File: marith.cc

package info (click to toggle)
eclib 2014-09-21-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,216 kB
  • ctags: 4,287
  • sloc: cpp: 45,827; makefile: 222; sh: 108
file content (1361 lines) | stat: -rw-r--r-- 35,076 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
// marith.cc: implementations of integer arithmetic functions (multiprecision)
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
// 
// This file is part of the eclib package.
// 
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
// 
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// 
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
// 
//////////////////////////////////////////////////////////////////////////
 
#include <NTL/ZZXFactoring.h>

// if USE_PARI_FACTORING is set we use the pari C library for factoring 
// (via a string interface defined in parifact.h/cc) 
// if USE_GP_FACTORING is set we use gp for factoring (via a fifo)


#include <unistd.h>  // for unlink() (not needed on linux)
#include <eclib/marith.h>
#ifdef USE_GP_FACTORING
#include <eclib/gpslave.h>
#endif
#include <sstream>

// Utilities for debugging output -- for example, from gdb you can give the command
//   p show(a)
// to see a where a is a bigint or vector<bigint>

bigint show(const bigint& a) {cout<<a<<endl; return a;}
vector<bigint> show(const vector<bigint>& a) {cout<<a<<endl; return a;}
 
bigint bezout(const bigint& aa, const bigint& bb, bigint& xx, bigint& yy)
{bigint ans; XGCD(ans,xx,yy,aa,bb); return ans;}
int divides(const bigint& a, const bigint& b, bigint& q, bigint& r)
  { DivRem(q,r,a,b); return IsZero(r);}
int divides(const bigint& a, long b, bigint& q, long& r)
  { r=DivRem(q,a,b); return (r==0);}


// oddsqrt works on odd n, called by isqrt
//
//#define oddsqrt(root,n) sqrt(root,n)   // builtin
//#define oddsqrt(root,n) sqrtq2(root,n) // 2-adic
#define oddsqrt(root,n) sqrtnr(root,n) // JC's Newton

// 2-adic version of isqrt:

int sqrtq2(bigint& root, const bigint& n)
{
  bigint a,r; long a0;
  ::divides(n,(long)8,r,a0);
  if(a0!=1) return 0;              // odd squares must be 1 mod 8
  if(r==1) {a0=3; r=0;}           // special case
  a=a0;
//  cout<<"odd part 1 mod 8 with quotient r = " << r << endl;
  bigint twok = BIGINT(8), twok3= BIGINT(1);
  long kminus1=2;
  while(r>0)
    {
      if(even(r))
	{
	  rshift(r,1,r);
	}
      else
	{ 
	  subx(r,a,r); rshift(r,1,r); subx(r,twok3,r);
	  setbit(a,kminus1);
	}
      lshift(twok,1,twok);  lshift(twok3,1,twok3);
      kminus1++;
//      cout<<"a="<<a<<", r="<<r<<endl;
    }
  if(is_zero(r))     {root=a; return 1;}
  if(r+a==(twok>>2)) {root=(twok>>1)-a; return 1;}
  return 0;
}

// Newton-R-type iteration as in Henri Cohen's book pp 38-39

  // some arrays borrowed from pari:
static int carresmod64[]={
    1,1,0,0,1,0,0,0,0,1, 0,0,0,0,0,0,1,1,0,0,
    0,0,0,0,0,1,0,0,0,0, 0,0,0,1,0,0,1,0,0,0,
    0,1,0,0,0,0,0,0,0,1, 0,0,0,0,0,0,0,1,0,0,
    0,0,0,0};
static int carresmod63[]={
    1,1,0,0,1,0,0,1,0,1, 0,0,0,0,0,0,1,0,1,0,
    0,0,1,0,0,1,0,0,1,0, 0,0,0,0,0,0,1,1,0,0,
    0,0,0,1,0,0,1,0,0,1, 0,0,0,0,0,0,0,0,1,0,
    0,0,0};
static int carresmod65[]={
    1,1,0,0,1,0,0,0,0,1, 1,0,0,0,1,0,1,0,0,0,
    0,0,0,0,0,1,1,0,0,1, 1,0,0,0,0,1,1,0,0,1,
    1,0,0,0,0,0,0,0,0,1, 0,1,0,0,0,1,1,0,0,0,
    0,1,0,0,1};
static int carresmod11[]={1,1,0,1,1,1,0,0,0,1,0};
static int carresmod17[]={1,1,1,0,1,0,0,0,1,1,0,0,0,1,0,1,1};
static int carresmod19[]={1,1,0,0,1,1,1,1,0,1,0,1,0,0,0,0,1,1,0};
/*
static int carresmod23[]={1,1,1,1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0,0};
static int carresmod29[]={1,1,0,0,1,1,1,1,0,1,0,0,0,1,0,0,1,0,0,0,1,
			  0,1,1,1,1,0,0,1};
static int carresmod31[]={1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,0,1,1,1,
			  0,0,0,0,1,0,0,1,0,0};
static int carresmod37[]={1,1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,1,0,0,0,0,
			  1,0,0,0,1,1,1,1,0,1,0,0,1,1,0,1};
static int carresmod41[]={1,1,1,0,1,1,0,0,1,1,1,0,0,0,0,0,1,0,1,0,1,
			  1,0,1,0,1,0,0,0,0,0,1,1,1,0,0,1,1,0,1,1};
static int carresmod43[]={1,1,0,0,1,0,1,0,0,1,1,1,0,1,1,1,1,1,0,0,0,
			  1,0,1,1,1,0,0,0,0,0,1,0,0,0,1,1,0,1,0,1,1,0};
*/

int sqrtnr(bigint& root, const bigint& n)
{
  long l = 1+(lg(n)>>1);
  //  cout << "n = " << n << ", l = " << l << endl;
  bigint y;
  root=1; root<<=l;  // first approx, > sqrt(n)
  //  cout << "first approx root = " << root << endl;
  while(1)
    {
      divx(n,root,y); addx(y,root,y); rshift(y,1,y);
      if(y<root) {root=y;} else break;
      //      cout << "root = " << root << endl;
    }
  return (sqr(root)==n);
}

//NB The code here proved faster than any of the version builtin to NTL

int isqrt(const bigint& in, bigint& root)
{
//  cout<<"In isqrt with n = " << in << endl;
  root=0;
  if(sign(in)<0) return 0;
  if(sign(in)==0) return 1;
  long m,twopow=0;
  bigint n(in);
  while(even(n)) {n>>=1; twopow++;}
//  cout << "2-power = " << twopow << endl;
  if(odd(twopow)) return 0;            // 2 | a to an odd power
  twopow>>=1;                          // = power of 2 in root
  m = bigint_mod_long(n,931170240); // 931170240=64*63*65*11*17*19 < 2^30

  if (!carresmod64[m&63]) return 0;
  if (!carresmod63[m%63]) return 0;
  if (!carresmod65[m%65]) return 0;
  if (!carresmod11[m%11]) return 0;
  if (!carresmod17[m%17]) return 0;
  if (!carresmod19[m%19]) return 0;

  if(oddsqrt(root,n)) {lshift(root,twopow,root); return 1;}
  return 0;
}


int sqrt_mod_2_power(bigint& x, const bigint& a, int e)
{
  if(e==0) {x=0; return 1;}
  long a8 = posmod(a,8); // I2long(a%8);
                         //  if(a8<0) {a8+=8;}
  if(!(a8%2)) return 0;  // odd a only
  x=1;
  if(e==1) return 1;
  if(e==2) return ((a8%4)==1);
  if(a8!=1) return 0;
  if(e==3)  return 1;
  // Now e>=4 and a=1 (mod 8)  
  int k; bigint q1, q, q2; q1=4, q=8, q2=16;
  for(k=3; k<e; k++)
    {
      if(ndiv(q2,(sqr(x)-a))) x+=q1;
      q1=q; q=q2; q2*=2;
    }
#ifdef CHECK_SQRT_MOD
  if(ndiv(q,sqr(x)-a))
    cout<<"Error in sqrt_mod_2_power with a="<<a<<", a mod 8="<<a8<<", e="<<e
	<<": returns "<<x<<endl;
#endif  
  return 1;
}

int sqrt_mod_p_power(bigint& x, const bigint& a, const bigint& p, int e)
{
  if(p==2) {return sqrt_mod_2_power(x,a,e);}
  if(e==0) {x=0; return 1;}
  bigint a1 = a%p;
  if(a1==0) return 0;  // p ndiv a only
  if(legendre(a1,p)==-1) return 0;
  if(a1<0) a1+=p;  // since sqrt_mod_p wants it between 0 and p-1
  sqrt_mod_p(x,a1,p);  
  //  cout<<"sqrt("<<a1<<" mod "<<p<<") = "<<x<<endl;
  if(e==1) {return 1;}
  bigint s = invmod(2*x,p);

  int k; bigint q=p;
  for(k=1; k<e; k++)
    {
      q*=p;
      x-= s*(sqr(x)-a)%q;
      x%=q;
    }
#ifdef CHECK_SQRT_MOD
  if(ndiv(q,sqr(x)-a))
    cout<<"Error in sqrt_mod_p_power with a="<<a<<", p="<<p<<", e="<<e
	<<": returns "<<x<<endl;
#endif  
  return 1;
}

int sqrt_mod_m(bigint& x, const bigint& a, const bigint& m)
{
  // Some trivial cases require no work:
  if(is_one(m))  {x=BIGINT(0); return 1;}
  if(is_zero(a)) {x=BIGINT(0); return 1;}
  if(is_one(a))  {x=BIGINT(1); return 1;}
#ifdef CHECK_SQRT_MOD
  cout<<"Factorizing "<<m<<"..."<<flush;
#endif  
  vector<bigint> mpdivs = pdivs(m);
#ifdef CHECK_SQRT_MOD
  cout<<"prime factors are "<<mpdivs<<endl;
#endif  
  return sqrt_mod_m(x,a,m,mpdivs);
}

int sqrt_mod_m(bigint& x, const bigint& a, const bigint& m, const vector<bigint>& mpdivs)
{
  // Some trivial cases require no work:
  if(is_one(m))  {x=0; return 1;}
  if(is_zero(a)) {x=0; return 1;}
  if(is_one(a))  {x=1; return 1;}
  bigint mm, p, xp, q; int e;
  x=0;  mm=1;
  
 for(vector<bigint>::const_iterator pr = mpdivs.begin(); pr!=mpdivs.end(); pr++)
    {
      p=*pr;
      e = val(p,m);
      if(e==0) continue;
      if(p==2) 
	{if(!sqrt_mod_2_power(xp,a,e)) return 0;}
      else
	{if(!sqrt_mod_p_power(xp,a,p,e)) return 0;}
      q=pow(p,e);
      if(pr==mpdivs.begin())
	x=xp;
      else
	x=chrem(x,xp,mm,q);
      mm*=q;
    }
#ifdef CHECK_SQRT_MOD
  if(ndiv(m,sqr(x)-a))
    cout<<"Error in sqrt_mod_m with a="<<a<<", m="<<m
	<<": returns "<<x<<endl;
#endif  
  return 1;
}

int modsqrt(const bigint& a, const vector<bigint>& bplist, bigint& x)
     // Solves x^2=a mod b, returns success/fail
{
  // Assumes b square-free, primes factors in bplist
  bigint u, v, p, amodp, xmodp, m;
  int res=1;  x=0; m=1;
  for(vector<bigint>::const_iterator pr = bplist.begin(); res&&(pr!=bplist.end()); pr++)
    {
      p=*pr;
      if(p==2)
	{
	  xmodp=odd(a);
	}
      else // odd p
	{
	  amodp = a%p;
	  if(is_zero(amodp)) xmodp=0;
	  else
	    {
	      if(legendre(amodp,p)==-1) return 0;
	      if(amodp<0) amodp+=p;  // sqrt_mod_p wants it between 0 and p-1
	      sqrt_mod_p(xmodp,amodp,p);
	    }
	}
      // Now Chinese xmodp with previous (x mod m)
      bezout(m,p,u,v);
      x = x*v*p+xmodp*u*m;
      m*=p;
      x = mod(x,m);
    }
  return 1;
}

//
// bigint divisor lists etc
//

extra_prime_class the_extra_primes;  // The one and only instance

void initprimes(const string pfilename, int verb)
{
  if(verb) 
    {
      cout<<"Computed " << nprimes() << " primes, ";
      cout << "largest is " << maxprime() << "\n";
    }
  the_extra_primes.read_from_file(pfilename,verb);
  if(verb) the_extra_primes.show();
}

extra_prime_class::~extra_prime_class()
{
  //  write_to_file(string("PRIMES").c_str());
}

void extra_prime_class::write_to_file(const string pfilename, int verb)
{
  if(the_primes.size()==0) return;
  if(verb) cout << "writing primes to file " << pfilename << endl;
  ofstream pfile(pfilename.c_str());
  copy(the_primes.begin(),the_primes.end(), ostream_iterator<bigint>(pfile, "\n"));  
  if(verb) cout << "finished writing primes to file " << pfilename << endl;
}

void extra_prime_class::read_from_file(const string pfilename, int verb)
{
  ifstream pfile(pfilename.c_str());
  if(!pfile)  // default: no primes file exists
    {
      return;
    } 
  pfile>>ws;
  if(pfile.eof())  //  primes file exists but is empty
    {
      return;
    } 
  if(verb) cout << "reading primes from file " << pfilename << endl;
  bigint xp;
  while(pfile>>xp>>ws, (xp!=0) )
	{
	  if(verb) cout << "read extra prime " << xp << endl;
	  the_extra_primes.add(xp);
	  if(pfile.eof()) break;
	}
  if(verb) cout << "finished reading primes from file " << pfilename << endl;
}


vector<bigint> pdivs_use_factorbase(bigint& n, const std::set<bigint> factor_base);
vector<bigint> pdivs_trial_div(bigint& n, const bigint& pmax=BIGINT(maxprime()));

//#define DEBUG_GP_FACTORING

// The following uses pari's factorization externally if available.
// However, numbers less than
#define TRIAL_DIV_BOUND BIGINT(100000000)
//#define TRIAL_DIV_BOUND BIGINT(2)
// will be handled by trial division, and pari/gp will only be called
// once primes factors less than
#define TRIAL_DIV_PRIME_BOUND BIGINT(10000)
//#define TRIAL_DIV_PRIME_BOUND BIGINT(1)
//have been divided out.  This is to reduce the overheads involved
//with calling gp externally

#ifdef USE_GP_FACTORING
vector<bigint> pdivs_gp(const bigint& number, int trace)
{
#ifdef DEBUG_GP_FACTORING
  trace=2;
#endif
  if(!the_pari_slave.is_running()) 
    {
#ifdef DEBUG_GP_FACTORING
      cout<<"Could not find gp, using default factorization (trial division)"
	  << endl;
#endif
      return pdivs_trial(number,trace); 
    }
  vector<bigint> plist;
  bigint n=abs(number);
  if(n<2) return plist; // empty!

  // for small n just use trial division...

  if(n<TRIAL_DIV_BOUND) 
    {
#ifdef DEBUG_GP_FACTORING
      cout<<"pdivs_gp defaulting to pdivs_trial for small n (<"<<TRIAL_DIV_BOUND<<")"<< endl;
#endif
      return pdivs_trial(number,trace); 
    }
  if(trace) cout<<"pdivs_gp factoring "<<n<<endl;

  // use prime base first...

  plist=pdivs_use_factorbase(n,the_extra_primes.the_primes);
  if(trace&&plist.size()>0) 
    cout<<"after using factorbase, have factors "<<plist
	<<", and cofactor = "<<n<< endl;
  if(n<2) 
    {
      sort(plist.begin(),plist.end());
      return plist;
    }

  // now use small primes...

  plist = vector_union(plist,pdivs_trial_div(n,TRIAL_DIV_PRIME_BOUND));
  if(trace&&plist.size()>0) 
    cout<<"after using trial division up to "<<TRIAL_DIV_PRIME_BOUND<<", have factors "<<plist
	<<", and cofactor = "<<n<< endl;

  if(n<2) 
    {
      sort(plist.begin(),plist.end());
      return plist;
    }

  // finally call the slave gp process via the parislave class...

  plist = vector_union(plist,the_pari_slave.factor(n));
  
  sort(plist.begin(),plist.end());
  if(trace) cout<<"pdivs_gp returns "<<plist<<endl;
  return plist;
}
#endif

// n>0 will be changed;  returns prime factors from factor base and divides out from n

vector<bigint> pdivs_use_factorbase(bigint& n, const std::set<bigint> factor_base)
{
  vector<bigint> plist;
  if(n<2) return plist;
  std::set<bigint>::const_iterator pri = factor_base.begin(); 
  while((n>1)&&(pri!=factor_base.end()))
    {
      bigint p=*pri++;
      if(divide_out(n,p)) 	  
	plist.push_back(p);
    }
  return plist;
}

// n>0 will be changed;  returns prime factors p<pmax and divides out from n

vector<bigint> pdivs_trial_div(bigint& n, const bigint& pmax)
{
  vector<bigint> plist;
  if(n<2) return plist;
  primevar pr;
  long p=2, r; bigint mp, q; mp=2;
  while ( (n>1) && (pr.ok()) && (mp<=pmax))
    { 
      if (::divides(n,p,q,r))   // then found a prime factor
	{
	  plist.push_back(mp); // add it to the list
	  n=q;
	  divide_out(n,mp);     // divide it out from n
	}
      // Now we might be able to conclude that the cofactor is prime:
      if(n>1) if (sqr(mp)>n) 
	{
	  plist.push_back(n); 
	  the_extra_primes.add(n); 
	  n=1; 
	}
      pr++; p = pr.value(); mp=p;
    }
  return plist;
}

vector<bigint> pdivs_trial(const bigint& number, int trace)
{
  if(trace) cout<<"In pdivs_trial() with number = " << number << endl;

  vector<bigint> plist;
  bigint n = abs(number), q, mp, mr;
  if(n<2) return plist;
  // use prime base first...

  plist=pdivs_use_factorbase(n,the_extra_primes.the_primes);
  if(n<2) return plist;
  if(trace) cout<< "After using factor base, n= " <<n<<", plist = "<< plist << endl;

  plist = vector_union(plist,pdivs_trial_div(n));
  if(trace) cout<< "After using trial division, n= " <<n<<", plist = "<< plist << endl;

  if(n>1) if(ProbPrime(n)) 
    {plist.push_back(n); the_extra_primes.add(n); n=1; }

  if (n>1) // failed to factor it 
    {
      cout<<"\n***No prime factor found for composite "<<n<<" using trial division\n";
      cout<<n<<"fails primality test"<<endl;
      cout << "***Fatal situation, aborting!"<<endl;
      abort(); 
    }
  if(trace) cout<< "pdivs_trial() returns " << plist << endl;
  return plist;
}

// 

#ifdef USE_PARI_FACTORING
#include <eclib/parifact.h>

// bigint
// read_bigint_from_string(string intstr)
// {
//   istringstream intin(intstr.c_str());
//   bigint p;
//   intin>>p;
//   free(intstr);  // this string was malloc'ed by the pari library!
//   return p;
// }

int
is_prime(const bigint& n)
{
  ostringstream oss;
  oss<<n;
  return is_prime(oss.str().c_str());
}

vector<bigint>
read_vec_from_string(string vecstr)
{
  //  cout<<"parsing output string "<<vecstr<<endl;
  vector<bigint> plist;
  istringstream vecin(vecstr);
  bigint p;
  char c;
  vecin>>skipws>>c; // swallow leading "["
  while(c!=']')
    {
      vecin>>p;
      //      cout<<"Reading p="<<p<<" from string"<<endl;
      plist.push_back(p);
      vecin>>skipws>>c; // swallow ",", but it might turn out to be "]"
    }
  //  cout<<"Finished reading from string"<<endl;
  return plist;
}

vector<bigint>
factor(const bigint& n, int proof=1)
{
  ostringstream oss;
  oss<<n;
  vector<bigint> plist =  read_vec_from_string(factor(oss.str()));
  if(proof)
    for(vector<bigint>::const_iterator pi=plist.begin(); pi!=plist.end(); pi++)
      {
	bigint p =*pi;
	if(!is_prime(p))
	  {
	    cout<<"WARNING:  pari's factor() returned p="<<p
		<<" for which pari's isprime(p) FAILS!! Please report.";
	  }
      }    
  return plist;
}

vector<bigint> pdivs_pari(const bigint& number, int trace)
{
  vector<bigint> plist;
  bigint n=abs(number);
  if(n<2) return plist; // empty!

  // for small n just use trial division...

  if(n<TRIAL_DIV_BOUND) 
    {
      return pdivs_trial(number,trace); 
    }
  if(trace) cout<<"pdivs_pari factoring "<<n<<endl;

  // use prime base first...

  plist=pdivs_use_factorbase(n,the_extra_primes.the_primes);
  if(trace&&plist.size()>0) 
    cout<<"after using factorbase, have factors "<<plist
	<<", and cofactor = "<<n<< endl;
  if(n<2) 
    {
      sort(plist.begin(),plist.end());
      return plist;
    }

  // now use small primes...

  plist = vector_union(plist,pdivs_trial_div(n,TRIAL_DIV_PRIME_BOUND));
  if(trace&&plist.size()>0) 
    cout<<"after using trial division up to "<<TRIAL_DIV_PRIME_BOUND<<", have factors "<<plist
	<<", and cofactor = "<<n<< endl;

  if(n<2) 
    {
      sort(plist.begin(),plist.end());
      return plist;
    }

  // finally call the slave gp process via the parislave class...

  plist = vector_union(plist,::factor(n));
  
  sort(plist.begin(),plist.end());
  if(trace) cout<<"pdivs_pari returns "<<plist<<endl;
  return plist;
}

#endif

vector<bigint> pdivs(const bigint& number, int trace)
{
#ifdef USE_PARI_FACTORING
  return pdivs_pari(number);
#else

#ifdef USE_GP_FACTORING
  return pdivs_gp(number, trace);
#else

  return pdivs_trial(number, trace);
#endif
#endif
}


vector<bigint> posdivs(const bigint& number)
{
 const vector<bigint>& plist=pdivs(number);
 return posdivs(number, plist);
}

vector<bigint> posdivs(const bigint& number, const vector<bigint>& plist)
{
 int np = plist.size();
 int e, nu = 1; int nd=nu;
 vector<int> elist;
 elist.reserve(np);
 vector<bigint>::const_iterator pr = plist.begin();
 while(pr!=plist.end())
   {
     e=val(*pr++,number);
     elist.push_back(e);
     nd*=(1+e);
   }
 // cout<<"In posdivs (0) : elist = "<<elist<<endl;
 vector<bigint> dlist(1,BIGINT(1)); 
 // cout<<"In posdivs (1) : dlist = "<<dlist<<endl;
 dlist.resize(nd);
 // cout<<"In posdivs (2) : dlist = "<<dlist<<endl;
 pr=plist.begin();
 vector<int>::iterator ei = elist.begin();
 nd=nu;
 while(pr!=plist.end())
   {
     bigint p=*pr++;
     e=*ei++;
     for (int j=0; j<e; j++)
       for (int k=0; k<nd; k++)
	 {
         dlist[nd*(j+1)+k] = p*dlist[nd*j+k];
	 }
     nd*=(e+1);
   }
 // cout<<"In posdivs (3) : dlist = "<<dlist<<endl;
 return dlist;
}

vector<bigint> alldivs(const bigint& number)
{
 const vector<bigint>& plist=pdivs(number);
 return alldivs(number, plist);
}

vector<bigint> alldivs(const bigint& number, const vector<bigint>& plist)
{
 int np = plist.size();
 int e, nu = 2; int nd=nu;
 vector<int> elist;
 elist.reserve(np);
 vector<bigint>::const_iterator pr = plist.begin();
 while(pr!=plist.end())
   {
     e=val(*pr++,number);
     elist.push_back(e);
     nd*=(1+e);
   }
 vector<bigint> dlist(1,BIGINT(1));
 dlist.push_back(BIGINT(-1));
 dlist.resize(nd);
 nd=nu;
 pr=plist.begin();
 vector<int>::iterator ei = elist.begin();
 while(pr!=plist.end())
   {
     bigint p=*pr++;
     e=*ei++;
     for (int j=0; j<e; j++)
       for (int k=0; k<nd; k++)
         dlist[nd*(j+1)+k] = p*dlist[nd*j+k];
     nd*=(e+1);
   }
 return dlist;
}

vector<bigint> sqdivs(const bigint& number)
{
 const vector<bigint>& plist=pdivs(number);
 return sqdivs(number, plist);
}

vector<bigint> sqdivs(const bigint& number, const vector<bigint>& plist)
{
 int np = plist.size();
 int e, nu = 1; int nd=nu;
 vector<int> elist;
 elist.reserve(np);
 vector<bigint>::const_iterator pr = plist.begin();
 while(pr!=plist.end())
   {
     e=val(*pr++,number)/2;
     elist.push_back(e);
     nd*=(1+e);
   }
 vector<bigint> dlist(1,BIGINT(1)); 
 dlist.resize(nd);
 nd=nu;
 pr=plist.begin();
 vector<int>::iterator ei = elist.begin();
 while(pr!=plist.end())
   {
     bigint p=*pr++;
     e=*ei++;
     for (int j=0; j<e; j++)
       for (int k=0; k<nd; k++)
         dlist[nd*(j+1)+k] = p*dlist[nd*j+k];
     nd*=(e+1);
   }
 return dlist;
}

vector<bigint> sqfreedivs(const bigint& number)
{
 const vector<bigint>& plist=pdivs(number);
 return sqfreedivs(number, plist);
}

vector<bigint> sqfreedivs(const bigint& number, const vector<bigint>& plist)
{
 int np = plist.size();
 int e, nu = 1; int nd=nu;
 vector<int> elist;
 elist.reserve(np);
 vector<bigint>::const_iterator pr = plist.begin();
 while(pr!=plist.end())
   {
     e=1; pr++;
     elist.push_back(e);
     nd*=(1+e);
   }
 vector<bigint> dlist(1,BIGINT(1)); 
 dlist.resize(nd);
 nd=nu;
 pr=plist.begin();
 vector<int>::iterator ei=elist.begin();
 while(pr!=plist.end())
   {
     bigint p=*pr++;
     e=*ei++;
     for (int j=0; j<e; j++)
       for (int k=0; k<nd; k++)
         dlist[nd*(j+1)+k] = p*dlist[nd*j+k];
     nd*=(e+1);
   }
 return dlist;
}

void sqfdecomp(const bigint& a, bigint& a1, bigint& a2, vector<bigint>& plist, int trace_fact)
     // a must be non-zero, computes square-free a1 and a2>0 such that a=a1*a2^2
     // plist will hold prime factors of a1
{
  plist = pdivs(a, trace_fact);
  sqfdecomp(a,plist,a1,a2);
}

void sqfdecomp(const bigint& a, vector<bigint>& plist, bigint& a1, bigint& a2)
     // a must be non-zero, computes square-free a1 and a2>0 such that a=a1*a2^2
     // plist already holds prime factors of a
     // plist will hold prime factors of a1
{
  long j;
  vector<bigint> aplist;
  a1=1;  a2=1;
  vector<bigint>::const_iterator pr = plist.begin();
  while(pr!=plist.end())
    {
      bigint p = *pr++;
      long e = val(p,a);
      if(e==0) continue;
      if(e&1) {a1*=p; aplist.push_back(p);}
      e >>= 1;
      for(j=0; j<e; j++) a2*=p;
    }
  if(is_negative(a)) a1=-a1;
  plist=aplist;
}

// Given a, b, lem3 returns m1 etc so that a=c1^2*m1*m12, b=c2^2*m2*m12 
// with m1, m2, m12 pairwise coprime.   At all  times these equations hold, 
// and at each step the product m1*m2*m12 is decreased by a factor d, 
// so the process terminates when the coprimality condition is satisfied. 

void rusin_lem3(const bigint& a, const bigint& b,
	  bigint& m1, bigint& m2, bigint& m3, bigint& c1, bigint& c2)
{
  m1=a; m2=b; m3=1; c1=1; c2=1;
  if((a==0)||(b==0)) return;  // shouldn't happen
  bigint d;
  int check=3;
  while(check)
    {
      //      cout<<m1<<", "<<m2<<", "<<m3<<endl;
      d=abs(gcd(m1,m2));
      if(d>1) {check=3; m1/=d; m2/=d; m3*=d;}
      else check-=1;
      if(check)
	{
	  d=abs(gcd(m1,m3));
	  if(d>1) {check=3; m1/=d; m2*=d; m3/=d; c1*=d;}
	  else check-=1;
	}
      if(check)
	{
	  d=abs(gcd(m2,m3));
	  if(d>1) {check=3; m1*=d; m2/=d; m3/=d; c2*=d;}
	  else check-=1;
	}
    }
#ifdef CHECK_LEM3
  if( (a==sqr(c1)*m1*m3) && (b==sqr(c2)*m2*m3) 
      && (gcd(m1,m3)==1) && (gcd(m2,m3)==1) && (gcd(m1,m2)==1) )
    {;}
  else
    {
      cout<<"Error in rusin_lem3("<<a<<","<<b<<"), returning\n"
	  <<"c1="<<c1<<", c2="<<c2<<", m1="<<m1<<", m2="<<m2<<", m3="
	  <<m3<<endl;
    }
#endif
}

bigint chrem(const bigint& a1, const bigint& a2, 
	     const bigint& m1, const bigint& m2)
{
  bigint u,v,q,r,ans;
  bigint g = bezout(m1,m2,u,v);
  bigint l = m1*(m2/g);
  if(::divides(a2-a1,g,q,r))
    {
      ans= (a1+u*m1*q)%l;
#ifdef CHECK_CHREM
      if(div(m1,ans-a1)&&div(m2,ans-a2)) {;}
      else cout<<"Error in chrem("<<a1<<","<<a2<<","<<m1<<","<<m2
	       <<"): returning wrong value "<<ans<<endl;
#endif
      return ans;
    }
  cout<<"No solution in chrem to "<<a1<<" mod "<<m1
      <<", "<<a2<<" mod "<<m2<<endl; 
  ans = 0;
  return ans;
}


//
// general functions
//

#if defined(NTL_ALL)
bigint Iround(bigfloat x) {return RoundToZZ(x);}
bigint Ifloor(bigfloat x) {return FloorToZZ(x);}
bigint Iceil (bigfloat x) {return CeilToZZ(x);}
#else
bigint Iceil(double x)  {return -Ifloor(-x);}
bigint Iround(double x) {return (x>0?Ifloor(x+0.5):Iceil(x-0.5));}

#define BIG 100000   // not used in new version

bigint Ifloor(double x)  // bigfloats are just doubles in this case
{
  bigint ans; ans =0;
  int s=1;
  if(x==0.0) return ans;
  if(x<0) {x=-x; s=-1;}
//#define DEBUG_IFLOOR
 int e;
 double y = frexp(x,&e);
#ifdef DEBUG_IFLOOR
 cout<<"x="<<x<<", e="<<e<<endl;
#endif
 if(e>53)  // precision loss -- issue warning
   {
     bigint err; err=1; lshift(err,e-53,err); err-=1;
#ifdef DEBUG_IFLOOR
     cout<<"Warning in Ifloor("<<s*x<<"): possible precision loss in "
         <<"converting to bigint; maximium rounding error "
	 << "2^"<<(e-53)<<"-1 = "<<err<<endl;
#endif
   }
 while((x>0)&&(e>0))   // This was >=0 in double->Integer original version
   {
#ifdef DEBUG_IFLOOR
     cout<<"x="<<x<<", e="<<e;
#endif
     setbit(ans,e-1);
#ifdef DEBUG_IFLOOR
     cout<<", ans="<<ans;
#endif
     x=fmod(x,ldexp((double)1,e-1)); 
#ifdef DEBUG_IFLOOR
     cout<<", new x="<<x<<endl;
#endif
     y = frexp(x,&e);
   }
 if((x>0)&&(s<0)) ++ans;        // adjust if fractional part non-zero
 if(s<0) ans=-ans;  // adjust if negative
 return ans; 
}

#endif

bigint mod(const bigint& a, const bigint& b)
{
  bigint bb(abs(b));
  bigint c=a%bb;
  bigint c2=c<<1;
  if (c2>  bb) return c-bb; 
  if (c2<=-bb) return c+bb;
  return c;
}

long mod(const bigint& a, long b)
{
  long bb=abs(b);  
  long c = bigint_mod_long(a,bb); 
  long c2=c<<1;
  if (c2>  bb) return c-bb; 
  if (c2<=-bb) return c+bb;
  return c;
}

bigint posmod(const bigint& a, const bigint& b)
{
  bigint bb(abs(b));
  bigint c=a%bb;
  if (c<0) return c+bb;
  return c;
}

long posmod(const bigint& a, long b)
{
  long bb = abs(b);
  long c = bigint_mod_long(a,bb); 
  if (c<0) return c+bb;
  return c;
}

int divide_exact(const bigint& aa, const bigint& bb, bigint& c)
     // c = a/b with error message if remainder is non-zero
{
  bigint a(aa), b(bb), r;  // BECAUSE DIVIDE() WAS CHANGING A!!!!
  //  cout<<"In divide_exact with a = " << a << ", b = " << b << endl;
  int ok = ::divides(a,b,c,r);
  //  cout<<"After divides(),  a = " << a << ", b = " << b << ", q = " << c << ", r = " << r << endl;
  if(!ok)
    {
      cout<<"Error in dividing "<<a<<" by "<<b<<": not exact, remainder = "<<r<<endl;
    }
  return ok;
}

long divide_out(bigint& a, const bigint& d)
// divides a by d as many times as possible returning number of times (but none if a=0!)
{
  if(is_zero(a)) return 0;
  bigint q, r;
  long count=0;
  while(::divides(a,d,q,r)) {a=q; count++;}
  return count;
}

long divide_out(bigint& a, long d)
// divides a by d as many times as possible returning number of times (but none if a=0!)
{
  if(is_zero(a)) return 0;
  bigint q;
  long r, count=0;
  while(::divides(a,d,q,r)) {a=q; count++;}
  return count;
}

#define VALUATION_OF_ZERO 99999

long val(const bigint& factor, const bigint& number)
{
 if (is_zero(number)) return VALUATION_OF_ZERO;
 bigint f = abs(factor);
 if ((f<2)) return VALUATION_OF_ZERO;  // error condition! N.B. This value 
 bigint n = number;                        // must be unlikely and POSITIVE.
 long e = divide_out(n,f);
 return e;
}

long val(long factor, const bigint& number)
{
 if (is_zero(number)) return VALUATION_OF_ZERO;
 long f = abs(factor);
 if ((f<2)) return VALUATION_OF_ZERO;  // error condition! N.B. This value 
 bigint n = number;                    // must be unlikely and POSITIVE.
 long e = divide_out(n,f);
 return e;
}

int div(const bigint& factor, const bigint& number) 
{ if (is_zero(factor)) return is_zero(number);
  else return (is_zero(number%factor));
}

int div(long factor, const bigint& number) 
{ if (factor==0) return is_zero(number);
  else return is_zero(number%factor);
}

long bezout(const bigint& aa, long bb, bigint& xx, bigint& yy)
{bigint a,b,c,x,oldx,newx,y,oldy,newy,q;
 oldx = 1; oldy = 0; x = 0; y = 1; a = aa; b = bb;
 while (sign(b)!=0)
 { q = a/b; 
   c    = a    - q*b; a    = b; b = c;
   newx = oldx - q*x; oldx = x; x = newx;
   newy = oldy - q*y; oldy = y; y = newy;
  }
 if (sign(a)<0) {xx=-oldx; yy=-oldy; return -I2long(a);}
 else     {xx= oldx; yy= oldy; return  I2long(a);}
}

 
bigint invmod(const bigint& a, const bigint& p)
{bigint g,x,y;
 g=bezout(a,p,x,y);
 if (!is_one(g))
   {
     x=0;
     cout << "invmod called with " << a << " and " 
	  << p << " -- not coprime!\n";
     abort();
   }
 return x;
}

long invmod(const bigint& a, long p)
{bigint g,x,y;
 g=bezout(a,p,x,y);
 if (!is_one(g)) 
   {
     x=0;
     cout << "invmod called with " << a << " and " 
	  << p << " -- not coprime!\n";
     abort();
   }
 return I2long(x);
}


int m1pow(const bigint& a)
{ return (odd(a) ?  -1 : +1);
}
 
static int table8[8] = {0,1,0,-1,0,-1,0,1};
static int table4[4] = {0,1,0,-1};
static int table44[4][4] = {{0,0,0,0}, {0,1,0,1}, {0,0,0,0}, {0,1,0,-1}};
  
int chi2(const bigint& a)
{ 
  return table8[posmod(a,8)];
}
 
int chi4(const bigint& a)
{ 
  return table4[posmod(a,4)];
} 


int hilbert2(const bigint& a, const bigint& b)
{ 
  return table44[posmod(a,4)][posmod(b,4)];
}

int hilbert2(const bigint& a, long b)
{ 
  return table44[posmod(a,4)][posmod(b,4)];
}

int hilbert2(long a, const bigint& b)
{ 
  return table44[posmod(a,4)][posmod(b,4)];
}


static int leg(const bigint& a, const bigint& b) 
//nb this function is not intended for public use!
{ 
  bigint aa = a;
  bigint bb = b;
//  cout<<"leg("<<a<<","<<b<<") = "<<flush;
  bigint c;
  int ans = 1;
  while (bb>1) 
  {     aa = aa % bb;
        if (sign(aa)<0)       {aa=-aa; ans*=chi4(bb);}
        while (is_zero(aa%4)) {aa/=4;}
        if (is_zero(aa%2))    {aa/=2; ans *= chi2(bb);}
        ans*=hilbert2(aa,bb);
        c=bb; bb=aa; aa=c;
  }
//  cout << ans << endl;
  return ans;
}
 
static int leg(const long& a, const long& b) 
//nb this function is not intended for public use!
{ long aa = a, bb = b, c;
//  cout<<"leg("<<a<<","<<b<<") = "<<flush;
  int ans = 1;
  while (bb>1) 
  {     aa = aa % bb;
        if (aa<0)       {aa=-aa; ans*=chi4(bb);}
        while (!(aa&3)) {aa/=4;}
        if    (!(aa&1)) {aa/=2; ans *= chi2(bb);}
        ans*=hilbert2(aa,bb);
        c=bb; bb=aa; aa=c;
  }
//  cout << ans << endl;
  return ans;
}
 

int legendre(const bigint& a, const bigint& b)
{ 
  return ((is_one(gcd(a,b)) && (odd(b))) ? leg(a,b) : 0);
}

int legendre(const bigint& aa, long b)
{ 
  if(!(b%2)) return 0;  // b was even
  long a=I2long(aa%BIGINT(b));
  long g=::gcd(a,b);
  if(g!=1)  return 0;
  return leg(a,b);
}

int kronecker(const bigint& x, const bigint& y)
{ 
  long r; bigint x1=x,y1=y,z;
  int s=1;

  if (is_zero(y1)) return (abs(x1)==1);

  if (is_negative(y)) 
    {
      y1= -y1; 
      if (is_negative(x1)) s = -1;
    }

  r=divide_out(y1,2);
  if (r)
  {
    if (odd(x1))
    {
      if (odd(r) && labs(posmod(x1,8)-4) == 1) s = -s;
    }
    else return 0;
  }
  x1=posmod(x1,y1);

  while (!is_zero(x1))
  {
    r=divide_out(x1,2);
    if (odd(r) && labs(posmod(y1,8)-4) == 1) s= -s;
    if ((posmod(y1,4)==3) && (posmod(x1,4)==3)) s= -s;
    z=y1%x1; y1=x1; x1=z;
  }
  return (y1==1)? s: 0;
}
 
int kronecker(const bigint& d, long n)
{ 
  return kronecker(mod(d,n),n);
}
 
long gcd(const bigint& a, long b)
{
  bigint bb = BIGINT(b);
  return I2long(gcd( a, bb )); 
}

int modrat(const bigint& n, const bigint& m, const bigint& lim, 
           /* return values: */ bigint& a, bigint& b)
{
 bigint q,r,t,qq,rr,tt,quot;
 q=m; r=posmod(n,m); qq=0; rr=1; t=0; tt=0; a=r; b=1; 
 if (r<lim) 
   { 
//   cout<<" = "<<a<<"/"<<b<<"\n";
     return 1;
   }
 while (sign(r)!=0) 
 { 
   ::divides(q,r,quot,t);
   q = r;   r = t;
   tt = qq-quot*rr; qq = rr; rr = tt;
   if (r<lim)
     {
       if (abs(rr)<lim) {a=r; b=rr; return 1;}
       cout << "\nmodrat error: no reconstruction for " << n << " mod " << m << "\n";
       return 0;
     }
 }
 cout << "\nmodrat error: common factor with " << n << " mod " << m << "\n";
 return 0;
}


// root-finding functions for monic integer cubics and quartics
//
// With NTL we factor the polynomial in Z[X] and pick out degree 1 factors

vector<bigint> Introotscubic(const bigint& a, const bigint& b, const bigint& c)
{
  ZZX f; vec_pair_ZZX_long factors; bigint cont;
  SetCoeff(f,3);   // sets it to 1
  SetCoeff(f,2,a);
  SetCoeff(f,1,b);
  SetCoeff(f,0,c);
//cout<<"About to factor the monic cubic "<<f<<endl;
  factor(cont,factors,f);
//cout<<"Factorization: "<<factors<<endl;
  vector<bigint> iroots;
  for(int i=0; i<factors.length(); i++)
    if(deg(factors[i].a)==1) // a degree 1 factor
      iroots.push_back(-ConstTerm(factors[i].a));
  return iroots;   
}

vector<bigint> Introotsquartic(const bigint& a, const bigint& b, const bigint& c, const bigint& d)
{
  ZZX f; vec_pair_ZZX_long factors; bigint cont;
  SetCoeff(f,4);   // sets it to 1
  SetCoeff(f,3,a);
  SetCoeff(f,2,b);
  SetCoeff(f,1,c);
  SetCoeff(f,0,d);
  //    cout<<"About to factor the monic quartic "<<f<<endl;
  factor(cont,factors,f);
  //    cout<<"Factorization: "<<factors<<endl;
  vector<bigint> iroots;
  for(int i=0; i<factors.length(); i++)
    if(deg(factors[i].a)==1) // a degree 1 factor
      iroots.push_back(-ConstTerm(factors[i].a));
  return iroots;   
}


// find the number of roots of X^3 + bX^2 + cX + d = 0 (mod p)
// roots are put in r which should be allocated of size 3
int nrootscubic(long b, long c, long d, long p, long* roots)
{
  long r, nr=0;
  int found = 0;
  for (r = 0; (r<p)&&!found ; r++)
    {
      found = (((((r+b)*r+c)*r+d)%p)==0 );
    }
  if (!found) return 0;

  r--;  // because it was incremented one extra time in the loop!
  roots[nr++]=r;
  long e = b + r;
  long f = c + e*r;
  long e0 = (-e*((p+1)/2))%p;
  long dd = posmod(e0*e0-f,p);
  if(legendre(dd,p)==1) 
    { // stupid search is good enough since we only use this for very small p!
      for (r = 1; r<p ; r++)  
	{
	  if((r*r-dd)%p==0) break;
	}
      roots[nr++] = (e0+r)%p;
      roots[nr++] = (e0-r)%p;
    }
  return nr;
}

void ratapprox(bigfloat x, bigint& a, bigint& b)
{
  bigint c, x0, x1, x2, y0, y1, y2;
  bigfloat rc, xx, diff, eps = to_bigfloat(1.0e-6);
  xx = x; x0 = 0; x1 = 1; y0 = 1; y1 = 0;
  diff = 1; c=x2=y2=0;
  while (!is_approx_zero(diff)) // ( diff > eps )
    { c = Iround( xx ); rc=I2bigfloat(c);
      x2 = x0 + c*x1; x0 = x1; x1 = x2;
      y2 = y0 + c*y1; y0 = y1; y1 = y2;
      diff = abs( x - I2bigfloat(x2)/I2bigfloat(y2) );
      //      cout<<"x2 = "<<x2<<",\ty2 = "<<y2<<",\tdiff = "<<diff<<endl;
      if ( abs(xx - rc) < eps ) diff = 0;
      else xx = 1/(xx - rc);
    }
  a = x2; b = y2;
  if ( b < 0 )
    {::negate(a); ::negate(b); }
}

void ratapprox(bigfloat x, long& a, long& b)
{
  long c, x0, x1, x2, y0, y1, y2;
  bigfloat xx, diff, eps = to_bigfloat(1.0e-7);
  xx = x; x0 = 0; x1 = 1; y0 = 1; y1 = 0;
  diff = 1; c=x2=y2=0;
  while ( diff > eps )
    { c = longify( xx + ( (xx>0) ? 0.5 : -0.5 ) ); // ie round(xx)
      x2 = x0 + c*x1; x0 = x1; x1 = x2;
      y2 = y0 + c*y1; y0 = y1; y1 = y2;
      diff = abs( x - (to_bigfloat(x2)/to_bigfloat(y2)) );
      if ( abs(xx - c) < eps ) diff = 0;
      else xx = 1/(xx - c);
    }
  a = x2; b = y2;
  if ( b < 0 )    {a=-a; b=-b; }
  //  if ( x < 0 ) {a=-a;}
}


// end of file marith.cc