1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
// elog.cc: implementations of elliptic logarithm functions
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
#include <eclib/compproc.h>
#include <eclib/marith.h>
#include <eclib/polys.h>
#include <eclib/elog.h>
bigfloat ssqrt(const bigfloat& x)
{
if(x<0)
{
cout<<"Attempts to take real square root of "<<x<<endl;
return to_bigfloat(0);
}
return sqrt(x);
}
void boundedratapprox(bigfloat x, bigint& a, bigint& b, const bigint& maxden);
// Given an elliptic curve and its (precomputed) periods, and a point
// P=(x,y), returns the unique complex number z such that
// (1) \wp(z)=x+b2/12, \wp'(z)=2y+a1*x+a3,
// (2) either z is real and 0\le z\lt w1, or Delta>0, z-w2/2 is real
// and 0\le z-w2/2\le w1.
// Here, [w1,w2] is the standard period lattice basis
// c.f. Cohen page 399
//#define DEBUG_ELOG
bigcomplex ellpointtoz(const Curvedata& E, const Cperiods& per, const bigfloat& x, const bigfloat& y)
{
bigint a1,a2,a3,a4,a6;
E.getai(a1,a2,a3,a4,a6);
bigfloat ra1=I2bigfloat(a1);
bigfloat ra2=I2bigfloat(a2);
bigfloat ra3=I2bigfloat(a3);
bigfloat xP(x), yP(y);
int posdisc = (sign(getdiscr(E))>0);
bigcomplex e1,e2,e3;
getei(E,e1,e2,e3);
if (posdisc) reorder1(e1,e2,e3); else reorder2(e1,e2,e3);
bigfloat re1=real(e1);
bigcomplex w1,w2;
per.getwRI(w1,w2);
#ifdef DEBUG_ELOG
cout<<"w1 = "<<w1<<endl;
cout<<"w2 = "<<w2<<endl;
#endif
if(posdisc) // all roots real, e1>e2>e3
{
#ifdef DEBUG_ELOG
cout<<"positive discriminant"<<endl;
#endif
bigfloat re2=real(e2);
bigfloat re3=real(e3);
#ifdef DEBUG_ELOG
cout<<"Real roots, should be in descending order:\n"
<<re1<<"\n"<<re2<<"\n"<<re3<<endl;
#endif
bigfloat a1, a = sqrt(re1-re3);
bigfloat b1, b = sqrt(re1-re2);
bigfloat c;
int egg = (xP<re1); // if P is on the "egg", replace it by P+T3
// where T3=(e3,y3) is a 2-torsion point on
// the egg coming from w2/2 on the lattice
if(egg)
{
bigfloat y3 = -(ra1*re3+ra3)/2;
bigfloat lambda=(yP-y3)/(xP-re3);
bigfloat xP3 = lambda*(lambda+ra1)-ra2-xP-re3;
yP = lambda*(xP-xP3)-yP-ra1*xP3-ra3;
xP = xP3;
#ifdef DEBUG_ELOG
cout<<"Point on egg, replacing by ";
cout<<" ("<<xP<<","<<yP<<")"<<endl;
#endif
}
c = sqrt(xP-re3);
while(!is_approx_zero((a-b)/a))
{
a1=(a+b)/2;
b1=sqrt(a*b);
c=(c+sqrt(c*c+b*b-a*a))/2;
a=a1; b=b1;
}
#ifdef DEBUG_ELOG
cout<<"After AGM loop, |a-b|=("<<abs(a-b)<<endl;
#endif
bigcomplex z(asin(a/c)/a);
#ifdef DEBUG_ELOG
cout<<"Basic z = "<<z<<endl;
#endif
if((2*yP+ra1*xP+ra3)>0)
{
z = w1-z;
#ifdef DEBUG_ELOG
cout<<"(adjusted) point in upper half, replacing z by "<<z<<endl;
#endif
}
if( egg )
{
z = z + w2/to_bigfloat(2);
#ifdef DEBUG_ELOG
cout<<"adding half imaginary period since point was on egg, now z = "<<z<<endl;
#endif
}
return z;
}
else // negative disc
{
#ifdef DEBUG_ELOG
cout<<"negative discriminant"<<endl;
cout<<"Real root = " <<re1<<endl;
#endif
// Here we use formulae equivalent to those in COhen, but better
// behaved when roots are close together!
bigcomplex zz = sqrt(e1-e2);
bigfloat beta = abs(e1-e2);
bigfloat a1, b1, a = 2*abs(zz), b = 2*real(zz);
bigfloat c = (xP-re1+beta)/sqrt(xP-re1);
#ifdef DEBUG_ELOG
cout<<"a,b,c = "<<a<<", "<<b<<", "<<c<<endl;
#endif
while(!is_approx_zero((a-b)/a))
{
a1=(a+b)/2;
b1=sqrt(a*b);
c=(c+sqrt(c*c+b*b-a*a))/2;
a=a1; b=b1;
#ifdef DEBUG_ELOG
cout<<"a,b,(a-b)/a = "<<a<<", "<<b<<", "<<(a-b)/a<<endl;
#endif
}
bigfloat z = asin(a/c);
#ifdef DEBUG_ELOG
cout<<"Basic z = "<<z<<endl;
#endif
bigfloat w = (2*yP+ra1*xP+ra3);
if(w*((xP-re1)*(xP-re1)-beta*beta) >= 0)
{
z=Pi()-z;
#ifdef DEBUG_ELOG
cout<<"After first adjustment, z = "<<z<<endl;
#endif
}
z/=a;
if(w>0)
{
#ifdef DEBUG_ELOG
cout<<"After second adjustment, z = "<<z<<endl;
#endif
z+=(Pi()/a);
}
return bigcomplex(z);
}
}
//#define DEBUG_EZP
// Cperiods is a class containing a basis for the period lattice L;
// it knows how to compute points from z mod L; so this function
// effectively does the same as PARI's ellztopoint()
//
// First function: returns x,y as complex numbers
vector<bigcomplex> ellztopoint(Curvedata& E, Cperiods& per, const bigcomplex& z)
{
bigint a1,a2,a3,a4,a6;
E.getai(a1,a2,a3,a4,a6);
bigfloat ra1=I2bigfloat(a1);
bigfloat ra2=I2bigfloat(a2);
bigfloat ra3=I2bigfloat(a3);
bigcomplex cx,cy;
Cperiods per2 = per; // since XY_coords changes the normalization
per2.XY_coords(cx,cy,z);
cx = cx-(ra1*ra1+4*ra2)/to_bigfloat(12);
cy = (cy - ra1*cx - ra3)/to_bigfloat(2);
#ifdef DEBUG_EZP
cout<<"In ellztopoint() with E = "<<(Curve)E<<endl;
cout<<"periods = "<<per2<<endl;
cout<<"z = "<<z<<endl;
cout<<"point = ("<<cx<<","<<cy<<")"<<endl;
#endif
vector<bigcomplex> ans;
ans.push_back(cx);
ans.push_back(cy);
return ans;
}
// Second function, expects to return a rational point.
// User supplies a denominator for the point; if it doesn't work, the
// Point returned is 0 on the curve
Point ellztopoint(Curvedata& E, Cperiods& per, const bigcomplex& z, const bigint& den)
{
if(is_zero(z)) {return Point(E);}
vector<bigcomplex> CP = ellztopoint(E,per,z);
bigcomplex cx=CP[0],cy=CP[1];
bigint nx,ny,dx,dy;
boundedratapprox(real(cx),nx,dx,den);
boundedratapprox(real(cy),ny,dy,den);
#ifdef DEBUG_EZP
cout<<"Rounded x = "<<nx<<"/"<<dx<<endl;
cout<<"Rounded y = "<<ny<<"/"<<dy<<endl;
#endif
Point P(E, nx*dy, ny*dx, dx*dy);
if(P.isvalid())
{
#ifdef DEBUG_EZP
cout<<"ellztopoint returning valid point "<<P<<endl;
#endif
return P;
}
return Point(E);
}
// Given P, returns a (possibly empty) vector of solutions Q to 2*Q=P
//#define DEBUG_DIVBY2
vector<Point> division_points_by2(Curvedata& E, const Point& P)
{
#ifdef DEBUG_DIVBY2
cout<<"Trying to divide P="<<P<<" by 2..."<<endl;
#endif
if(P.iszero()) return two_torsion(E);
bigint b2,b4,b6,b8;
E.getbi(b2,b4,b6,b8);
bigint xPn=getX(P), xPd=getZ(P);
bigint g = gcd(xPn,xPd); xPn/=g; xPd/=g;
vector<bigint> q; // quartic coefficients
q.push_back(xPd);
q.push_back(-4*xPn);
q.push_back(-(b4*xPd+b2*xPn));
q.push_back(-2*(b6*xPd+b4*xPn));
q.push_back(-(b8*xPd+b6*xPn));
#ifdef DEBUG_DIVBY2
cout<<"Looking for rational roots of "<<q<<endl;
#endif
vector<bigrational> xans = roots(q); // q.rational_roots();
#ifdef DEBUG_DIVBY2
cout<<"Possible x-coordinates:"<<xans<<endl;
#endif
vector<Point> ans;
for(vector<bigrational>::const_iterator x=xans.begin(); x!=xans.end(); x++)
{
vector<Point> x_points = points_from_x(E,*x);
for(vector<Point>::const_iterator Qi=x_points.begin();
Qi!=x_points.end(); Qi++)
{
Point Q = *Qi;
if(2*Q==P) // as it might = -P
{
#ifdef DEBUG_DIVBY2
cout << "Solution found: " << Q << endl;
#endif
ans.push_back(Q);
}
}
}
return ans;
}
//#define DEBUG_DIVPT
// Returns a (possibly empty) vector of solutions to m*Q=P
vector<Point> division_points(Curvedata& E, const Point& P, int m)
{
if(m==2) return division_points_by2(E,P);
Cperiods cp(E);
return division_points(E,cp,P,m);
}
vector<Point> division_points(Curvedata& E, Cperiods& per, const Point& P, int m)
{
#ifdef DEBUG_DIVPT
cout<<"division_points("<<(Curve)E<<","<<P<<","<<m<<")"<<endl;
#endif
vector<Point> ans;
if(m==0)
{
cout<<"division_points() called with m=0!"<<endl;
return ans;
}
if(m<0) m=-m;
bigcomplex w1, w2;
per.getwRI(w1,w2);
Cperiods per2 = per; // since XY_coords changes the normalization
int posdisc = (sign(getdiscr(E))>0);
int k, egg;
Point Q(E);
bigcomplex z(to_bigfloat(0)), w;
bigint den;
int zero_flag = P.iszero();
if(zero_flag)
{
den=BIGINT(1);
if(even(m)) ans=two_torsion(E); // computed algebraically
else ans.push_back(P); // (more robust)
}
else
{
z = elliptic_logarithm(E,per2,P);
den=getZ(P);
}
#ifdef DEBUG_DIVPT
cout<<"posdisc= "<<posdisc<<endl;
cout<<"zero_flag="<<zero_flag<<endl;
cout<<"den= "<<den<<endl;
#endif
if(posdisc)
{
egg = !is_real(z);
bigcomplex half_w2 = w2/to_bigfloat(2);
#ifdef DEBUG_DIVPT
cout<<"egg_flag= "<<egg<<endl;
#endif
if(egg) // P is on the "egg"
{
if(even(m)) return ans; // no solutions!
for(k=0; k<m; k++) // now m is odd, Q on egg too
{
w = real(z+to_bigfloat(k)*w1)/m + half_w2;
Q = ellztopoint(E,per2,w,den);
if(!Q.iszero()
&&(m*Q==P)
&&(find(ans.begin(),ans.end(),Q)==ans.end()))
ans.push_back(Q);
}
}
else // P is on the connected component
{
for(k=0; k<m; k++)
{
if(zero_flag&&((k==0)||(2*k==m)))
continue; // already have 2-torsion
w = real(z+to_bigfloat(k)*w1)/m;
if((k>0)||(!zero_flag))
{
Q = ellztopoint(E,per2,w,den);
if(!Q.iszero()
&&(m*Q==P)
&&(find(ans.begin(),ans.end(),Q)==ans.end()))
ans.push_back(Q);
}
if(even(m))
{
Q = ellztopoint(E,per2,w+half_w2,den);
if(!Q.iszero()
&&(m*Q==P)
&&(find(ans.begin(),ans.end(),Q)==ans.end()))
ans.push_back(Q);
}
}
}
}
else // negative discriminant (so z is real)
{
for(k=0; k<m; k++)
{
if(zero_flag&&((k==0)||(2*k==m)))
continue; // already have 2-torsion
w = real(z+to_bigfloat(k)*w1)/m;
Q = ellztopoint(E,per2,w,den);
if(!Q.iszero()
&&(m*Q==P)
&&(find(ans.begin(),ans.end(),Q)==ans.end()))
ans.push_back(Q);
}
}
return ans;
}
// Returns a vector of solutions to m*Q=0 (including Q=0)
// First version will compute the Cperiods itself, so best to use the
// second one if more than one call is to be made for the same curve
vector<Point> torsion_points(Curvedata& E,int m)
{
Cperiods cp(E);
return torsion_points(E,cp,m);
}
vector<Point> torsion_points(Curvedata& E, Cperiods& per, int m)
{
Point P(E);
return division_points(E,per,P,m);
}
void boundedratapprox(bigfloat x, bigint& a, bigint& b, const bigint& maxden)
{
// cout<<"bounded ratapprox of "<<x<<" (maxden = "<<maxden<<")"<<endl;
bigint c, x0, x1, x2, y0, y1, y2;
bigfloat rc, xx, diff, eps = to_bigfloat(1.0e-6);
xx = x; x0 = 0; x1 = 1; y0 = 1; y1 = 0;
diff = 1; c=x2=y2=0;
while ((abs(y2)<maxden)&&!is_approx_zero(diff)) // ( diff > eps )
{ c = Iround( xx ); rc=I2bigfloat(c);
x2 = x0 + c*x1; x0 = x1; x1 = x2;
y2 = y0 + c*y1; y0 = y1; y1 = y2;
diff = abs( x - I2bigfloat(x2)/I2bigfloat(y2) );
// cout<<"x2 = "<<x2<<",\ty2 = "<<y2<<",\tdiff = "<<diff<<endl;
if ( abs(xx - rc) < eps ) diff = 0;
else xx = 1/(xx - rc);
}
a = x2; b = y2;
if ( b < 0 )
{::negate(a); ::negate(b); }
}
|