1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
// descent.cc: implementation of classes rank12 and two_descent
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
// rank12 is a common base for separate classes rank1 and rank2 (for
// computing rank via general 2-descent and descent via 2-isogeny
// repectively); class two_descent is a user interface to these
#include <stdexcept>
#include <eclib/compproc.h>
#include <eclib/points.h>
#include <eclib/mwprocs.h>
#include <eclib/mquartic.h>
#include <eclib/descent.h>
#include <eclib/mrank1.h>
#include <eclib/mrank2.h>
#define PRE_SATURATION_SEARCH_LIMIT 8
// Constructor:
//
// sel is selmer_only switch
// firstlim is bound on |x|+|z|
// secondlim is bound on log max {|x|,|z| }, i.e. logarithmic
// n_aux only relevant for general 2-descent when 2-torsion trivial
// n_aux=-1 causes default to be used (depends on method)
// second_descent only relevant for descent via 2-isogeny
two_descent::two_descent(Curvedata* ec,
int verb, int sel,
long firstlim, long secondlim,
long n_aux, int second_descent)
:verbose(verb), selmer_only(sel), e_orig(*ec)
{
qai.resize(5);
bigint a1,a2,a3,a4,a6;
ec->getai(a1,a2,a3,a4,a6);
v=BIGINT(1);
qai[0]=a1; qai[1]=a2; qai[2]=a3; qai[3]=a4; qai[4]=a6;
do_the_descent(firstlim,secondlim,n_aux,second_descent);
}
//#define DEBUG_Q_INPUT
two_descent::two_descent(vector<bigrational> ai,
int verb, int sel,
long firstlim, long secondlim,
long n_aux, int second_descent)
:verbose(verb), selmer_only(sel)
{
// Construct Curvedata from rational coeffs & get the scaling
// factor v used
#ifdef DEBUG_Q_INPUT
cout<<"two_descent constructor called with "<<ai<<endl;
#endif
qai=ai;
e_orig = Curvedata(ai, v);
if(e_orig.isnull())
throw std::invalid_argument ("The curve is null!");
if(verbose&&(v!=1))
cout<<"integral model = "<<(Curve)e_orig<<" with scale factor "<<v<<endl;
// Do the work as in the previous constructor
do_the_descent(firstlim,secondlim,n_aux,second_descent);
}
void two_descent::do_the_descent(long firstlim, long secondlim,
long n_aux, int second_descent)
{
e_min=e_orig.minimalize(u,r,s,t);
if(verbose&&(e_min!=e_orig))
{
cout<<"Working with minimal curve "<<(Curve)e_min
<<" via [u,r,s,t] = ["<<u<<","<<r<<","<<s<<","<<t<<"]\n";
}
two_torsion_exists = (two_torsion(e_min).size()>1) ;
if(two_torsion_exists)
r12=new rank2(&e_min,verbose,selmer_only,firstlim,secondlim,second_descent);
else
r12=new rank1(&e_min,verbose,selmer_only,firstlim,secondlim,n_aux);
success=r12->ok();
rank = r12->getrank();
rank_bound = r12->getrankbound();
selmer_rank = r12->getselmer();
certain=r12->getcertain();
// the last parameter here is set to a known upper bound on the rank
mwbasis = new mw(&e_min,verbose>2,1,rank_bound);
}
void two_descent::report_rank() const
{
if(!success) {cout << "Failed to compute rank\n"; return;}
if(selmer_only)
{
cout << "selmer-rank = " << selmer_rank << endl;
cout << "upper bound on rank = " << rank_bound << endl;
}
else
{
if(verbose)
{
if(two_torsion_exists)
{
cout << "\nUsed descent via 2-isogeny with isogenous curve E' = "<<(Curve)(getEprime())<<endl;
}
else
{
cout << "\nUsed full 2-descent via multiplication-by-2 map"<<endl;
}
}
if(certain)
{
cout << "Rank = " << rank << endl;
if (verbose)
{
if(two_torsion_exists)
{
cout << "Rank of S^2(E) = "<< getselmer() << endl;
cout << "Rank of S^2(E') = "<< getselmerprime() <<endl;
cout << "Rank of S^phi(E') = "<< getselmerphi() <<endl;
cout << "Rank of S^phi'(E) = "<< getselmerphiprime() <<endl<<endl;
}
else
{
cout << "Rank of S^2(E) = "<< getselmer() << endl<<endl;
}
}
}
else
{
if(two_torsion_exists)
cout<< rank << " <= rank <= " << rank_bound << endl;
else
cout<< rank << " <= rank <= selmer-rank = " << selmer_rank << endl;
}
}
}
void two_descent::saturate(long sat_bd)
{
// Do a quick search for points on the curve before processing points
bigfloat hlim=to_bigfloat(PRE_SATURATION_SEARCH_LIMIT);
bigfloat oldreg=mwbasis->regulator(), newreg=to_bigfloat(1);
long search_rank=0;
if ((r12->getrank()>0) || !(r12->getcertain()))
{
if(verbose) cout <<"Searching for points (bound = "<<hlim<<")..." << flush;
mwbasis->search(hlim);
if(verbose) cout<<"done:"<<endl;
search_rank=mwbasis->getrank();
newreg=mwbasis->regulator();
if(verbose) cout<<" found points which generate a subgroup of rank "<<search_rank
<<"\n and regulator "<<newreg<<endl;
}
if(verbose) cout <<"Processing points found during 2-descent..." << flush;
mwbasis->process(r12->getgens(),0); // no saturation yet
if(verbose) cout <<"done:"<<endl;
rank = mwbasis->getrank();
if(verbose)
{
if(rank>search_rank) cout << "2-descent increases rank to "<<rank<<", ";
if(rank<search_rank) cout << "2-descent only finds rank lower bound of "<<rank<<", ";
cout <<" now regulator = "<<mwbasis->regulator()<<endl;
}
sat_bound=sat_bd; // store for reporting later
if((sat_bd==0) || (rank==0))
{
if (rank==0)
{
fullmw = 1;
}
else // positive rank but we have not checked saturation
{
fullmw=0;
if(verbose) cout <<"No saturation being done" << endl;
}
}
else
{
// Saturate
if(verbose) cout <<"Saturating (with bound = "<<sat_bd<<")..." << flush;
bigint index; vector<long> unsat;
int sat_ok = mwbasis->saturate(index,unsat,sat_bd,1);
// The last parameter 1 says not to bother with 2-saturation!
if(verbose) cout <<"done:"<<endl;
// Report outcome
if(verbose)
{
if(index>1)
{
cout <<" *** saturation increased group by index "<<index<<endl;
cout <<" *** regulator is now "<<mwbasis->regulator()<<endl;
}
else cout << " points were already saturated."<<endl;
}
if(!sat_ok)
{
cout << "*** saturation possibly incomplete at primes " << unsat << "\n";
}
rank = mwbasis->getrank();
fullmw=sat_ok; // (rank==0);
}
}
vector<P2Point> two_descent::getbasis() // returns points on original model
{
vector<Point>plist=mwbasis->getbasis();
vector<P2Point>qlist(rank);
for (int i=0; i<rank; i++)
qlist[i] = scale(transform(plist[i],&e_orig,u,r,s,t,1),v,0);
return qlist;
}
vector<Point> two_descent::getpbasis() // returns points on integral model
{
vector<Point>plist=mwbasis->getbasis();
for (int i=0; i<rank; i++)
plist[i] = transform(plist[i],&e_orig,u,r,s,t,1);
return plist;
}
void two_descent::show_gens() // display points on original model
{
if(verbose&&(rank>0))
cout<<"Transferring points from minimal curve "<<(Curve)e_min
<<" back to original curve "
<<"["<<qai[0]<<","<<qai[1]<<","<<qai[2]<<","<<qai[3]<<","<<qai[4]<<"]"
<<endl;
cout<<endl;
vector<Point>plist=mwbasis->getbasis();
for (int i=0; i<rank; i++)
{
Point P = plist[i];
bigfloat h=height(P); // must compute height on minimal model!
P = transform(P,&e_orig,u,r,s,t,1);
cout << "Generator "<<(i+1)<<" is "<<scale(P,v,0)<<"; "
<< "height "<<h;
if(!P.isvalid()) cout<<" --warning: NOT on curve!";
cout<<endl;
}
cout<<endl;
cout << "Regulator = "<<mwbasis->regulator()<<endl<<endl;
}
void two_descent::show_result_status()
{
if(certain)
{
if(fullmw)
{
cout << "The rank and full Mordell-Weil basis have been determined unconditionally.\n";
}
else
{
cout << "The rank has been determined unconditionally.\n";
if(rank>0)
{
cout << "The basis given is for a subgroup of full rank of the Mordell-Weil group\n";
cout << " (modulo torsion), possibly of index greater than 1\n";
if(sat_bound>0)
cout << " (but not divisible by any prime less than "
<<sat_bound<<" unless listed above).\n";
}
cout<<endl;
}
}
else // not certain of the rank
{
cout << "The rank has not been completely determined, \n";
cout << "only a lower bound of "<<rank
<<" and an upper bound of "<<rank_bound<<".\n";
cout<<endl;
if(fullmw)
{
if(rank>0)
{
cout << "If the rank is equal to the lower bound, the basis given ";
cout << "is for the full Mordell-Weil group (modulo torsion).\n";
}
}
else
{
if(rank>0)
{
cout << "Even if the lower bound is strict, ";
cout << "the basis given is for a subgroup of the Mordell-Weil group\n ";
cout << " (modulo torsion), possibly of index greater than 1.\n";
}
cout<<endl;
}
}
}
void two_descent::pari_output()
{
vector<P2Point>plist=getbasis();
cout<<"[["<<rank;
if(rank<rank_bound) cout<<","<<rank_bound;
cout<<"],[";
for(int i=0; i<rank; i++)
{
if(i) cout<<",";
output_pari(cout,plist[i]);
}
cout<<"]]\n";
}
|