File: legendre.cc

package info (click to toggle)
eclib 2014-09-21-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,216 kB
  • ctags: 4,287
  • sloc: cpp: 45,827; makefile: 222; sh: 108
file content (1861 lines) | stat: -rw-r--r-- 52,954 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
// legendre.cc: implementations of functions for solving legendre equations
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
// 
// This file is part of the eclib package.
// 
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
// 
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// 
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
// 
//////////////////////////////////////////////////////////////////////////
 
#include <eclib/marith.h>
#include <eclib/mmatrix.h>
#include <eclib/conic.h>
#include <eclib/legendre.h>
#include <eclib/illl.h>

//#define DEBUG_MINV
//#define DEBUG_LEM1
//#define WATCH_REDUCTION  
//#define DEBUG_LEGENDRE
//#define DEBUG_LEGENDRE_PARAM
//#define CHECK_ALL
//#define DEBUG_LLL
//#define MORDELL_REDUCE // else use JC's reduction via quadratics
#ifndef TRACE_HOLZER
#define TRACE_HOLZER 0 // =1 for verbose reduction of solutions
#endif
//#define CHECK_CERTS  // define this to check all certificates produced
//#define CHECK_LATTICE // define this to check that solutions lie in correct lattice
//#define CHECK_INDEX
//#define CHECK_CLAIMS
//#define REDUCE_INTERMEDIATES // reduces intermediate solutions
//#define HOLZER_MEASURES // shows Holzer measure of solutions before/after reduction

//#define TL2(nnn) cout<<"Calling lem2() at point "<<nnn<<endl;
#define TL2(nnn) 
#ifdef DEBUG_LEGENDRE
//#if(1)
#define BACK(nnn,uuu,code) cout<<"Backtracking at point "<<nnn<<" with u = "<<uuu<<" and code "<<code<<endl;
#else
#define BACK(nnn,uuu,code) 
#endif

#ifdef CHECK_LATTICE
#define CHECK_LEG(a,b,c,n,p,q,x,y,z) check_leg(a,b,c,n,p,q,x,y,z)
#else
#define CHECK_LEG(a,b,c,n,p,q,x,y,z) check_leg(a,b,c,x,y,z)
#endif

//#define CHECK_LEM3
#define USE_SMALL_P

void lem3(const bigint& a, const bigint& b,
	  bigint& m1, bigint& m2, bigint& m3, bigint& c1, bigint& c2);


void minv(const bigint& a1, const bigint& a2, 
	  const bigint& b1, const bigint& b2, 
	  const bigint& c1, const bigint& c2, 
	  bigint& xmin, bigint& ymin)
{
  bigint x=a1, y=a2, xx=b1, yy=b2;
  bigint n1 = c1*sqr(x)  + c2*sqr(y);
  bigint dot= c1*x*xx    + c2*y*yy;
  bigint alpha; 
  nearest(alpha,dot, n1);  // nearest int to quotient dot/n1
  int reduced = is_zero(alpha);
  if(!reduced)
    {
      xx-=alpha*x;
      yy-=alpha*y;
    }
  bigint n2 = c1*sqr(xx) + c2*sqr(yy);
  reduced=(n2>=n1);
  while(!reduced)
    {
      swap(n1,n2);
      swap(x,xx);  
      swap(y,yy);
      
      dot = c1*x*xx + c2*y*yy;
      nearest(alpha,dot,n1);
      reduced = is_zero(alpha);
      if(!reduced)
	{
	  xx-=alpha*x;
	  yy-=alpha*y;
	  n2 = c1*sqr(xx) + c2*sqr(yy);
	}
      reduced=(n2>=n1);
    }
#ifdef CHECK_ALL
#ifdef DEBUG_MINV
  cout<<"minv called with a=["<<a1<<","<<a2<<"], b=["<<b1<<","<<b2
      <<"], c1="<<c1<<", c2="<<c2<<" returns ["<<x<<","<<y<<"]"<<endl;
#endif // DEBUG_MINV
#endif // CHECK_ALL
  xmin=x; ymin=y;
}

// (e+f*i) is (a+b*i) mod (c+d*i) in Z[i]
void GIreduce(const bigint& a, const bigint& b, const bigint& c, 
	      const bigint& d, bigint& e, bigint& f)
{
  bigint n = sqr(c)+sqr(d);
  bigint q1, q2;
  nearest(q1,a*c+b*d,n); 
  nearest(q2,b*c-a*d,n);
  e = a - c*q1 + d*q2;
  f = b - c*q2 - d*q1;
}

// (e+f*i) = gcd ( (a+b*i) , (c+d*i) ) in Z[i]
void GIgcd(const bigint& a, const bigint& b, const bigint& c, 
	   const bigint& d, bigint& e, bigint& f)
{
  int cont=1;
  if(is_zero(c)&&is_zero(d)) {e=a;f=b;cont=0;}
  bigint x1=a, y1=b, x2=c, y2=d, x3, y3, g;
  while(cont)
    {
      GIreduce(x1,y1,x2,y2,x3,y3);
      if(is_zero(x3)&&is_zero(y3)) {e=x2; f=y2; cont=0;}
      x1=x2; x2=x3; y1=y2; y2=y3;
    }
  if((e<=0)&&(f> 0)) {g= f; f=-e; e=g; return;}
  if((e< 0)&&(f<=0)) {::negate(e); ::negate(f); return;}
  if((e>=0)&&(f< 0)) {g=-f; f= e; e=g; return;}
  return;
}

// Solve Legendre's equation when ab=1:

void lem1plus(const bigint& a, const bigint& b, const bigint& c, 
	  const bigint& n, const bigint& p, const bigint& q, 
	  bigint& x, bigint& y, bigint& z)
{
  static bigint one, zero; one=1; zero=0;
  GIgcd(q,one,c,zero,x,y); z=1;
  if(b==-one) {y=-y;}  // So we have qx=-y, qy=x (mod c)
#ifdef DEBUG_LEM1
  if(!CHECK_LEG(a,b,c,n,p,q,x,y,z)) 
    {
      cout<<"Wrong solution in lem1plus!\n";
      show_all(a,b,c,n,p,q,x,y,z);
    }
#endif // DEBUG_LEM1
  return;
}

// Solve Legendre's equation when ab=-1:
// (Trivial solution is (1,1,0), but we want a solution in the correct lattice, 
//  satisfying y=qx (mod c) where q^2=1 (mod c))
//

void lem1minus(const bigint& a, const bigint& b, const bigint& c, 
	       const bigint& n, const bigint& p, const bigint& q, 
	       bigint& x, bigint& y, bigint& z)
{
#ifdef DEBUG_LEM1
  cout<<"lem1minus: ab=-1, c="<<c<<" and q="<<q<<endl;
#endif
// Easy cases first:
  if(q==1)
    {
      z=0; x=1; y=a; return;
    }
  bigint absc=abs(c);
  if((q==-1)||(q==absc-1))
    {
      z=0; x=1; y=-a; return;
    }
  bigint cplus=gcd(q-1,c);
  bigint cminus=gcd(q+1,c);
  bigint d=cplus*cminus;
  z = d/absc;  // = 1 or 2
  if(d==absc)        {x=(cminus-cplus)/2;}
  else if(d==2*absc) {x=cminus/2-cplus;}
  else cout<<"Error in lem1minus: c="<<c<<", cplus="<<cplus<<
             ", cminus="<<cminus<<endl;
  y=cminus-x;
  if(b*c>0) 
    {d=x; x=y; y=d;}  // swapping x and y when a=-1, b= 1, c>0
                      //                   or  a= 1, b=-1, c<0
  if(a<0) {x=-x;}
#ifdef DEBUG_LEM1
  if((a*sqr(x)+b*sqr(y)+c*sqr(z)==0)&&div(c,a*x-q*y)) {;}  else
    {
      cout<<"Bad solution in lem1minus\n";
      show_all(a,b,c,n,p,q,x,y,z);
    }
#endif // DEBUG_LEM1
  return;
}

// Solve Legendre's equation when |ab|=1 or |bc|=1 or |ca|=1:

void lem1(const bigint& a, const bigint& b, const bigint& c, 
	  const bigint& n, const bigint& p, const bigint& q, 
	  bigint& x, bigint& y, bigint& z)
{
#ifdef DEBUG_LEM1
  cout<<"lem1 called with (a,b,c)=("<<a<<","<<b<<","<<c<<")"<<endl;
#endif // DEBUG_LEM1
  const bigint& bc=b*c;
  if(bc==-1) 
    {
      lem1minus(b,c,a,p,q,n,y,z,x);
      return;
    }
  if(bc== 1) 
    {
      lem1plus(b,c,a,p,q,n,y,z,x);
      return;
    }
  
  const bigint& ab=a*b;
  if(ab==-1) 
    {
      lem1minus(a,b,c,n,p,q,x,y,z);
      return;
    }
  if(ab== 1) 
    {
      lem1plus(a,b,c,n,p,q,x,y,z);
      return;
    }
  
  const bigint& ca=c*a;
  if(ca==-1) 
    {
      lem1minus(c,a,b,q,n,p,z,x,y);
      return;
    }
  if(ca== 1) 
    {
      lem1plus(c,a,b,q,n,p,z,x,y);
      return;
    }
  cout<<"lem1 wrongly called with ";show_eqn(a,b,c);
}

// Solve Legendre's equation ax^2+by^2+cz^2=0 using Rusin's reduction, 
// without assuming a,b,c pairwise coprime
// returns 0 if not soluble
int level;

int legendre_solve(const bigint& a, const bigint& b, const bigint& c, 
		   bigint& x, bigint& y, bigint& z, int use_lll)
{
  vector<bigint> factorbase = vector_union(vector_union(pdivs(a),pdivs(b)),pdivs(c));
  return legendre_solve(a,b,c,factorbase,x,y,z,use_lll);
}

int legendre_solve(const bigint& a, const bigint& b, const bigint& c, 
		   const vector<bigint>& factorbase,
		   bigint& x, bigint& y, bigint& z, int use_lll)
{
#ifdef DEBUG_LEGENDRE  
  cout<<"Starting to solve Legendre equation with coeffs "
      <<a<<", "<<b<<", "<<c<<"\n";
  cout<<"Factor Base = "<<factorbase<<endl;
#endif // DEBUG_LEGENDRE
//
// Step 1: Check signs are not all equal
//
  int sa=sign(a), sb=sign(b), sc=sign(c);
  if((sa==0)||(sb==0)||(sc==0)) return 0;
  if((sa==sb)&&(sa==sc)&&(sb==sc)) return 0;

//
// Step 2: Reduce to pairwise coprime coefficients
//
  bigint a1=a, b1=b, c1=c, g, n,p,q, xfac, yfac, zfac;
  xfac=1; yfac=1; zfac=1;
  int ntry=3;
  while(ntry>0) {
    ntry--;
    if((g=gcd(b1,c1))>1) {b1/=g; c1/=g; a1*=g; xfac*=g; ntry=3;}
    if(ntry>0) 
      {
	ntry--;
	if((g=gcd(c1,a1))>1) {c1/=g; a1/=g; b1*=g; yfac*=g; ntry=3;}
      }
    if(ntry>0) 
      {
	ntry--;
	if((g=gcd(a1,b1))>1) {a1/=g; b1/=g; c1*=g; zfac*=g; ntry=3;}
      }
  }  
#ifdef DEBUG_LEGENDRE  
  cout<<"After gcd reduction, new coeffs are "
      <<a1<<", "<<b1<<", "<<c1<<"\n";
  cout<<"scale factors are "
      <<xfac<<", "<<yfac<<", "<<zfac<<"\n";
#endif // DEBUG_LEGENDRE
//
// Step 3: Reduce to square-free coefficients
//         NB Here is the only place where factorization is done! 
  bigint a2,a3,b2,b3,c2,c3;
  vector<bigint> apdivs=factorbase, bpdivs=factorbase, cpdivs=factorbase;
  sqfdecomp(a1,apdivs,a2,a3); yfac*=a3; zfac*=a3;
  sqfdecomp(b1,bpdivs,b2,b3); xfac*=b3; zfac*=b3; 
  sqfdecomp(c1,cpdivs,c2,c3); xfac*=c3; yfac*=c3; 
  cancel1(xfac,yfac,zfac);
#ifdef DEBUG_LEGENDRE  
  cout<<"After squarefree reduction, new coeffs are "
      <<a2<<", "<<b2<<", "<<c2<<"\n";
  cout<<"scale factors are "
      <<xfac<<", "<<yfac<<", "<<zfac<<"\n";
#endif // DEBUG_LEGENDRE
// Note: a1=a2*a3^2, and apdivs contains all primes dividing a1, but
// any which do not divide a2 are effectively ignored by make_certificate()
//
// Step 4: Make solubility certificate (or detect insolubility)
//
  int res=make_certificate(a2,apdivs,b2,bpdivs,c2,cpdivs,n,p,q);
#ifdef DEBUG_LEGENDRE  
  if(res) 
    {
      cout<<"Legendre equation with coeffs "<<a2<<", "<<b2<<", "<<c2
	  <<" is not soluble!\n";
      switch(res) {
      case 1: cout<<"No certificate modulo a\n"; break;
      case 2: cout<<"No certificate modulo b\n"; break;
      case 3: cout<<"No certificate modulo c\n"; break;
      }
    }
  else 
    {
      cout<<"Legendre equation with coeffs "<<a2<<", "<<b2<<", "<<c2 <<" is soluble\n";
      cout<<"Certificate: "<<n<<" "<<p<<" "<<q<<endl;
    }
#endif // DEBUG_LEGENDRE
  if(res) return 0;
//
// Step 5: Find the solution using one of two methods
//
  if(use_lll)
    {
      legendre_via_lll(a2,b2,c2,n,p,q,x,y,z);
    }
  else // use JC+Rusin's factorization-free reduction
    {
      bigint u;
#ifdef DEBUG_LEGENDRE  
      level=0;
#endif // DEBUG_LEGENDRE
      int res = legendre_solve_cert_1(a2,b2,c2,n,p,q,x,y,z,u);
#ifdef DEBUG_LEGENDRE
      cout<<"Result code from level "<<(level+1)<<" = "<<res<<endl;
#endif
      if(res)
	{
	  cout<<"Problem: at top level, legendre_solve_cert returns ";
	  cout<<"nonzero code "<<res<<" and u = "<<u<<endl;
	}
#ifdef HOLZER_MEASURES
      cout<<"Before reduction of solution "; 
      cout<<"Holzer measure = "<<holzer_measure(a2,b2,c2,x,y,z)<<endl;
#endif // HOLZER_MEASURES
#ifdef DEBUG_LEGENDRE  
#ifdef CHECK_ALL
      if(!CHECK_LEG(a2,b2,c2,n,p,q,x,y,z)) cout<<" wrong solution!\n"; 
#endif // CHECK_ALL
#endif // DEBUG_LEGENDRE
//
// Step 6: Reduce the solution using one of two methods
//         (Not done if LLL method was used)
// NB this will in general move the solution off the certificate lattice
      cancel1(x,y,z);
#ifdef MORDELL_REDUCE
      legendre_reduce(a2,b2,c2,x,y,z,TRACE_HOLZER);
#else
      new_legendre_reduce(a2,b2,c2,x,y,z,TRACE_HOLZER);
#endif // MORDELL_REDUCE
#ifdef HOLZER_MEASURES
      cout<<"After reduction: ";
      cout<<"Holzer measure = "<<holzer_measure(a2,b2,c2,x,y,z)<<endl;
#endif // HOLZER_MEASURES
    }
//
// Step 7: Scale up the solution (see steps 2 and 3)
//
  x*=xfac; y*=yfac; z*=zfac;
  if(is_negative(x)) ::negate(x);
  if(is_negative(y)) ::negate(y);
  if(is_negative(z)) ::negate(z);
  cancel1(x,y,z);
//
// Step 8 (optional): Check the solution
//
#ifdef CHECK_ALL
#ifdef DEBUG_LEGENDRE  
  cout<<"Checking solution "; show_xyz(x,y,z); cout<<endl;
#endif // DEBUG_LEGENDRE
  if(!check_leg(a,b,c,x,y,z)) cout<<" wrong solution!\n"; 
#endif // CHECK_ALL
  return 1;
} // end of legendre_solve()

// Solve Legendre's equation ax^2+by^2+cz^2=0 using Rusin's reduction, 
// given "certificate" (n,p,q) satisfying a|n^2+bc, b|p^2+ac, c|q^2+ab.
//
// All this does is sort the coeffs and pass to lem4()
//
void legendre_solve_cert(const bigint& a, const bigint& b, const bigint& c, 
		    const bigint& n, const bigint& p, const bigint& q, 
		    bigint& x, bigint& y, bigint& z)
{
#ifdef DEBUG_LEGENDRE  
    cout<<"Solving Legendre's equation with coefficients ";
    show_eqn(a,b,c);
    cout<<"\n  and  ";
    show_cert(n,p,q);
    cout<<" using factorization-free reduction\n";
#endif // DEBUG_LEGENDRE
  x=y=z=0; 
#ifdef CHECK_CERTS
  if(!checkin(a,b,c,n,p,q)) return;
#endif // CHECK_CERTS

// Check if any coeff is a square (up to sign):
    bigint absa=abs(a), absb=abs(b), absc=abs(c), aa, bb, cc;
//
    if(isqrt(absb,bb))  // then |b| = bb^2 with bb>1, so
      {               // we can reduce b with lem2
	if(bb>1)
	  {
	    TL2(1)
	    lem2b(a,b,c,n,p,q,bb,x,y,z); return;
	  }
      }
    
// Now |b| is not a square

    if(isqrt(absc,cc)) 
      {
	if(cc>1)    // then |c| = cc^2 and we can reduce c with lem2
	  {
	    TL2(2)
	      lem2c(a,b,c,n,p,q,cc,x,y,z); return;
	  }
      }    
// Now |b|, |c| are not squares

    if(isqrt(absa,aa)) 
      {
	if(aa>1)    // then |a| = aa^2 and we can reduce a with lem2
	  {
	    TL2(3)
	      lem2a(a,b,c,n,p,q,aa,x,y,z); return;
	  }
      }    
// Now |a|, |b|, |c| are all not squares

// Sort so that |a|>=|b|>=|c|: 

  int perm;
  if(absa>absb)
    {
      if(absc>absa) perm=4; else {if(absb>absc) perm=0; else perm=1;}
    }
  else // absb>absa
    {
      if(absa>absc) perm=2; else {if(absc>absb) perm=5; else perm=3;}
    }

  switch(perm) {
  case 0: lem4(a,b,c,n,p,q,x,y,z); break;
  case 1: lem4(a,c,b,-n,-q,-p,x,z,y); break;
  case 2: lem4(b,a,c,-p,-n,-q,y,x,z); break;
  case 3: lem4(b,c,a,p,q,n,y,z,x); break;
  case 4: lem4(c,a,b,q,n,p,z,x,y); break;
  case 5: lem4(c,b,a,-q,-p,-n,z,y,x); break;
  }
#ifdef CHECK_ALL
  CHECK_LEG(a,b,c,n,p,q,x,y,z);
#endif // CHECK_ALL
}

static int permtable[6][4] = {{0,1,2,3}, {0,1,3,2}, {0,2,1,3}, {0,2,3,1}, {0,3,1,2}, {0,3,2,1}};

// Solve Legendre's equation ax^2+by^2+cz^2=0 using Rusin's reduction, 
// given "certificate" (n,p,q) satisfying a|n^2+bc, b|p^2+ac, c|q^2+ab.
//
// All this does is sort the coeffs and pass to lem4_1()
//
int legendre_solve_cert_1(const bigint& a, const bigint& b, const bigint& c, 
		    const bigint& n, const bigint& p, const bigint& q, 
		    bigint& x, bigint& y, bigint& z, bigint& u)
{
#ifdef DEBUG_LEGENDRE  
  level++;
  cout<<"\nLevel "<<level<<"\nCoefficients ";
    show_eqn(a,b,c);    cout<<"\n";
    show_cert(n,p,q);   cout<<"\n";
#endif // DEBUG_LEGENDRE
  x=y=z=0; 
#ifdef CHECK_CERTS
  if(!checkin(a,b,c,n,p,q)) return -1;
#endif // CHECK_CERTS

// Check if any coeff is a square (up to sign):
    bigint absa=abs(a), absb=abs(b), absc=abs(c);
//
    if(isqrt(absb,u))  // then |b| = u^2 with u>1, so we return
      {
	if(u>1) return 2;
      }
    
// Now |b| is not a square

    if(isqrt(absc,u))    // then |c| = u^2 with u>1 and we return
      {
	if(u>1) return 3;
      }    
// Now |b|, |c| are not squares

    if(isqrt(absa,u))     // then |a| = u^2 with u>1 and we return
      {
	if(u>1) return 1;
      }    
// Now |a|, |b|, |c| are all not squares

// Sort so that |a|>=|b|>=|c|: 

  int perm, res=-1, newres;
  if(absa>absb)
    {
      if(absc>absa) perm=4; else {if(absb>absc) perm=0; else perm=1;}
    }
  else // absb>absa
    {
      if(absa>absc) perm=2; else {if(absc>absb) perm=5; else perm=3;}
    }
  switch(perm) {
  case 0: res = lem4_1(a,b,c,n,p,q,x,y,z,u); break;
  case 1: res = lem4_1(a,c,b,-n,-q,-p,x,z,y,u); break;
  case 2: res = lem4_1(b,a,c,-p,-n,-q,y,x,z,u); break;
  case 3: res = lem4_1(b,c,a,p,q,n,y,z,x,u); break;
  case 4: res = lem4_1(c,a,b,q,n,p,z,x,y,u); break;
  case 5: res = lem4_1(c,b,a,-q,-p,-n,z,y,x,u); break;
  }
  if(res!=-1) {newres=permtable[perm][res];}
  else newres=res;
#ifdef DEBUG_LEGENDRE  
  if(newres!=res)
    cout<<"Permutation "<<perm<<" changes result code from "<<res<<" to "<<newres<<endl;
  level--;
#endif
  return newres; 
}

//Ensure that input is valid
int checkin(const bigint& a,const bigint& b,const bigint& c,
	    const bigint& n,const bigint& p,const bigint& q)
{
  int sa=sign(a), sb=sign(b), sc=sign(c);
  if((sa==0)||(sb==0)||(sc==0))
    {cout<<"checkin() error: coefficients all zero!"<<endl; return 0;}
  if((sa==sb)&&(sa==sc)&&(sb==sc))
    {cout<<"Input error: coefficients have same sign!"<<endl; return 0;}

  if(gcd(a,b)>1) 
    {cout<<"Input error: a and b not coprime!"<<endl; return 0;}
  if(gcd(b,c)>1) 
    {cout<<"Input error: b and c not coprime!"<<endl; return 0;}
  if(gcd(c,a)>1) 
    {cout<<"Input error: c and a not coprime!"<<endl; return 0;}

  if(ndiv(a,sqr(n)+(b*c))) 
    {cout<<"Input error: bad certificate for a"<<endl; return 0;}
  if(ndiv(b,sqr(p)+(a*c))) 
    {cout<<"Input error: bad certificate for b"<<endl; return 0;}
  if(ndiv(c,sqr(q)+(a*b))) 
    {cout<<"Input error: bad certificate for c"<<endl; return 0;}
  return 1;
}

// Check that purported solution is OK
int check_leg(const bigint& a, const bigint& b, const bigint& c,
	      bigint& x, bigint& y, bigint& z)
{
#ifdef DEBUG_LEGENDRE  
  cout<<"Checking solution "; show_xyz(x,y,z); 
  cout<<" for (a,b,c) = ("<<a<<","<<b<<","<<c<<"): ";
#endif // DEBUG_LEGENDRE
  bigint rhs=a*sqr(x)+b*sqr(y)+c*sqr(z);
  if(is_zero(rhs)) 
    {
#ifdef DEBUG_LEGENDRE  
      cout<<"OK"<<endl; 
#endif // DEBUG_LEGENDRE
      return 1;
    }
  else
    {
#ifndef DEBUG_LEGENDRE  
      cout<<"Checking solution "; show_xyz(x,y,z); 
      cout<<" for (a,b,c) = ("<<a<<","<<b<<","<<c<<"): ";
#endif // DEBUG_LEGENDRE
      cout<<"wrong!!"<<endl; 
      return 0;
    }
}

// Check that purported solution is OK & in correct lattice
int check_leg(const bigint& a, const bigint& b, const bigint& c,
	      const bigint& n, const bigint& p, const bigint& q, 
	      bigint& x, bigint& y, bigint& z)
{
  if(check_leg(a,b,c,x,y,z))
    {
#ifdef DEBUG_LEGENDRE  
      cout<<"Checking lattice congruences of solution for ";
      show_eqn(a,b,c);
      cout  <<"\n with ";
      show_cert(n,p,q);
      cout<<endl;
#endif // DEBUG_LEGENDRE
      int ok=1;
      if(!div(a,b*y-n*z)) {ok=0;cout<<"Lattice congruence mod a fails!\n";}
      if(!div(b,c*z-p*x)) {ok=0;cout<<"Lattice congruence mod b fails!\n";}
      if(!div(c,a*x-q*y)) {ok=0;cout<<"Lattice congruence mod c fails!\n";}
#ifdef DEBUG_LEGENDRE  
      if(ok) cout<<"Lattice congruences OK\n";
#endif // DEBUG_LEGENDRE
      return ok;
    }
  else return 0;
}

void legendre_reduce(const bigint& a, const bigint& b, const bigint& c, 
		     bigint& x0, bigint& y0, bigint& z0, int verb)
     // Given a, b, c,  and ax^2+by^2+cz^2=0
     // reduces x, y, z in place using Mordell's method (page 48)
     // to achieve Holzer's bounds |z|<=sqrt(ab) etc.
  // (just permutes & passes to conic_mordell_reduce() 
  // which assumes a>0, b>0, c<0)
  // we may assume a, b, c do not all have the same sign
{
#ifdef WATCH_REDUCTION  
  verb=1;
#endif
  if(is_positive(a))
    {
      if(is_positive(b))
	{
	  conic_mordell_reduce(a,b,c,x0,y0,z0,verb);
	}
      else
	{
	  if(is_positive(c))
	    {
	      conic_mordell_reduce(a,c,b,x0,z0,y0,verb);
	    }
	  else
	    {
	      conic_mordell_reduce(-c,-b,-a,z0,y0,x0,verb);      
	    }
	}
    }
  else
    {
      if(is_positive(b))
	{
	  if(is_positive(c))
	    {
	      conic_mordell_reduce(b,c,a,y0,z0,x0,verb);
	    }
	  else
	    {
	      conic_mordell_reduce(-a,-c,-b,x0,z0,y0,verb);      
	    }
	}
      else
	{
	  conic_mordell_reduce(-a,-b,-c,x0,y0,z0,verb);      
	}
    }
}

// Finds a certificate or returns 0 if none exists:
int make_certificate(const bigint& a, const bigint& b, const bigint& c, 
		     bigint& n, bigint& p, bigint& q)
{
  if(!sqrt_mod_m(n,-b*c,abs(a))) return 1;
  if(!sqrt_mod_m(p,-a*c,abs(b))) return 2;
  if(!sqrt_mod_m(q,-a*b,abs(c))) return 3;
  return 0;
}

int make_certificate(const bigint& a, const vector<bigint>& apdivs, 
		     const bigint& b, const vector<bigint>& bpdivs, 
		     const bigint& c, const vector<bigint>& cpdivs, 
		     bigint& n, bigint& p, bigint& q)
{
  if(!sqrt_mod_m(n,-b*c,abs(a),apdivs)) return 1;
  if(!sqrt_mod_m(p,-a*c,abs(b),bpdivs)) return 2;
  if(!sqrt_mod_m(q,-a*b,abs(c),cpdivs)) return 3;
  return 0;
}

// Check to see if  b is congruent to  +- c  mod a  (assumed positive!)
//  if not, how much to divide  a  by to ensure that congruence holds?
bigint should(const bigint& a, const bigint& b, const bigint& c)
{
  bigint u=gcd(a,b-c);
  bigint v=gcd(a,b+c);
  if(u>v) return a/u; else return a/v;
}

// minv finds shortest vector [xmin,ymin] in lattice generated by 
// integer vectors a=[a1,a2], b=[b1,b2] 
// with respect to norm c1*x^2+c2*y^2 (c1, c2>0)
// Throughout: [x,y] has norm n1
//             [xx,yy] has norm n2 & inner prod = dot.

void legendre_via_lll(const bigint& a, const bigint& b, const bigint& c, 
		      const bigint& k1, const bigint& k2, const bigint& k3, 
		      bigint& x, bigint& y, bigint& z)
{
  int i;
  bigint g,u,v,adash,bdash,bc=b*c, alpha, beta, gamma; 
  g = bezout(b,c,u,v);
  if(g!=1) {cout<<"b and c not coprime!\n"; return;}
  g = bezout(a,bc,adash,bdash); 
  if(g!=1) {cout<<"a and b*c not coprime!\n"; return;}
  alpha = (c*bdash*k1)   % a;
  beta  = (u*adash*b*k3) % bc;
  gamma = (v*adash*c*k2) % bc;

  vec_m * vecs = new vec_m[4];
  for(i=0; i<=3; i++) vecs[i] = vec_m(3);
  vecs[0][1] = abs(a); vecs[0][2] = abs(b); vecs[0][3] = abs(c);
  vecs[1][1] = bc;               vecs[1][2] = 0;      vecs[1][3] = 0; 
  vecs[2][1] = a*beta;           vecs[2][2] = a;      vecs[2][3] = 0; 
  vecs[3][1] = alpha*beta+gamma; vecs[3][2] = alpha;  vecs[3][3] = 1; 
  
#ifdef DEBUG_LLL
  cout<<"Basis for lattice L:\n";
  cout<<vecs[1]<<"\n";
  cout<<vecs[2]<<"\n";
  cout<<vecs[3]<<"\n";
#endif // DEBUG_LLL
  
  // Now cut down to the sublattice of index 2:
  int oddn1 = odd(bc);
  int oddn2 = odd((sqr(a*beta)+a*b)/bc);
  int oddn3 = odd((a*sqr(alpha*beta+gamma)+b*sqr(alpha)+c)/(a*bc));
  static bigint two; two=2;

  if(oddn1)
    {
      if(oddn2) vecs[2]-=vecs[1];
      if(oddn3) vecs[3]-=vecs[1];
      vecs[1] *= two;
    }
  else if(oddn2)
    {
      if(oddn3) vecs[3]-=vecs[2];
      vecs[2] *= two;
    }
  else if(oddn3)
    {
      vecs[3] *= two;
    }
  else cout<<"Problem in legendre_via_lll: all vectors are even!\n";
  
  
#ifdef DEBUG_LLL
  cout<<"Basis for lattice L0 before reduction:\n";
  cout<<vecs[1]<<"\n";
  cout<<vecs[2]<<"\n";
  cout<<vecs[3]<<"\n";
#endif // DEBUG_LLL
  lll_reduce(3,vecs);
#ifdef DEBUG_LLL
  cout<<"Lattice basis after reduction:\n";
  cout<<vecs[1]<<"\n";
  cout<<vecs[2]<<"\n";
  cout<<vecs[3]<<"\n";
#endif // DEBUG_LLL
  
  vec_m xyz, b1=vecs[1], b2=vecs[2], b3=vecs[3]; 
  for(i=0; i<13; i++)
    {
      switch(i) {
      case 0: default: xyz=b1; break;
      case 1: xyz=b1-b2; break;
      case 2: xyz=b1+b2; break;
      case 3: xyz=b2; break;
      case 4: xyz=b3; break;
      case 5: xyz=b3+b1; break;
      case 6: xyz=b3-b1; break;
      case 7: xyz=b3+b2; break;
      case 8: xyz=b3-b2; break;
      case 9: xyz=b3+b2-b1; break;
      case 10: xyz=b3-b2+b1; break;
      case 11: xyz=b3-b2-b1; break;
      case 12: xyz=b3+b2+b1; break;
      }
      x=xyz[1]; y=xyz[2]; z=xyz[3];
      bigint fxyz = a*sqr(x)+b*sqr(y)+c*sqr(z);
      if(fxyz==0) 
	{
	  if(i) 
	    {
	      cout<<"Message from legendre_via_lll: \nsolution does "
		  <<"not come from first vector but from case "
		  <<i<<endl;
	      cout<<"LLL basis: \n";
	      cout<<b1<<"\n"<<b2<<"\n"<<b3<<"\n";
	      cout<<"weights: "<<vecs[0]<<endl;
	    }
	  delete [] vecs;
	  return;
	} 
    }
  delete [] vecs;
  cout<<"Problem in legendre_via_lll: no vector gives a solution!"<<endl;
  x=0; y=0; z=0;
}

//
// Given one solution, returns quadratics parametrizing all solutions,
// with discriminants -4bc, -4ac, -4ab.  Here a, b, c are assumed
// pairwise coprime but not square-free, and a>0, b>0, c<0.

void legendre_param(const bigint& a, const bigint& b, const bigint& c, 
		    const bigint& x0, const bigint& y0, const bigint& z0, 
		    quadratic& qx, quadratic& qy, quadratic& qz)
{
  bigint a1=a, y1=y0, z1=z0, u, v, e;
  bigint g=abs(gcd(y0,z0));
  static bigint zero; zero=0;
  int scale = (g>1);
  if(scale) {a1/=sqr(g); y1/=g; z1/=g;}
  bigint z12=sqr(z1);
  
  qx.set( a1*x0, 2*b*y1,  -b*x0);
  qy.set(-a1*y1, 2*a1*x0,  b*y1);
  qz.set( a1*z1, zero,     b*z1);

#ifdef DEBUG_LEGENDRE_PARAM
  if(!testparamsol(a1,0,c,-b,qx,qy,qz,0))
    cout<<"Parametric solution wrong at (1)\n";
  else 
    cout<<"Correct parametrization (1):\n"
	<<qx<<"\n"<<qy<<"\n"<<qz<<"\n";
#endif // DEBUG_LEGENDRE_PARAM
  e=bezout(y1,z12,u,v);
  e=(u*x0)%z12;
  unimod m;  // the mij are not used here...

  qx.x_shift(e,m);  qx.set_coeff(1,qx[1]/z1);  qx.set_coeff(2,qx[2]/z12);
  qy.x_shift(e,m);  qy.set_coeff(1,qy[1]/z1);  qy.set_coeff(2,qy[2]/z12);
  qz.x_shift(e,m);  qz.set_coeff(1,qz[1]/z1);  qz.set_coeff(2,qz[2]/z12);
#ifdef DEBUG_LEGENDRE_PARAM
  if(!testparamsol(a1,zero,c,-b,qx,qy,qz,0))
    cout<<"Parametric solution wrong at (2)\n";
  else 
    cout<<"Correct parametrization (2):\n"
	<<qx<<"\n"<<qy<<"\n"<<qz<<"\n";
#endif // DEBUG_LEGENDRE_PARAM

  m.reset();
  if(a*b>0)     {qz.reduce(m);  qx.transform(m);  qy.transform(m);}
  else
    { 
      if(a*c>0)	{qy.reduce(m);	qz.transform(m);  qx.transform(m);}
      else      {qx.reduce(m);  qy.transform(m);  qz.transform(m);}
    }
      
#ifdef DEBUG_LEGENDRE_PARAM
  if(!testparamsol(a1,zero,c,-b,qx,qy,qz,0))
    cout<<"Parametric solution wrong at (3)\n";
  else 
    cout<<"Correct parametrization (3):\n"
	<<qx<<"\n"<<qy<<"\n"<<qz<<"\n";
#endif // DEBUG_LEGENDRE_PARAM
  if(scale) 
    {
      qy.set(g*qy[0], g*qy[1], g*qy[2]);
      qz.set(g*qz[0], g*qz[1], g*qz[2]);
    }
#ifdef DEBUG_LEGENDRE_PARAM
  if(!testparamsol(a,zero,c,-b,qx,qy,qz,0))
    cout<<"Parametric solution wrong at (4)\n";
  else 
    cout<<"Correct parametrization (4):\n"
	<<qx<<"\n"<<qy<<"\n"<<qz<<"\n";
#endif // DEBUG_LEGENDRE_PARAM
}

void new_legendre_reduce(const bigint& a, const bigint& b, const bigint& c, 
			 bigint& x0, bigint& y0, bigint& z0, int verb)
     // Given a, b, c,  ax^2+by^2+cz^2=0
     // reduces x, y, z in place using quadratics
{
#ifdef WATCH_REDUCTION  
  verb=1;
#endif
  //  x0=abs(x0); y0=abs(y0); z0=abs(z0);
  if(verb) 
    {
      cout<<"Reducing solution "; show_xyz(x0,y0,z0);
      cout<<" for (a,b,c) = ("<<a<<","<<b<<","<<c<<")..."<<endl;
      //      cout<<"using quadratic parametrization\n";
    }
  int sa=sign(a), sb=sign(b), sc=sign(c);
  bigint test;
  int which, ok;
  if( ((sa<0)&&(sb>0)&&(sc>0)) || ((sa>0)&&(sb<0)&&(sc<0)) )
    {
      which=1; test=b*c;
      ok=(sqr(x0)<=test);
    }
  else 
    {
      if( ((sb<0)&&(sa>0)&&(sc>0)) || ((sb>0)&&(sa<0)&&(sc<0)) ) 
	{
	  which=2; test=a*c;
	  ok=(sqr(y0)<=test);
	}
      else 
	{
	  which=3; test=a*b;
	  ok=(sqr(z0)<=test);
	}
    }
  
  if(ok)
    {
      if(verb) cout<<"...nothing to do, already reduced\n";
      return;
    }
  
  quadratic qx, qy, qz;
  legendre_param(a,b,c,x0,y0,z0,qx,qy,qz);
  if(verb)
    {
      cout<<"Parametrizing quadratics are\n";
      cout<<qx<<endl;
      cout<<qy<<endl;
      cout<<qz<<endl;
    }
  bigint newx0 = abs(qx[0]);
  bigint newy0 = abs(qy[0]);
  bigint newz0 = abs(qz[0]);
  cancel(newx0,newy0,newz0);
  if(verb)
    {
      cout<<"New solution =    "; show_xyz(newx0,newy0,newz0); cout<<endl;
    }
  switch(which) {
  case 1: ok = (sqr(newx0)<=test); break;
  case 2: ok = (sqr(newy0)<=test); break;
  case 3: ok = (sqr(newz0)<=test); break;
  }
  if(!ok)
    {
      if(verb)
	{
	  cout<<"new_legendre_reduce() produces solution no smaller than old one!\n";
	  cout<<"Calling legendre_reduce()...\n";
	}
      legendre_reduce(a,b,c,newx0,newy0,newz0,verb);
      if(verb)
	{
	  cout<<"New solution =    "; show_xyz(newx0,newy0,newz0); cout<<endl;
	}
    }
  x0=newx0;
  y0=newy0;
  z0=newz0;
}

// Main descent: Either
// Find a square factor of  abc  and return,
// Or, find  bc=+-1 and call lem1
// Or compute a smaller (aa,bb,cc,n1,p1,q1) and call lem4 recursively
//
// This routine assumes |a|>=|b|>=|c| (else use legendre_solve_cert())
//
// NOTATION NOW AGREES WITH PAPER!
// (except aa=a', bb=b', cc=c')
//
int lem4x_1(const bigint& a, const bigint& b, const bigint& c, 
	   const bigint& k1, const bigint& k2, const bigint& k3, 
	   bigint& x, bigint& y, bigint& z, bigint& u);

int lem4_1(const bigint& a, const bigint& b, const bigint& c, 
	  const bigint& k1, const bigint& k2, const bigint& k3, 
	  bigint& x, bigint& y, bigint& z, bigint& u)
#ifdef DEBUG_LEGENDRE
{
  cout<<"lem4 at level "<<level<<" called with ";show_eqn_cert(a,b,c,k1,k2,k3);
  //  cout<<"At level "<<level<<", log|abc| = "<<log(abs(bigfloat(a*b*c)))<<endl;
  int res = lem4x_1(a,b,c,k1,k2,k3,x,y,z,u);
  cout<<"lem4 at level "<<level<<" returns     "; show_xyz(x,y,z); 
  cout<<endl;
  return res;
}

int lem4x_1(const bigint& a, const bigint& b, const bigint& c, 
	   const bigint& k1, const bigint& k2, const bigint& k3, 
	   bigint& x, bigint& y, bigint& z, bigint& u)
#endif // DEBUG_LEGENDRE
{
  bigint aa,bb,cc,gamma,alpha,d1,d2,d,e,w,w1,w2,t,bc,u2;
  bigint w1star,w2star,gammastar,gammafactor;
  bigint x1,y1,z1;
  bigint k1dash, k2dash, k3dash;
  static bigint zero, one; zero=0; one=1;
  int res;
//
// We have |a|>=|b|>=|c| and none are squares.  If |b|=|c|=1 call lem1
//
  if((abs(b)==1)) // &&(abs(c)==1))
    {
      lem1(a,b,c,k1,k2,k3,x,y,z);
      return 0;
    }

  w=(k1*invmod(c,a))%a;
  minv(one,w,zero,a,abs(b),abs(c),w1,w2);
  t=(b*sqr(w1)+c*sqr(w2))/a;
  bc=b*c;
  lem3(t,bc,aa,bb,cc,gamma,alpha);
#ifdef DEBUG_LEGENDRE
  cout<<"w1,w2="<<w1<<","<<w2<<", t="<<t<<", ";
  cout<<"gamma="<<gamma<<endl;
#endif
  //
  if(cc>0) { ::negate(cc); ::negate(aa); ::negate(bb);}
  // cout<<"aa,bb,cc="<<aa<<","<<bb<<","<<cc<<endl;
  // Now t = aa*cc*gamma^2,  (aa=n2*n3 later)
  //    bc = bb*cc*alpha^2.
#ifdef CHECK_CLAIMS
  if( t!=aa*cc*sqr(gamma)) cout<<"Identity 1 fails\n";
  if(bc!=bb*cc*sqr(alpha))  cout<<"Identity 2 fails\n";
#endif  

  // 12 (?) chances to find a square factor of abc follow...
  u=gcd(alpha,b);
  if(u>1) {BACK(4,u,2) return 2;}
  u=gcd(alpha,c);
  if(u>1) {BACK(5,u,3) return 3;}

  // From this point alpha=1, 
  //     t = aa*cc*gamma^2,
  //    bc = bb*cc.
#ifdef CHECK_CLAIMS
  if(alpha!=1) cout<<"alpha="<<alpha<<", not 1\n";
  if(bc!=bb*cc)  cout<<"Identity 3 fails\n";
#endif  

  d1=gcd(cc,c);
  e=gcd(d1,w1);  u=abs(d1/e);
  if(u>1) {BACK(6,u,3) return 3;}

  // From this point, d1|w1, d1|c
#ifdef CHECK_CLAIMS
  if(!div(d1,w1)) cout<<"d1 ndiv w1\n";
  if(!div(d1,c)) cout<<"d1 ndiv c\n";
#endif  

  d2=cc/d1;
  e=gcd(d2,w2);  u=abs(d2/e); 
  if(u>1) {BACK(7,u,2) return 2;}

  // From this point, d2|w2, d2|b, cc=d1*d2
#ifdef CHECK_CLAIMS
  if(!div(d2,w2)) cout<<"d2 ndiv w2\n";
  if(!div(d2,b)) cout<<"d2 ndiv b\n";
  if(cc!=d1*d2) cout<<"Identity 4 fails\n";
#endif  

  d=gcd(b,gamma);
  e=gcd(d,w2); u=abs(d/e);
  if(u>1) {BACK(8,u,2) return 2;}
  if(d>1) {BACK(9,d,2) u=d; return 2;}

  // From this point, (b,gamma)=1
#ifdef CHECK_CLAIMS
  if(gcd(b,gamma)!=1) cout<<"(b,gamma) not coprime\n";
#endif  

  d=gcd(c,gamma);
  e=gcd(d,w1); u=abs(d/e);
  if(u>1) {BACK(10,u,3) return 3;}
  if(d>1) {BACK(11,d,3) u=d; return 3;}

  // From this point, (c,gamma)=1
  // Also: (d1,w2)=(d2,w1)=1
#ifdef CHECK_CLAIMS
  if(gcd(c,gamma)!=1) cout<<"***(c,gamma) not coprime\n";
  if(gcd(d1,w2)!=1) cout<<"***(d1,w2) not coprime\n";
  if(gcd(d2,w1)!=1) cout<<"***(d2,w1) not coprime\n";
#endif  

  bigint n1, n2, n3, cc1, cc2;
  bigint m1=c/d1, m2=b/d2;
  // cout<<"a, gamma, bc = "<<a<<", "<<gamma<<", "<<bc<<endl;

  lem3(a,aa,n1,n2,n3,cc1,cc2);
// So a = n3*n1*cc1^2,
//   aa = n3*n2*cc2^2  
#ifdef CHECK_CLAIMS
  if(!(a==n3*n1*sqr(cc1))) cout<<"***Identity 5 fails\n";
  if(!(aa==n3*n2*sqr(cc2))) cout<<"***Identity 6 fails\n";
#endif
  if(cc1>1) // we have a square factor of a: reduce
    {
      BACK(12,cc1,1) u=cc1; return 1;
    }
  if(cc2>1) // we have a square factor of aa: divide it out
            // and adjust gamma
    {
//    cout<<"cc2="<<cc2<<endl;
      aa/=sqr(cc2); 
      gamma*=cc2;
//    cout<<"a, aa, gamma, bc = "<<a<<", "<<aa<<", " <<gamma<<", "<<bc<<endl;
    }
// Now a = n3*n1
//    aa = n3*n2  (pairwise coprime)
#ifdef CHECK_CLAIMS
  if(a!=n3*n1) cout<<"***Identity 7 fails\n";
  if(aa!=n3*n2) cout<<"***Identity 8 fails\n";
  if((gcd(n2,n3)!=1)||(gcd(n3,n1)!=1)||(gcd(n2,n1)!=1))
    cout<<"*** n1, n2, n3 not pairwise coprime!"<<endl;
#endif

  do // while(res)
    {
      w1star=w1; w2star=w2; gammastar=gamma;
      gammafactor=gcd(w1,gamma);    // =gcd(w2,gamma)
      if(gammafactor>1)
	{
#ifdef DEBUG_LEGENDRE
	  cout<<"**** gammafactor = "<<gammafactor<<" ***"<<endl;
#endif
	  w1star/=gammafactor; w2star/=gammafactor; 
	  gammastar/=gammafactor;
//Hence yet another chance to get a square factor of b or c:
	  e=gcd(d1,w1star);  u=abs(d1/e);
	  if(u>1) {BACK(13,u,3) return 3;}

// From this point, d1|w1star
#ifdef CHECK_CLAIMS
	  if(!div(d1,w1star)) cout<<"d1 ndiv w1star\n";
#endif  

	  e=gcd(d2,w2star);  u=abs(d2/e); 
	  if(u>1) {BACK(14,u,2) return 2;}

// From this point, d2|w2star
#ifdef CHECK_CLAIMS
	  if(!div(d2,w2star)) cout<<"d2 ndiv w2star\n";
#endif  
	}
  //
  // Now (w1star,gammastar)=(w2star,gammastar)=1
  // and (w1star,n2)=(w2star,n2)=1
  // and d1|w1star, d2|w2star.   
  //
#ifdef CHECK_CLAIMS
      //      cout<<"checking coprimality..."<<endl;
      if(gcd(w1,n2)!=1) cout<<"***(w1,n2) not coprime\n";
      if(gcd(w2,n2)!=1) cout<<"***(w2,n2) not coprime\n";
      if(gcd(w1star,n2)!=1) cout<<"***(w1star,n2) not coprime\n";
      if(gcd(w2star,n2)!=1) cout<<"***(w2star,n2) not coprime\n";
      d=gcd(w1star,w2star);
      if(!div(sqr(d),n2*n1*sqr(n3))) {cout<<"***Identity 9 fails\n";
      // cout<<"aa,bb,cc="<<aa<<","<<bb<<","<<cc<<endl;
      }
      if(gcd(d,n2)!=1) cout<<"***Identity 10 fails\n";
#endif
//
//  Make new certificate
//
      bigint inv_w2_mod_n2 = invmod(w2star, n2);
      bigint inv_w1_mod_d2 = invmod(w1star, d2);
      bigint inv_w2_mod_d1 = invmod(w2star, d1);
      bigint aaa=invmod(a*gammastar,bc);
      k1dash=chrem(-b*w1star*inv_w2_mod_n2, -k1 ,n2,n3);
      k2dash=chrem(k3*w1star*aaa, k2*w2star*aaa, m1, m2);
      k3dash=chrem( k2*aa*gammastar*inv_w1_mod_d2, 
                   -k3*aa*gammastar*inv_w2_mod_d1, d2, d1);
// cout<<"k2,k3="<<k2<<", "<<k3<<endl;
// cout<<"w1, w2="<<w1<<", "<<w2<<endl;
// cout<<"aaa="<<aaa<<endl;
// cout<<"m1, m2="<<m1<<", "<<m2<<endl;

  //Descend ...
#ifdef DEBUG_LEGENDRE
      cout<<"New equation constructed by lem4() at level "<<level<<": \n";
      show_eqn_cert(aa,bb,cc,k1dash,k2dash,k3dash);
#endif
#ifdef CHECK_ALL
      if(!checkin(aa,bb,cc,k1dash,k2dash,k3dash))
	cout<<"New certificate is wrong|\n";
#endif // CHECK_ALL
      res = legendre_solve_cert_1(aa,bb,cc,k1dash,k2dash,k3dash,x1,y1,z1,u);
#ifdef DEBUG_LEGENDRE
      cout<<"Result code from level "<<(level+1)<<" = "<<res;
      if(u>1) cout<<" (u="<<u<<")";
      cout<<endl<<endl;
#endif
      switch(res)
	{
	case 0: break; // Solution found!
	case 1: // Square factor of aa=n2*n3 found
	  d = gcd(u,n3); if(d>1) {u=d; return 1;}  // since n3|a
	  // now u^2|n2
	  u2=sqr(u); n2/=u2; aa/=u2; 
	  gamma*=u;
	  break; // we will try again...
	case 2: case 3:
	  d = gcd(u,b);  if(d>1) {u=d; return 2;}
	  d = gcd(u,c);  if(d>1) {u=d; return 3;}
	default: return -1; // should not happen
	}
  // Now res=0 if we have  solution, 
  //        =1 if we have adjusted aa and want to try again.
    }
  while (res);

#ifdef CHECK_ALL
  if(!CHECK_LEG(aa,bb,cc,k1dash,k2dash,k3dash,x1,y1,z1)) 
    {
      cout<<" wrong solution for new eqn!\n"; 
      show_all(aa,bb,cc,k1dash,k2dash,k3dash,x1,y1,z1);
    }
#endif // CHECK_ALL
#ifdef CHECK_INDEX
  bigint det_factor=gamma*aa;
  cout<<"Mapping solution back, reduced det = "<<det_factor<<" = "<<gamma<<"*"<<aa;
  if(abs(gamma)>1) cout<<"\t***!!!***";
  cout<<endl;
#endif

  x = -gamma*aa*x1;               //  x = -gamma*n3*x1;
  y = (m1*(w2/d2)*y1+w1*z1);  //  y = (m1*(w2/d2)*y1+w1*z1)/n2;
  z = (m2*(w1/d1)*y1-w2*z1);  //  z=  (m2*(w1/d1)*y1-w2*z1)/n2;
#ifdef CHECK_ALL
  if(!CHECK_LEG(a,b,c,k1,k2,k3,x,y,z)) 
    {
      cout<<" wrong solution for original eqn!\n"; 
      show_all(a,b,c,k1,k2,k3,x,y,z);
    }
#endif

  if(abs(n2)>1)
    {
#ifdef DEBUG_LEGENDRE
      int divide_ok=1;
      if(!divide_exact(x,n2,x1))
	{
	  cout<<"x="<<x<<" not divisible by n2="<<n2<<endl;
	  cout<<"denominator = "<<n2/gcd(x,n2)<<endl;
	  divide_ok=0;
	}
      if(!divide_exact(y,n2,y1))
	{
	  cout<<"y="<<y<<" not divisible by n2="<<n2<<endl;
	  cout<<"denominator = "<<n2/gcd(y,n2)<<endl;
	  divide_ok=0;
	}
      if(!divide_exact(z,n2,z1))
	{
	  cout<<"z="<<z<<" not divisible by n2="<<n2<<endl;
	  cout<<"denominator = "<<n2/gcd(y,n2)<<endl;
	  divide_ok=0;
	}
      if(divide_ok)
	{	
	  x=x1; y=y1; z=z1;
	  cout<<"Successfully divided out by factor n2="<<n2<<endl;
	  d=gcd(gcd(x,y),z);
	  if(d>1) cout<<"Solution not primitive now: gcd = "<<d<<endl;
	}
      else
	{
	  d=gcd(gcd(x,y),z);
	  x/=d; y/=d; z/=d;
	  cout<<"Dividing out by factor d = "<<d<<endl;
	  cout<<"rather than n2 = "<<n2;
	  cout<<" (denom(d/n2) = "<<n2/gcd(d,n2)<<endl;
	}
#else
      x/=n2; y/=n2; z/=n2;
#endif	  
    }


#ifdef HOLZER_MEASURES
  cout<<"Holzer measure = "<<holzer_measure(a,b,c,x,y,z)<<endl;
#endif

#ifdef REDUCE_INTERMEDIATES
  cout<<"Before reduction of solution "; show_xyz(x,y,z); cout<<endl;
#ifdef WATCH_REDUCTION  
  cout<<"Before reduction of solution "; show_xyz(x,y,z); cout<<endl;
#endif // WATCH_REDUCTION  
  cancel1(x,y,z);
#ifdef MORDELL_REDUCE
  legendre_reduce(a,b,c,x,y,z,TRACE_HOLZER);
#else
  new_legendre_reduce(a,b,c,x,y,z,TRACE_HOLZER);
#endif // MORDELL_REDUCE
#ifdef WATCH_REDUCTION
  cout<<"After reduction: ";show_xyz(x,y,z);cout<<endl;
#ifdef HOLZER_MEASURES
  cout<<"Holzer measure = "<<holzer_measure(a,b,c,x,y,z)<<endl;
#endif
#endif // WATCH_REDUCTION  
#endif // REDUCE_INTERMEDIATES

#ifdef DEBUG_LEGENDRE  
  bigint f1=should(abs(a),k1*z,b*y);
  bigint f2=should(abs(b),k2*x,c*z);
  bigint f3=should(abs(c),k3*y,a*x);
  if( (f1!=1) || (f2!=1) || (f3!=1) )
    cout<<"    Found factor (lattice-deviation); ["
	<<f1<<","<<f2<<","<<f3<<"]"<<endl;
#endif // DEBUG_LEGENDRE
  return 0;
}

bigfloat sqr(const bigfloat& x) {return x*x;}

bigfloat holzer_measure(const bigint& a, const bigint& b, const bigint& c, 
			const bigint& x, const bigint& y, const bigint& z)
// max{|a|x^2,|b|y^2,|c|z^2}/|abc|   ( < 1 for a Holzer-reduced solution)
{
  bigfloat ax2=I2bigfloat(abs(a)*sqr(x)),
    by2=I2bigfloat(abs(b)*sqr(y)),
    cz2=I2bigfloat(abs(c)*sqr(z));
  bigfloat ans=ax2;
  if(ans<by2) ans=by2;
  if(ans<cz2) ans=cz2;
  ans/=I2bigfloat(a*b*c);
  return ans<0? -ans : ans;
}

// Given a, b, lem3 returns m1 etc so that a=c1^2*m1*m3, b=c2^2*m2*m3 
// with m1, m2, m3 pairwise coprime.   At all  times these equations hold, 
// and at each step the product m1*m2*m3 is decreased by a factor d, 
// so the process terminates when the coprimality condition is satisfied. 

// New version: divides out all squares of primes < 20 from a, b at the start.
int nsmallp=8;
static long smallp[8]={2, 3, 5, 7, 11, 13, 17, 19};
static long smallpsq[8]={4, 9, 25, 49, 121, 169, 289, 361};

void lem3(const bigint& a, const bigint& b,
	  bigint& m1, bigint& m2, bigint& m3, bigint& c1, bigint& c2)
{
  m1=a; m2=b; m3=1; c1=1; c2=1;
  if((a==0)||(b==0)) return;  // shouldn't happen
  int i;  long p, psq, r; bigint d,q;
#ifdef USE_SMALL_P
  for(i=0; i<nsmallp; i++)
    {
      p=smallp[i]; psq=smallpsq[i];
      while(::divides(m1,psq,q,r)) {m1=q; c1*=p;}
      while(::divides(m2,psq,q,r)) {m2=q; c2*=p;}
    }
#endif
  int flag12=1, flag13=1, flag23=1;  // flagij=0 if we know mi,mj are coprime
  while(flag12||flag13||flag23)
    {
//    cout<<m1<<", "<<m2<<", "<<m3<<endl;
      if(flag12)
	{
	  d=abs(gcd(m1,m2)); flag12=0;
	  if(d>1) 
	    {
	      m1/=d; m2/=d; m3*=d; 
	      flag13=flag23=1;
	    }
	}
      if(flag13)
	{
	  d=abs(gcd(m1,m3)); flag13=0;
	  if(d>1) 
	    {
	      m1/=d; m2*=d; m3/=d; c1*=d; 
	      flag12=flag23=1;
	    }
	}
      if(flag23)
	{
	  d=abs(gcd(m2,m3)); flag23=0;
	  if(d>1) 
	    {
	      m1*=d; m2/=d; m3/=d; c2*=d; 
	      flag12=flag13=1;
	    }
	}
    }
#ifdef CHECK_LEM3
  if( (a==sqr(c1)*m1*m3) && (b==sqr(c2)*m2*m3) 
      && (gcd(m1,m3)==1) && (gcd(m2,m3)==1) && (gcd(m1,m2)==1) )
    {;}
  else
    {
      cout<<"Error in lem3("<<a<<","<<b<<"), returning\n"
	  <<"c1="<<c1<<", c2="<<c2<<", m1="<<m1<<", m2="<<m2<<", m3="
	  <<m3<<endl;
    }
#endif
}

//Peel off a known square factor  u  from coefficient  a
void lem2a(const bigint& a, const bigint& b, const bigint& c, 
	   const bigint& n, const bigint& p, const bigint& q, 
	   const bigint& u,
	   bigint& x, bigint& y, bigint& z)
{
#ifdef DEBUG_LEGENDRE
  cout<<"lem2a called with (a,b,c)=(" <<a<<","<<b<<","<<c<<"), " 
      <<" and u = "<<u<<endl;
#endif // DEBUG_LEGENDRE
  x=y=z=0;
  bigint u2=sqr(u), a1, r;
  if((!::divides(a,u2,a1,r))||((u2<=1)))
    {
      cout<<"lem2a wrongly called with (a,b,c)=("
	  <<a<<","<<b<<","<<c<<")"<<endl;
      cout<<" and u = "<<u<<endl;
      return;
    }
  bigint n1 = n%a1;
  bigint p1 = (p*invmod(u,b))%b;
  bigint q1 = (q*invmod(u,c))%c;
  legendre_solve_cert(a1,b,c,n1,p1,q1,x,y,z);
  y *= u; z *= u;
//
// NB the lattice congruence mod a is NOT preserved by this scaling
//
  cancel1(x,y,z);
#ifdef CHECK_ALL
  if(!CHECK_LEG(a,b,c,n,p,q,x,y,z)) {cout<<"Wrong solution in lem2a!\n";
				     show_all(a,b,c,n,p,q,x,y,z);}
#endif // CHECK_ALL

#ifdef REDUCE_INTERMEDIATES
#ifdef MORDELL_REDUCE
  legendre_reduce(a,b,c,x,y,z,TRACE_HOLZER);
#else
  new_legendre_reduce(a,b,c,x,y,z,TRACE_HOLZER);
#endif // MORDELL_REDUCE
#endif // REDUCE_INTERMEDIATES
}

//Peel off a known square factor  u  from coefficient  b
void lem2b(const bigint& a, const bigint& b, const bigint& c, 
	   const bigint& n, const bigint& p, const bigint& q, 
	   const bigint& u,
	   bigint& x, bigint& y, bigint& z)
{
#ifdef DEBUG_LEGENDRE
  cout<<"lem2b called with (a,b,c)=("<<a<<","<<b<<","<<c<<"), " 
      <<" and u = "<<u<<endl;
#endif // DEBUG_LEGENDRE
  lem2a(b,c,a,p,q,n,u,y,z,x);
}

//Peel off a known square factor  u  from coefficient  c
void lem2c(const bigint& a, const bigint& b, const bigint& c, 
	   const bigint& n, const bigint& p, const bigint& q, 
	   const bigint& u,
	   bigint& x, bigint& y, bigint& z)
{
#ifdef DEBUG_LEGENDRE
  cout<<"lem2c called with (a,b,c)=("<<a<<","<<b<<","<<c<<"), " 
      <<" and u = "<<u<<endl;
#endif // DEBUG_LEGENDRE
  lem2a(c,a,b,q,n,p,u,z,x,y);
}

// These versions of lem4 are now obsolete

// Main descent: Either
// Find a square factor of  abc  and call lem2,
// Or, find  bc=+-1 and call lem1
// Or compute a smaller (aa,bb,cc,n1,p1,q1) and call lem4 recursively
//
// This routine assumes |a|>=|b|>=|c| (else use legendre_solve_cert())
//
void lem4x(const bigint& a, const bigint& b, const bigint& c, 
	   const bigint& n, const bigint& p, const bigint& q, 
	   bigint& x, bigint& y, bigint& z);

void lem4(const bigint& a, const bigint& b, const bigint& c, 
	  const bigint& n, const bigint& p, const bigint& q, 
	  bigint& x, bigint& y, bigint& z)
#ifdef DEBUG_LEGENDRE
{
  cout<<"lem4 called with ";show_eqn_cert(a,b,c,n,p,q);
  lem4x(a,b,c,n,p,q,x,y,z);
  cout<<"lem4 returns "; show_xyz(x,y,z); cout<<endl;
}

void lem4x(const bigint& a, const bigint& b, const bigint& c, 
	   const bigint& n, const bigint& p, const bigint& q, 
	   bigint& x, bigint& y, bigint& z)
#endif // DEBUG_LEGENDRE
{
  bigint aa,bb,cc,alpha,beta,d1,d2,u,d,e,k,k1,k2,t,bc;
  static bigint one, zero; one=1; zero=0;
//
// We have |a|>=|b|>=|c| and none are squares.  If |b|=|c|=1 call lem1
//
  if(abs(b)==1)
    {
      lem1(a,b,c,n,p,q,x,y,z);
      return;
    }

  k=(n*invmod(c,a))%a;
  minv(one,k,zero,a,abs(b),abs(c),k1,k2);
  // cout<<"k1,k2="<<k1<<","<<k2<<endl;
  //
  t=(b*sqr(k1)+c*sqr(k2))/a;
  // cout<<"t="<<t<<endl;

  bc=b*c;
  lem3(t,bc,aa,bb,cc,alpha,beta);
  //
  if(cc>0) { ::negate(cc); ::negate(aa); ::negate(bb);}
  // cout<<"aa,bb,cc="<<aa<<","<<bb<<","<<cc<<endl;
  // Now t = aa*cc*alpha^2,
  //    bc = bb*cc*beta^2.
#ifdef CHECK_CLAIMS
  if( t!=aa*cc*sqr(alpha)) cout<<"Identity 1 fails\n";
  if(bc!=bb*cc*sqr(beta))  cout<<"Identity 2 fails\n";
#endif  

  // 12 (?) chances to find a square factor of abc follow...
  bigint  betab=gcd(beta,b);
  if(betab>1) {TL2(4) lem2b(a,b,c,n,p,q,betab,x,y,z); return;}
  bigint betac=gcd(beta,c);
  if(betac>1) {TL2(5) lem2c(a,b,c,n,p,q,betac,x,y,z); return;}

  // From this point beta=1, 
  //     t = aa*cc*alpha^2,
  //    bc = bb*cc.
#ifdef CHECK_CLAIMS
  if(beta!=1) cout<<"beta="<<beta<<", not 1\n";
  if(bc!=bb*cc)  cout<<"Identity 3 fails\n";
#endif  

  d1=gcd(cc,c);
  e=gcd(d1,k1);  u=abs(d1/e);
  if(u>1) {TL2(6) lem2c(a,b,c,n,p,q,u,x,y,z); return;}

  // From this point, d1|k1, d1|c
#ifdef CHECK_CLAIMS
  if(!div(d1,k1)) cout<<"d1 ndiv k1\n";
  if(!div(d1,c)) cout<<"d1 ndiv c\n";
#endif  

  d2=cc/d1;
  e=gcd(d2,k2);  u=abs(d2/e); 
  if(u>1) {TL2(7) lem2b(a,b,c,n,p,q,u,x,y,z); return;}

  // From this point, d2|k2, d2|b, cc=d1*d2
#ifdef CHECK_CLAIMS
  if(!div(d2,k2)) cout<<"d2 ndiv k2\n";
  if(!div(d2,b)) cout<<"d2 ndiv b\n";
  if(cc!=d1*d2) cout<<"Identity 4 fails\n";
#endif  

  d=gcd(b,alpha);
  e=gcd(d,k2); u=abs(d/e);
  if(u>1) {TL2(8) lem2b(a,b,c,n,p,q,u,x,y,z); return;}
  if(d>1) {TL2(9) lem2b(a,b,c,n,p,q,d,x,y,z); return;}

  // From this point, (b,alpha)=1
#ifdef CHECK_CLAIMS
  if(gcd(b,alpha)!=1) cout<<"(b,alpha) not coprime\n";
#endif  

  d=gcd(c,alpha);
  e=gcd(d,k1); u=abs(d/e);
  if(u>1) {TL2(10) lem2c(a,b,c,n,p,q,u,x,y,z); return;}
  if(d>1) {TL2(11) lem2c(a,b,c,n,p,q,d,x,y,z); return;}

  // From this point, (c,alpha)=1
  // Also: (d1,k2)=(d2,k1)=(k1,alpha)=(k2,alpha)=1
#ifdef CHECK_CLAIMS
  if(gcd(c,alpha)!=1) cout<<"***(c,alpha) not coprime\n";
  if(gcd(d1,k2)!=1) cout<<"***(d1,k2) not coprime\n";
  if(gcd(d2,k1)!=1) cout<<"***(d2,k1) not coprime\n";
#endif  

#define AGREE_PAPER
  bigint aa1, aa2, aa3, cc1, cc2;
  bigint m1=c/d1, m2=b/d2, aaa=invmod(a*alpha,bc);
  // cout<<"a, alpha, bc, aaa = "<<a<<", "<<alpha<<", "<<bc<<", "<<aaa<<endl;
#ifdef AGREE_PAPER // else Rusin's code
  lem3(a,aa,aa3,aa1,aa2,cc1,cc2);
// So a = aa2*aa3*cc1^2,
//   aa = aa2*aa1*cc2^2  
#ifdef CHECK_CLAIMS
  if(!(a==aa2*aa3*sqr(cc1))) cout<<"***Identity 5 fails\n";
  if(!(aa==aa2*aa1*sqr(cc2))) cout<<"***Identity 6 fails\n";
#endif
  if(cc1>1) // we have a square factor of a: reduce
    {
      TL2(12) lem2a(a,b,c,n,p,q,cc1,x,y,z); 
      return;
    }
  if(cc2>1) // we have a square factor of aa: divide it out
            // and adjust alpha
    {
// cout<<"cc2="<<cc2<<endl;
      aa/=sqr(cc2); 
      alpha*=cc2;
      aaa=invmod(a*alpha,bc);
// cout<<"a, aa, alpha, bc, aaa = "<<a<<", "<<aa<<", "<<alpha<<", "<<bc<<", "<<aaa<<endl;
    }
// Now a = aa2*aa3,   aa1=n2, aa2=n3, aa3=n1 in paper notation
//    aa = aa2*aa1  (pairwise coprime)
#ifdef CHECK_CLAIMS
  if(a!=aa2*aa3) cout<<"***Identity 7 fails\n";
  if(aa!=aa2*aa1) cout<<"***Identity 8 fails\n";
  if((gcd(aa1,aa2)!=1)||(gcd(aa2,aa3)!=1)||(gcd(aa1,aa3)!=1))
    cout<<"***aa1, aa2, aa3 not pairwise coprime!"<<endl;
#endif

  d=gcd(k1,alpha);
  if(d>1) // then d also divides k2 so we can divide it out
    {
      k1/=d; k2/=d; alpha/=d;
      aaa=invmod(a*alpha,bc);
    }
  d=gcd(k2,alpha);
  if(d>1) // then d also divides k1 so we can divide it out
    {
      k1/=d; k2/=d; alpha/=d;
      aaa=invmod(a*alpha,bc);
    }
  // Now (k1,alpha)=(k2,alpha)=1
#ifdef CHECK_CLAIMS
  if(gcd(k1,alpha)!=1) cout<<"***(k1,alpha) not coprime\n";
  if(gcd(k2,alpha)!=1) cout<<"***(k2,alpha) not coprime\n";
#endif  

  d=gcd(k1,k2);

#ifdef CHECK_CLAIMS
  if(!div(sqr(d),aa1*aa3*sqr(aa2))) {cout<<"***Identity 9 fails\n";
   // cout<<"aa,bb,cc="<<aa<<","<<bb<<","<<cc<<endl;
   // cout<<"k1,k2="<<k1<<","<<k2<<endl;
   // cout<<"aa1,aa2,aa3="<<aa1<<","<<aa2<<","<<aa3<<endl;
   // cout<<"alpha="<<alpha<<endl;				 
			       }
#endif
  if(d>1)
    {
      e=gcd(d,aa1);
    }
//  From here, (d,aa1)=1; moreover, (k1,aa1)=(k2,aa1)=1
//
#ifdef CHECK_CLAIMS
  if(gcd(k1,aa1)!=1) cout<<"***Identity 10 fails\n";
  if(gcd(k2,aa1)!=1) cout<<"***Identity 11 fails\n";
  if(gcd(d,aa1)!=1) cout<<"***Identity 12 fails\n";
   // cout<<"aa,bb,cc="<<aa<<","<<bb<<","<<cc<<endl;
   // cout<<"k1,k2="<<k1<<","<<k2<<endl;
   // cout<<"aa1,aa2,aa3="<<aa1<<","<<aa2<<","<<aa3<<endl;
   // cout<<"alpha="<<alpha<<endl;
#endif
//
//  Make new certificate
//
  bigint n1=chrem(-b*k1*invmod(k2, aa1), 
		  -n ,aa1,aa2);
// cout<<"p,q="<<p<<", "<<q<<endl;
// cout<<"k1, k2="<<k1<<", "<<k2<<endl;
// cout<<"aaa="<<aaa<<endl;
// cout<<"m1, m2="<<m1<<", "<<m2<<endl;

  bigint p1=chrem(q*k1*aaa, 
		  p*k2*aaa, m1, m2);
  bigint q1=chrem( p*aa*alpha*invmod(k1,d2), 
		  -q*aa*alpha*invmod(k2,d1), d2, d1);

#else // Rusin's code
//Special tests if k1>1;
  if(gcd(k1,aa)>1) 
    {
#ifdef DEBUG_LEGENDRE
      cout<<"    Special K..."<<endl;
#endif // DEBUG_LEGENDRE
      lem3(a,aa,aa3,aa1,aa2,cc1,cc2);
      if(cc1>1) 
	{
#ifdef DEBUG_LEGENDRE
	  cout<<"    Special K...cc1="<<cc1<<">1: square factor of a"<<endl;
#endif // DEBUG_LEGENDRE
	  TL2(16) lem2a(a,b,c,n,p,q,cc1,x,y,z); 
	  return;
	}
      if(cc2>1) 
	{
#ifdef DEBUG_LEGENDRE
	  cout<<"    Special K...cc2>1"<<endl;
#endif // DEBUG_LEGENDRE
	  aa/=sqr(cc2); 
	  alpha*=cc2;
	}
// The reductions after this point should never happen
      d=gcd(k1,alpha);
      if(d>1) {k1/=d;k2/=d;alpha/=d;}
      d=gcd(k1,k2);
      if(d>1) 
	{
	  e=gcd(d,aa3);
	  if(e>1) 
	    {
#ifdef DEBUG_LEGENDRE
	      cout<<"    Special K...first e>1"<<endl;
#endif // DEBUG_LEGENDRE
	      TL2(17) lem2a(a,b,c,n,p,q,e,x,y,z); 
	      return;
	    }
	  e=gcd(d,aa1);
	  if(e>1) 
	    {
#ifdef DEBUG_LEGENDRE
	      cout<<"    Special K...second e>1"<<endl;
#endif // DEBUG_LEGENDRE
	      aa1/=sqr(e); 
	      alpha*=e;
	    }
	}
#ifdef DEBUG_LEGENDRE
      cout<<" ...but no square factors of abc found"<<endl;
#endif // DEBUG_LEGENDRE
    }
  else 
    {
      aa1=aa; aa2=1;
    }

//
//  Make new certificate
//
  bigint n1=chrem(c*k2*invmod(k1, aa1),n ,aa1,aa2);
  bigint p1=chrem(q*k1*invmod(aaa,m1), -p*k2*invmod(aaa,m2), m1, m2);
  bigint q1=chrem(-p*aa*alpha*invmod(k1,d2), 
		  q*aa*alpha*invmod(k2,d1), d2, d1);
#endif // AGREE_PAPER

  //Descend & climb back;
#ifdef CHECK_ALL
  cout<<"New equation constructed by lem4(): \n";
  show_eqn_cert(aa,bb,cc,n1,p1,q1);
  if(!checkin(aa,bb,cc,n1,p1,q1))
    {
      cout<<"New certificate is wrong|\n";
    }
#endif // CHECK_ALL
  bigint x1,y1,z1;
  bigint det_factor=alpha*aa;
  legendre_solve_cert(aa,bb,cc,n1,p1,q1,x1,y1,z1);
#ifdef CHECK_ALL
  if(!CHECK_LEG(aa,bb,cc,n1,p1,q1,x1,y1,z1)) 
    {
      cout<<" wrong solution for new eqn!\n"; 
      show_all(aa,bb,cc,n1,p1,q1,x1,y1,z1);
    }
#endif // CHECK_ALL
#ifdef CHECK_INDEX
  cout<<"Mapping solution back, reduced det = "<<det_factor<<" = "<<alpha<<"*"<<aa;
  if(abs(alpha)>1) cout<<"\t***!!!***";
  cout<<endl;
#endif

#ifdef AGREE_PAPER
  x = -alpha*aa*x1;         //  x = -alpha*aa2*x1;
  y = (m1*(k2/d2)*y1+k1*z1);//  y = (m1*(k2/d2)*y1+k1*z1)/aa1;
  z=  (m2*(k1/d1)*y1-k2*z1);//  z=  (m2*(k1/d1)*y1-k2*z1)/aa1;
// divide_exact(y,aa1,y);
// divide_exact(z,aa1,z);
#ifdef CHECK_ALL
  if(!CHECK_LEG(a,b,c,n,p,q,x,y,z)) 
    {
      cout<<" wrong solution for original eqn!\n"; 
      show_all(a,b,c,n,p,q,x,y,z);
    }
#endif
  d=gcd(gcd(x,y),z);
  if(d>1) 
    {
#ifdef DEBUG_LEGENDRE
      cout<<"Dividing out by factor d="<<d<<", aa1="<<aa1<<endl;
#endif
      x/=d; y/=d; z/=d;
    }
#else // Rusin's code
  x=-det_factor*x1;
  y=m1*(k2/d2)*y1+k1*z1;
  z=m2*(k1/d1)*y1-k2*z1;

  d=gcd(y,z); x1=gcd(d,x);
  //option; try making x,y,z divisible by most of A1;
#ifdef TWEAK_K1
  y2=m1*(k2/d2)*y1-k1*z1;
  z2=-m2*(k1/d1)*y1-k2*z1;
  e=gcd(z2,y2);x2=gcd(e,x);
  if(x2>x1) {y=y2;z=z2;x1=x2;d=e;}
#endif // TWEAK_K1
  if(x1>1) {x/=x1; y/=x1; z/=x1; d/=x1;}
//if d>1, then d^2 | a ...
#endif // AGREE_PAPER

#ifdef WATCH_REDUCTION  
  cout<<"Before reduction of solution "; show_xyz(x,y,z); cout<<endl;
#endif // WATCH_REDUCTION  
#ifdef REDUCE_INTERMEDIATES
#ifdef MORDELL_REDUCE
  legendre_reduce(a,b,c,x,y,z,TRACE_HOLZER);
#else
  new_legendre_reduce(a,b,c,x,y,z,TRACE_HOLZER);
#endif // MORDELL_REDUCE
#endif // REDUCE_INTERMEDIATES
#ifdef WATCH_REDUCTION
  cout<<"After reduction: ";show_xyz(x,y,z);cout<<endl;
#endif // WATCH_REDUCTION  

#ifdef DEBUG_LEGENDRE  
  bigint f1=should(abs(a),n*z,b*y);
  bigint f2=should(abs(b),p*x,c*z);
  bigint f3=should(abs(c),q*y,a*x);
  if( (f1!=1) || (f2!=1) || (f3!=1) )
    cout<<"    Found factor (lattice-deviation); ["
	<<f1<<","<<f2<<","<<f3<<"]"<<endl;
#endif // DEBUG_LEGENDRE
}