File: lambda.cc

package info (click to toggle)
eclib 2014-09-21-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,216 kB
  • ctags: 4,287
  • sloc: cpp: 45,827; makefile: 222; sh: 108
file content (203 lines) | stat: -rw-r--r-- 5,754 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
// lambda.h   Declarations of functions which compute Silverman's
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
// 
// This file is part of the eclib package.
// 
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
// 
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// 
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
// 
//////////////////////////////////////////////////////////////////////////
 //            finite set Lambda_bad for a curve


// N.B. (1) Uses my height normalization, double S's.
// (3) Uses the local height normalization WITHOUT the log|Delta|
// (2) Intended for use in computing Heegner points (not yet implemented)


#include <eclib/points.h>
#include <eclib/lambda.h>

#define MAX_NUM_LAMBDA 1000

vector<bigfloat> lambda_bad_1(const bigint& p, long kcode, long npd, long& nlambda)
{
  bigfloat logp = log(I2bigfloat(p)), n=to_bigfloat(npd);

  if((kcode%10)==0) // Type I_m
    {
      long i, m = kcode/10;
      nlambda=1+(m/2);
      vector<bigfloat> ans; ans.reserve(nlambda);
      for(i=0; i<nlambda; i++) ans.push_back( ( (i*i)/n  - i ) * logp);
      return ans;
    }

  if((kcode%10)==1) // Type I*m
    {
      bigfloat m = to_bigfloat(kcode-1)/10;
      nlambda = 3;
      vector<bigfloat> ans; ans.reserve(nlambda);
      ans.push_back(to_bigfloat(0));
      ans.push_back(-logp);
      ans.push_back(-(1 +m/4)*logp);
      return ans;
    }

  if((kcode==2)||(kcode==7)||(p>3))
    {
      nlambda = 1;
      vector<bigfloat> ans(1,to_bigfloat(0));
      return ans;
    }

  nlambda = 2;
  vector<bigfloat> ans; ans.reserve(nlambda);
  ans.push_back(to_bigfloat(0));
  long nn = (kcode<5? kcode: kcode+3);
  ans.push_back( -(nn*logp)/6 );
  return ans;
}

vector<bigfloat> lambda_bad(const CurveRed& C, long& nlambda, int verbose)
{
  vector<bigfloat> ans;
  nlambda = 1;
  ans.push_back(to_bigfloat(0));
  bigint discr = getdiscr(C);
  vector<bigint> plist = getbad_primes(C);
  long i, j, nl, nnl;
  vector<bigint>::const_iterator pr=plist.begin();
  while(pr!=plist.end())
    {
      bigint p = *pr++;
      if (ndiv(p*p,discr))
	{
	  if(verbose)
	    cout<<"Lambda_bad("<<p<<") has only one element, 0.\n";
	  continue;
	}
      // else do some real work
      long kcode = getKodaira_code(C,p).code;
      long npd   = getord_p_discr(C,p);
      vector<bigfloat> list = lambda_bad_1(p,kcode,npd,nl);
      if(verbose)
	{
	  cout << "Lambda_bad("<<p<<") has " << nl << " element(s): ";
	  cout << list << endl;
	}
      nnl = nlambda*nl;
      ans.reserve(nnl);
      for(i=0; i<nlambda; i++)
	for(j=0; j<nl; j++)
	  ans.push_back(ans[i]+list[j]);
      nlambda = nnl;
    }  // end of loop on p
  return ans;
}

int make_point_from_x(Curvedata* CD, const bigint& xa, const bigint& xd, Point* P)
{
  bigint a(xa),b,c,d(xd);
  if(d<0) {a=-a; d=-d;}
  if(!isqrt(d,c)) return 0;
  bigint b2,b4,b6,b8;
  CD->getbi(b2,b4,b6,b8);
  bigint d2=d*d;
  bigint d3=d2*d;
  bigint e,e2 = ((4*a+b2*d)*a + 2*b4*d2)*a + b6*d3;
  if(!isqrt(e2,e)) return 0;
  bigint a1,a2,a3,a4,a6;
  CD->getai(a1,a2,a3,a4,a6);
  b = (e-a1*a*c-a3*c*d)/2;
  *P = Point(CD,a*c,b,c*d);
  return 1;
}

int make_point_from_x(Curvedata* CD, const bigfloat& x, long maxdd, Point* P)
{
  bigint a,b,c,d;
//cout<<"In ratapprox2 with x = " << x << endl;
  bigint x0, x1, x2, y0, y1, y2;
  bigfloat xx, diff, xc;
  xx = x; x0 = 0; x1 = 1; y0 = 1; y1 = 0;
  diff = 1;
  bigint maxdenom = pow(BIGINT(10),maxdd);
  while ( !is_approx_zero(diff) && (y2<maxdenom))
    { c = Iround( xx ); xc=I2bigfloat(c);
      x2 = x0 + c*x1; x0 = x1; x1 = x2;
      y2 = y0 + c*y1; y0 = y1; y1 = y2;
      if(make_point_from_x(CD,x2,y2,P)) return 1;
      diff = abs( x - (I2bigfloat(x2)/I2bigfloat(y2)) );
//cout<<"x2,y2,diff = " << x2 << ", " << y2 << ", " << diff << endl;
      if ( is_approx_zero(abs(xx - xc)) ) diff = 0;
      else xx = to_bigfloat(1)/(xx - xc);
    }
  a = x2; d = y2;
  if ( d < 0 )
    {::negate(a); ::negate(d); }

  if(!isqrt(d,c)) return 0;
  bigint b2,b4,b6,b8;
  CD->getbi(b2,b4,b6,b8);
  bigint d2=d*d;
  bigint d3=d2*d;
  bigint e,e2 = ((4*a+b2*d)*a + 2*b4*d2)*a + b6*d3;
  if(!isqrt(e2,e)) return 0;
  bigint a1,a2,a3,a4,a6;
  CD->getai(a1,a2,a3,a4,a6);
  b = (e-a1*a*c-a3*c*d)/2;
  *P = Point(CD,a*c,b,c*d);
  return 1;
}

int make_point_from_x_and_ht(Curvedata* CD, vector<bigfloat> lambdas, const bigfloat& xp, const bigfloat& ht, Point* P)
{
  bigfloat rh = realheight(xp,CD);
  vector<bigfloat>::const_iterator lam = lambdas.begin();
  while(lam!=lambdas.end())
    {
      bigfloat logd = (ht-rh-(*lam++))/2;
      bigfloat approxd = exp(logd);
      bigint xa, xd2, xd = Iround(approxd);
      if(xd>0) 
	{
	  xd2 = xd*xd;
	  xa = Iround(xp*I2bigfloat(xd2));
	  if(make_point_from_x(CD,xa,xd2,P)) return 1;
	}

      bigint xdx; long id, delta=10;
      for(id=1;id<=delta;id++)
	{
	  xdx=xd+delta;
	  if(xdx>0) 
	    {
	      xd2 = xd*xd;
	      xa = Iround(xp*I2bigfloat(xd2));
	      if(make_point_from_x(CD,xa,xd2,P)) return 1;
	    }
	  xdx=xd-delta;
	  if(xdx>0) 
	    {
	      xd2 = xd*xd;
	      xa = Iround(xp*I2bigfloat(xd2));
	      if(make_point_from_x(CD,xa,xd2,P)) return 1;
	    }
	}
    }
  return 0;
}