*(Q1[0]*Q3[1]+Q1[1]*Q3[0]) + q3[2]*(2*Q3[0]*Q3[1]);
gc = q3[0]*(sqr(Q1[1]) + 2*Q1[0]*Q1[2])
+ q3[1]*(Q1[0]*Q3[2] + Q1[1]*Q3[1] + Q1[2]*Q3[0])
+ q3[2]*(sqr(Q3[1]) + 2*Q3[0]*Q3[2]);
gd = q3[0]*(2*Q1[1]*Q1[2]) + q3[1]*(Q1[1]*Q3[2] + Q1[2]*Q3[1]) + q3[2]*(2*Q3[1]*Q3[2]);
ge = q3(Q1[2],Q3[2]);
ga*=d3; gb*=d3; gc*=d3; gd*=d3; ge*=d3;
// Simplify quartic by dividing by square-part of content
cont = g_content(ga,gb,gc,gd,ge);
if(cont>1)
{
if(xverb) cout<<"Dividing quartic by "<<cont<<" squared\n";
cont=sqr(cont);
ga/=cont; gb/=cont; gc/=cont; gd/=cont; ge/=cont;
}
bigint ga0=ga, gb0=gb, gc0=gc, gd0=gd, ge0=ge;
quartic gg(ga,gb,gc,gd,ge);
ggI = gg.getI();
ggJ = gg.getJ();
ggD = abs(gg.getdisc());
ggbadp=plist;
for(unsigned long ip=0; ip<plist.size(); ip++) divide_out(ggD,plist[ip]);
int extras=(ggD>1);
if(extras) // then we have introduced some extra bad primes
{
if(xverb) cout<<"Having to factorize ggD = "<<ggD<<endl;
ggextrap = pdivs(ggD);
ggbadp = vector_union(ggbadp,ggextrap);
}
if(xverb)
{
cout<<"Quartic gg is " << gg << endl;
cout<<"I(gg) = "<<ggI<<endl;
cout<<"J(gg) = "<<ggJ<<endl;
if(extras) cout<<"extra bad primes = "<<ggextrap<<endl;
cout<<"bad primes = "<<ggbadp<<endl;
}
// NB the full minimalization procedure ONLY works for locally soluble quartics
// so we have to check solubility before minimalizing.
// But we can partially minimise anyway, which helps local solubility test
scaled_unimod m;
if(xverb) cout << "preliminary minimalization of gg...\n";
minim_all(ga,gb,gc,gd,ge,ggI,ggJ,ggbadp,m,0,xverb);
gg.assign(ga,gb,gc,gd,ge); // must reset roots before searching
if(xverb)
{
cout<<"transform "<<m<<"\n";
cout<<"After preliminary minimalizing, gg = "<<gg<<endl;
cout<<"I(gg) = "<<ggI<<endl;
cout<<"J(gg) = "<<ggJ<<endl;
if(check_transform(ga0,gb0,gc0,gd0,ge0,m,ga,gb,gc,gd,ge))
{cout<<"transform check OK\n";}
else
{cout<<"transform check fails!\n";}
}
if(!locallysoluble(gg,plist,p))
{
if(verb) cout<<"Not locally soluble (p="<<p<<")\n";
return -1;
}
if(selmer_only) return 0;
if(xverb)
{
cout << "Everywhere locally soluble, ";
cout << "minimalizing gg...\n";
}
minim_all(ga,gb,gc,gd,ge,ggI,ggJ,ggbadp,m,1,xverb);
gg.assign(ga,gb,gc,gd,ge); // must reset roots before searching
if(xverb)
{
cout<<"transform "<<m<<"\n";
cout<<"After minimalizing, gg = "<<gg<<endl;
cout<<"I(gg) = "<<ggI<<endl;
cout<<"J(gg) = "<<ggJ<<endl;
if(check_transform(ga0,gb0,gc0,gd0,ge0,m,ga,gb,gc,gd,ge))
{cout<<"transform check OK\n";}
else
{cout<<"transform check fails!\n";}
cout<<"Descendent quartic (before reduction) = "
<<gg<<endl;
cout<<"Now reducing gg...\n";
}
int better=1, ired;
bigint oldga(ga), oldgb(gb), oldgc(gc), oldgd(gd), oldge(ge);
unimod n;
for(ired=0; (ired<5)&&better; ired++)
{
reduce(ga,gb,gc,gd,ge,n);
better = (abs(ga)<=abs(oldga))&&!((gb==oldgb)&&(gc==oldgc)&&(gd==oldgd)&&(ge==oldge));
if(better||(ired==0))
{
m*=n;
n.reset();
oldga=ga; oldgb=gb; oldgc=gc; oldgd=gd; oldge=ge;
gg.assign(ga,gb,gc,gd,ge);
if(xverb)
{
cout<<"Descendent quartic (after "<<(ired+1)
<<" reductions) = "<<gg<<endl;
if(check_transform(ga0,gb0,gc0,gd0,ge0,m,ga,gb,gc,gd,ge))
{cout<<"transform check OK\n";}
else
{cout<<"transform check fails!\n";}
}
}
}
if(xverb)
{
cout<<"transform "<<m<<"\n";
if(check_transform(ga0,gb0,gc0,gd0,ge0,m,
gg.geta(),gg.getb(),gg.getcc(),gg.getd(),gg.gete()))
{cout<<"transform check OK\n";}
else
{cout<<"transform check fails!\n";}
}
if(verb)
cout<<"Descendent quartic (after reduction) = "<<gg<<endl;
// Step 5: We have an ELS descendent quartic;
// now attempt to find a rational point on it
quartic_sieve qs(&gg,QSIEVE_OPT,0);
if(verb)
cout << "Searching for points on gg up to height "<<hlim<<endl;
// if(qs.search(hlim,1000000))
if(!qs.search(hlim))
{
if(verb) cout << "No point found.\n";
return 0;
}
qs.getpoint(x,y,z);
if(verb)
{
show_xyz(x,y,z);
cout<<"...mapping this point back to original quartic...\n";
}
bigint x3 = m(1,1)*x+m(1,2)*z;
bigint z3 = m(2,1)*x+m(2,2)*z;
bigint fac = gcd(x3,z3); if(fac>1) {x3/=fac; z3/=fac;}
// cout<<"x3="<<x3<<"\n";
// cout<<"z3="<<z3<<"\t should lie on original quartic\n";
bigint q1xz = Q1(x3,z3);
bigint q3xz = Q3(x3,z3);
fac=gcd(q1xz,q3xz); if(fac>1) {q1xz/=fac; q3xz/=fac;}
bigint x2 = abs(q1(q1xz,q3xz));
bigint z2 = abs(q3(q1xz,q3xz));
//NB These abs() are OK because x2,z2 do have the same sign
fac=gcd(x2,z2); if(fac>1) {x2/=fac; z2/=fac;}
bigint y2 = q0(x2,z2);
if(isqrt(x2,x)&&isqrt(z2,z)&&isqrt(y2,y))
{
if(verb)
{
cout<<"Point on original quartic is ";
show_xyz(x,y,z);
cout<<endl;
}
return +1;
}
cout<<"process_d3 failed! x2="<<x2<<", z2="<<z2<<", y2="<<y2<<".\n";
return 0;
}
|