File: mat.cc

package info (click to toggle)
eclib 2014-09-21-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,216 kB
  • ctags: 4,287
  • sloc: cpp: 45,827; makefile: 222; sh: 108
file content (1849 lines) | stat: -rw-r--r-- 42,695 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
// mat.cc: implementation of integer matrix classes
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
// 
// This file is part of the eclib package.
// 
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
// 
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// 
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
// 
//////////////////////////////////////////////////////////////////////////
 
// Only to be included by matrix.cc

#define LONGLONG scalar   // long longs caused memory alocation bugs
                        // N.B. if = long long, uncomment abs() below

// Definitions of member operators and functions:

mat::mat(long nr, long nc)
{
 nro=nr;
 nco=nc;
 long n=nr*nc;
 entries=new scalar[n];  
 if (!entries) {cout<<"Out of memory in mat constructor!\n"; abort();}
 scalar* m1=entries;
 while(n--) *m1++ = 0;
}

mat::mat(const mat& m)
{
 nro=m.nro;
 nco=m.nco;
 long n = nro*nco;
 entries=new scalar[n]; 
 if (!entries) {cout<<"Out of memory in mat constructor!\n"; abort();}
 scalar *m1=entries, *m2=m.entries;
 while(n--) *m1++ = *m2++;
}

mat::~mat()
{
  delete[] entries;
}

void mat::init(long nr, long nc) // assigns to zero mat of given size;
{                                 // with defaults (0,0) releases all space.
 long n = nr*nc;
 if (nro*nco!=n) // delete old space; 
   {            // replace with new.
     delete[] entries;
     entries = new scalar[n]; 
     if (!entries) {cout<<"Out of memory!\n"; abort();}
   }
 nro = nr;
 nco = nc;
 scalar *m1=entries;
 while(n--) *m1++ = 0;
}

scalar& mat::operator()(long i, long j)  const   // returns ref to (i,j) entry
{
 if ((0<i) && (i<=nro) && (0<j) && (j<=nco)) 
   return entries[(i-1)*nco+(j-1)];
 else 
   {
     cout << "Bad indices ("<<i<<","<<j<<") in mat::sub (nro="<<nro
	  <<", nco="<<nco<<"\n"; 
     abort();
     return entries[0];
   }
}


mat mat::slice(long r1,long r2,long c1,long c2) const
{
  if(c1<0) // abbreviated form with firsts=1
    {
      c2=r2-1; r2=r1-1; r1=c1=0;
    }
  else 
    {
      r1--; c1--; r2--; c2--;
    }
 long n=r2-r1+1,c=c2-c1+1; long cc=c;
 mat ans(n,cc);
 scalar* ap=ans.entries, *mp=entries+r1*nco+c1;
 while(n--)
   {
     c=cc;
     while(c--) *ap++ = *mp++; 
     mp+=(nco-cc);
   }
 return ans;
}

mat& mat::operator=(const mat& m)
{
 if (this==&m) return *this;
 long n = m.nro*m.nco;
 if (nro*nco!=n) // delete old space; 
   {            // replace with new.
     delete[] entries;
     entries = new scalar[n]; 
     if (!entries) {cout<<"Out of memory in mat assignment!\n"; abort();}
   }
 nro = m.nro;
 nco = m.nco;
 scalar *m1=entries, *m2=m.entries;
 while(n--) *m1++ = *m2++;
 return *this;
}

scalar mat::sub(long i, long j) const
{
 if ((0<i) && (i<=nro) && (0<j) && (j<=nco)) return entries[(i-1)*nco+(j-1)];
  else 
    {
      cout << "Bad indices ("<<i<<","<<j<<") in mat::sub (nro="<<nro
	   <<", nco="<<nco<<"\n"; 
      abort();
      return 0;
    }
}

void mat::set(long i, long j, scalar x)
{
 if ((0<i) && (i<=nro) && (0<j) && (j<=nco)) entries[(i-1)*nco+(j-1)] = x;
 else 
   {
     cout << "Bad indices ("<<i<<","<<j<<") in mat::set (nro="<<nro
	  <<", nco="<<nco<<"\n";
     abort();
   }
}

void mat::add(long i, long j, scalar x)
{
 if ((0<i) && (i<=nro) && (0<j) && (j<=nco)) entries[(i-1)*nco+(j-1)] += x;
 else 
   {
     cout << "Bad indices ("<<i<<","<<j<<") in mat::add (nro="<<nro
	  <<", nco="<<nco<<"\n";
     abort();
   }
}

void mat::setrow(long i, const vec& v)
{
 if ((0<i) && (i<=nro) && (dim(v)==nco))
  {
    scalar * rowi = entries + (i-1)*nco;
    scalar * vec = v.entries;
    long c=nco; 
    while(c--) *rowi++ = *vec++;
  }
 else 
   {
     cout << "Bad indices in mat::setrow (i="<<i<<", nro="<<nro
	  <<", dim(v)="<<dim(v)<<", nco="<<nco<<")\n";
     abort();
   }
}

void mat::setcol(long j, const vec& v)
{
 if ((0<j) && (j<=nco) && (dim(v)==nro))
  {
   scalar * colj = entries+(j-1);
   scalar * vec = v.entries;
   long n=nro;
   while(n--) {*colj = *vec++; colj+=nco;}
 }
 else
   {
     cout << "Bad indices in mat::setcol (j="<<j<<", nco="<<nco
	  <<", dim(v)="<<dim(v)<<", nco="<<nco<<")\n";
     abort();
   }
}

vec mat::row(long i) const
{
 vec mi(nco);
 long j=nco; scalar *entriesij=entries+(i-1)*nco, *v=mi.entries;
 if ((0<i) && (i<=nro)) 
   while(j--) *v++ = *entriesij++;
 else 
   {
     cout << "Bad row number "<<i<<" in function mat::row (nro="<<nro<<")\n";
     abort();
   }
 return mi;
}

vec mat::col(long j) const
{
 vec mj(nro);
 long i=nro; scalar *entriesij=entries+(j-1), *v=mj.entries;
 if ((0<j) && (j<=nco))
   while(i--) {*v++ = *entriesij; entriesij+=nco;}
 else 
   {
     cout << "Bad column number "<<j<<" in function mat::col (nco="<<nco<<")\n";
     abort();
   }
 return mj;
}

void mat::swaprows(long r1, long r2)
{
  if ((0<r1)&&(0<r2)&&(r1<=nro)&&(r2<=nro))
    {
      scalar *mr1 = entries + (r1-1)*nco;
      scalar *mr2 = entries + (r2-1)*nco;
      long nc=nco, a;
      while(nc--) {a = *mr1; *mr1++ = *mr2; *mr2++ = a; }
    }
  else 
    {
      cout << "Bad row numbers " << r1 << "," << r2 << " in swaprow (nro="<<nro<<")\n";
      abort();
    }
}

void mat::multrow(long r, scalar scal)
{
  if ((0<r)&&(r<=nro))
    {
      long nc=nco; scalar *mij = entries+(r-1)*nco;
      while(nc--) (*mij++) *= scal;
    }
  else 
    {
      cout << "Bad row number " << r << " in multrow (nro="<<nro<<")\n";
      abort();
    }
}

void mat::divrow(long r, scalar scal)
{
  if ((0<r)&&(r<=nro))
    {
      long nc=nco; scalar *mij = entries+(r-1)*nco;
      while(nc--) (*mij++) /= scal;
    }
  else 
    {
      cout << "Bad row number " << r << " in divrow (nro="<<nro<<")\n";
      abort();
    }
}

void mat::clearrow(long r)
{
  if ((0<r)&&(r<=nro))
    {
      scalar g=0; long nc=nco; scalar * mij = entries+(r-1)*nco;
      while((nc--)&&(g!=1)) g = gcd(g,(*mij++));
      if (g>1)
	{
	  nc=nco; mij = entries+(r-1)*nco;
	  while(nc--) (*mij++) /= g;
	}
    }
  else 
    {
      cout << "Bad row number " << r << " in clearrow (nro="<<nro<<")\n";
      abort();
    }
}

mat& mat::operator+=(const mat& entries2)
{
  if ((nro==entries2.nro) && (nco=entries2.nco)) 
    {
      long n=nro*nco; scalar *m1=entries, *m2=entries2.entries;
      while(n--) (*m1++) += (*m2++);
    }
  else 
    {
      cout << "Incompatible matrices in operator +=\n";
      abort();
    }
  return *this;
}

mat& mat::operator-=(const mat& entries2)
{
  if ((nro==entries2.nro) && (nco=entries2.nco)) 
    {
      long n=nro*nco; scalar *m1=entries, *m2=entries2.entries;
      while(n--) (*m1++) -= (*m2++);
    }
  else 
    {
      cout << "Incompatible matrices in operator -=\n";
      abort();
    }
  return *this;
}

mat& mat::operator*=(scalar scal)
{
  scalar* mij = entries; long n=nco*nro;
  while(n--) (*mij++) *= scal;
  return *this;
}

mat& mat::operator/=(scalar scal)
{
  scalar* mij = entries; long n=nco*nro;
  while(n--) (*mij++) /= scal;
  return *this;
}


// Definitions of non-member, friend operators and functions

long nrows(const mat& m) {return m.nro;}
long ncols(const mat& m) {return m.nco;}

// add/sub row i of mat to v (implemented in mat.cc)
void add_row_to_vec(vec& v, const mat& m, long i)
{
  scalar* vi=v.entries, *mij=m.entries+(i-1)*m.nco; long j=v.d;
  while(j--)(*vi++)+=(*mij++);
}

void sub_row_to_vec(vec& v, const mat& m, long i)
{
  scalar* vi=v.entries, *mij=m.entries+(i-1)*m.nco; long j=v.d;
  while(j--)(*vi++)-=(*mij++);
}

mat operator*(const mat& m1, const mat& m2)
{
 long j,k, m=m1.nro, n=m1.nco, p=m2.nco;
 mat m3(m,p); 
 scalar *a=m1.entries, *b=m2.entries, *c=m3.entries, *bp, *cp;
 if (n==m2.nro)  // algorithm from Dr Dobb's Journal August 1993
   {
     while(m--)
       {
	 bp=b; k=n;
	 while(k--)
	   {
	     cp=c; j=p;
	     while(j--)
	       {
		 *cp++ += *a * *bp++;
	       }
	     a++;
	   }
	 c += p;
       }
   }
 else 
   {
     cout << "Incompatible sizes in mat product\n";
     abort();
   }
 return m3;
}

int operator==(const mat& m1, const mat& m2)
{
   long nr=m1.nro, nc=m1.nco;
   int equal = ((nr==m2.nro) && (nc==m2.nco)); 
   if(!equal) return 0;
   scalar *m1ij=m1.entries, *m2ij=m2.entries; long n=nr*nc;
   while((n--)&&equal) equal=((*m1ij++)==(*m2ij++));
   return equal;
}

void mat::output(ostream& s) const
{
  scalar* mij=entries;
  s << "\n[";
  long nc,nr=nro;
  while(nr--)
    {
      nc=nco;
      s<<"[";
      while(nc--) {s<<(*mij++); if(nc) s<<",";}
      s<<"]"; if(nr) s<<",\n";
    }
  s << "]\n";
}

void mat::output_pari(ostream& s) const
{
  scalar* mij=entries;
  s << "\n[";
  long nc,nr=nro;
  while(nr--)
    {
      nc=nco;
      while(nc--) {s<<(*mij++); if(nc) s<<",";}
      if(nr) s<<";";
    }
  s << "]\n";
}

long ndigits(scalar a) 
{
  static double log10 = log((double)10);
  if(a==0) return 1;
  long s=0;
  if(a<0) {a=-a; s=1;}
  return s+(long)floor(log((double)a)/log10)+1;
}

void mat::output_pretty(ostream& s) const
{
  long i,j; scalar* mij;
  long nc=nco,nr=nro;
  scalar ma, mi;
  int* colwidths = new int[nc];
  for(j=0; j<nco; j++)
    {
      ma=mi=0;
      mij = entries+j;
      for(i=0, mij=entries+j; i<nro; i++, mij+=nc)
	{
	  if (*mij>ma) ma=*mij;
	  else if (*mij<mi) mi=*mij;
	}
      ma=ndigits(ma);
      mi=ndigits(mi);
      if(mi>ma)ma=mi;
      colwidths[j]=ma;
    }
  mij=entries;
  while(nr--)
    {
      s << "[";
      nc=nco;  j=0;
      while(nc--) 
	{
	  s.width(colwidths[j]); s<<(*mij);
	  //	  s.form("%*d",colwidths[j],*mij); 
	  if(nc) s<<" ";
	  mij++; j++; 
	}
      s<<"]\n";
    }
  delete[]colwidths;
}

//binary file I/O

// Not supported by libstdc++-v3, it seems

//#ifdef THIS_USED_TO_WORK_WITH_GCC_2_95
#if(1)

void mat::dump_to_file(string filename) const
{
  ofstream fout(filename.c_str(),ofstream::binary);
  fout.write((char*)&nro,sizeof(nro));
  fout.write((char*)&nco,sizeof(nco));
  fout.write((char*)entries,nro*nco*sizeof(scalar));
  fout.close();
}

void mat::read_from_file(string filename)
{
  ifstream fin(filename.c_str());
  fin.read((char*)&nro,sizeof(nro));
  fin.read((char*)&nco,sizeof(nco));
  delete[] entries;
  entries = new scalar[nro*nco]; 
  fin.read((char*)entries,nro*nco*sizeof(scalar));
  fin.close();
}

#else

void mat::dump_to_file(string filename) const
{
  ofstream fout(filename.c_str());
  fout<<nro<<" "<<nco<<" ";
  long size=nro*nco; 
  scalar* m=entries;
  while(size--) fout<<*m++<<" ";
  fout.close();
}

void mat::read_from_file(string filename)
{
  ifstream fin(filename.c_str());
  fin>>nro>>nco;
  long size=nro*nco; 
  delete[] entries;
  entries = new scalar[size]; 
  scalar* m=entries;
  while(size--) fin>>*m++;
  fin.close();
}

#endif

istream& operator>>(istream& s, mat& m)
{
 long n=m.nro*m.nco;
 scalar* mij=m.entries;
 while(n--) s >> (*mij++);
 return s;
}

mat colcat(const mat& a, const mat& b)
{
 long nc, nr = a.nro, nca = a.nco, ncb = b.nco;
 mat ans(nr,nca+ncb);
 scalar *ansij=ans.entries, *aij=a.entries, *bij=b.entries;
 if (nr==b.nro)
   while(nr--)
     {
       nc=nca; while(nc--) *ansij++ = *aij++;
       nc=ncb; while(nc--) *ansij++ = *bij++;
     }
 else 
   {
     cout << "colcat: matrices have different number of rows!" << "\n";
     abort();
   }
 return ans;
}

mat rowcat(const mat& a, const mat& b)
{
 long n, nra = a.nro, nc = a.nco, nrb = b.nro;
 mat ans(nra+nrb,nc);
 scalar *ansij=ans.entries, *aij=a.entries, *bij=b.entries;
 if (nc==b.nco)
 {
   n = nra*nc; while(n--) *ansij++ = *aij++;
   n = nrb*nc; while(n--) *ansij++ = *bij++;
 }
 else 
   {
     cout << "rowcat: matrices have different number of columns!" << "\n";
     abort();
   }
 return ans;
}

mat directsum(const mat& a, const mat& b)
{
  long n,c, nra=a.nro, nca=a.nco, nrb=b.nro, ncb=b.nco;
  mat ans(nra+nrb,nca+ncb);
  scalar* ansij=ans.entries, *aij=a.entries, *bij=b.entries;
  n=nra; 
  while(n--) 
    {
      c=nca; while(c--) *ansij++ = *aij++;
      c=ncb; while(c--) *ansij++ = 0;
    }
  n=nrb; 
  while(n--) 
    {
      c=nca; while(c--) *ansij++ = 0;
      c=ncb; while(c--) *ansij++ = *bij++;
    }
  return ans;
}

void elimrows(mat& m, long r1, long r2, long pos)   //plain elimination, no clearing
{
 long nc=m.nco;
 scalar *mr1 = m.entries + (r1-1)*nc,
      *mr2 = m.entries + (r2-1)*nc;
 scalar p = mr1[pos-1], q=mr2[pos-1];
 while(nc--)
   {
     (*mr2)= (p*(*mr2))-(q*(*mr1));
     mr1++; mr2++;
   }
}

void elimrows1(mat& m, long r1, long r2, long pos)      //elimination + clearing
{
  elimrows(m,r1,r2,pos);
  m.clearrow(r2);
}

void elimrows2(mat& m, long r1, long r2, long pos, scalar last) //elimination + divide by last pivot
{
  elimrows(m,r1,r2,pos);
  m.divrow(r2,last);
}

// Definition of non-friend functions

mat operator+(const mat& m)
{
        return m;
}

mat operator-(const mat& m)
{
        return (-1)*m;
}

mat operator+(const mat& m1, const mat& m2)
{
  mat ans(m1); ans+=m2;  return ans;
}

mat operator-(const mat& m1, const mat& m2) 
{
  mat ans(m1); ans-=m2;  return ans;
}

mat operator*(scalar scal, const mat& m)
{
  mat ans(m); ans*=scal;  return ans;
}

mat operator/(const mat& m, scalar scal)
{
  mat ans(m); ans/=scal;  return ans;
}

int operator!=(const mat& m1, const mat& m2)
{
        return !(m1==m2);
}

vec operator*(const mat& m, const vec& v)
{
 long r=m.nro, c=m.nco; scalar *mp,*vp,*wp;
 vec w(r);
 if (c==v.d)
   {
     mp=m.entries; wp=w.entries;
     while(r--)
       {
	 vp=v.entries; c=m.nco;
	 while(c--) *wp += (*mp++)*(*vp++);
	 wp++;
       }
   }
 else 
   {
     cout << "Incompatible sizes in *(mat,vec)\n";
     abort();
   }
 return w;
}

mat idmat(scalar n)
{
 mat ans(n,n);
 long i;
 for (i=1; i<=n; i++) ans.set(i,i,1);
 return ans;
}

mat transpose(const mat& m)
{
 long i,j,nr,nc;
 nr=ncols(m); nc=nrows(m);
 mat ans(nr, nc);
 for (i=1; i<=nr; i++)
  for (j=1; j<=nc; j++)
   ans.set(i,j,  m(j,i));
 return ans;
}

mat submat(const mat& m, const vec& iv, const vec& jv)
{long i,j;
 long nr = dim(iv);
 long nc = dim(jv);
 mat ans(nr,nc);
 for (i=1; i<=nr; i++)
  for (j=1; j<=nc; j++)
   ans.set(i,j, m(iv[i],jv[j]));
 return ans;
}

mat echelon(const mat& entries, vec& pcols, vec& npcols,
               long& rk, long& ny, scalar& d, int method)
{
  switch (method)
    {case 0: return echelon0(entries,pcols,npcols,rk,ny,d);
     case 1: return echelonl(entries,pcols,npcols,rk,ny,d);
     case 2: return echelonp(entries,pcols,npcols,rk,ny,d,DEFAULT_MODULUS);
     default: return echelon0(entries,pcols,npcols,rk,ny,d);
    }        
}

//#define DEBUG_ECH_0

//N.B. if(q==0) the following multiplies row r2 by p, which looks
//redundant.  However, it is important to keep this in as in echelon0
//we must guarentee divisibility by "lastpivot".  We do not want to keep 
//computing contents of rows as this is slower.
// Used in forward elimination in echelon0

void conservative_elim(scalar *m, long nc, long r1, long r2, long pos)
{scalar *mr1=m+r1*nc, *mr2=m+r2*nc;
 scalar p = mr1[pos], q = mr2[pos];
 if(p==1)
   if(q==0) {;} // nothing to do
   else
     if(q==1)
       while(nc--) 
	 {
	   (*mr2)-=(*mr1); 
	   mr1++; mr2++; 
	 } 
     else // general q
       while(nc--) 
	 {
	   (*mr2)-=(q*(*mr1)); 
	   mr1++; mr2++; 
	 } 
 else  // p!=1; we cannot assume p>0
   if(q==0) // must still multiply r2 by p
     while(nc--) 
       {
	 (*mr2)*=p; 
	 mr2++; 
       } 
   else
     if(q==1)
       while(nc--) 
	 {
	   (*mr2)=(p*(*mr2))-(*mr1); 
	   mr1++; mr2++; 
	 } 
     else // general q
       while(nc--) 
	 {
	   (*mr2)=(p*(*mr2))-(q*(*mr1)); 
	   mr1++; mr2++; 
	 } 
}

// This version does not multiply row r1 by p unnecessarily 
// (used in back substitution)

void elim(scalar *m, long nc, long r1, long r2, long pos)
{scalar *mr1=m+r1*nc, *mr2=m+r2*nc;
 scalar p = mr1[pos], q = mr2[pos];
#ifdef DEBUG_ECH_0
long n;
cout<<"In elim with p = "<<p<<" and q = " << q << endl;
cout<<"row 1: "; for(n=0; n<nc; n++) cout<<mr1[n]<<",";  cout<<endl;
cout<<"row 2: "; for(n=0; n<nc; n++) cout<<mr2[n]<<",";  cout<<endl;
#endif
 if(p==1)
   if(q==0) {;} // nothing to do
   else
     if(q==1)
       while(nc--) 
	 {
	   (*mr2)-=(*mr1); 
	   mr1++; mr2++; 
	 } 
     else // general q
       while(nc--) 
	 {
	   (*mr2)-=(q*(*mr1)); 
	   mr1++; mr2++; 
	 } 
 else  // p!=1; we cannot assume p>0
   if(q==0)    {;} // nothing to do
   else
     if(q==1)
       while(nc--) 
	 {
	   (*mr2)=(p*(*mr2))-(*mr1); 
	   mr1++; mr2++; 
	 } 
     else // general q
       while(nc--) 
	 {
	   (*mr2)=(p*(*mr2))-(q*(*mr1)); 
	   mr1++; mr2++; 
	 } 
}

void clear(scalar* row, long nc)
{long n=nc; scalar *rowi=row; scalar g = 0;
 while((n--)&&(g!=1)) g=gcd(g,*rowi++);
 if (g<0)g=-g;
 if (g>1) 
   {
     n=nc; rowi=row; while(n--) (*rowi++) /= g;
   }
}

//#ifndef DEBUG_ECH_0
//#define DEBUG_ECH_0
//#endif

#ifdef DEBUG_ECH_0
void show(scalar* m, long nr, long nc)
{
  long i,j; scalar* mij = m;
  for(i=0; i<nr; i++)
    {
      for(j=0; j<nc; j++)
	{cout<<(*mij)<<"\t"; mij++;}
      cout<<"\n";
    }
}
#endif

mat echelon0(const mat& entries, vec& pc, vec& npc,
                long& rk, long& ny, scalar& d)
{
  long nr, nc, r,c,r2,r3,rmin,i;
  scalar min, mr2c, lastpivot=1;
  rk=0; ny=0; r=0;
  nc=entries.nco; nr=entries.nro;
  scalar *m, *mi1, *mi2, *mij; scalar temp;
  m = new scalar[nr*nc];
  long n=nr*nc; mij=m; mi1=entries.entries;
  while(n--) *mij++ = *mi1++;

  scalar *pcols = new scalar[nc];
  scalar *npcols = new scalar[nc];
  for (c=0; (c<nc)&&(r<nr); c++)
    {
      mij=m+r*nc+c;  // points to column c in row r
      min = abs(*mij);  rmin = r;
      for (r2=r+1, mij+=nc; (r2<nr)&&(min!=1); r2++, mij+=nc)
       { mr2c = abs(*mij);
         if ((0<mr2c) && ((mr2c<min) || (min==0))) { min=mr2c; rmin=r2 ;}
       }
     if (min==0) npcols[ny++] = c;
     else
       {pcols[rk++] = c;
#ifdef DEBUG_ECH_0
       cout<<"Using col "<<c<<" as pivotal col"<<endl;
#endif
        if (rmin>r) //swap rows
	  {
#ifdef DEBUG_ECH_0
	    cout<<"Swapping rows "<<r<<" and "<<rmin<<endl;
#endif
	    mi1=m+r*nc; mi2=m+rmin*nc; n=nc;
	    while(n--) {temp = *mi1; *mi1++ = *mi2; *mi2++ = temp;}
	  } 
        for (r3 = r+1 ; r3<nr; r3++)
          {
#ifdef DEBUG_ECH_0
	    cout<<"Eliminating from row "<<r3<<endl;
#endif
            conservative_elim(m,nc,r,r3,c);
	    if(lastpivot>1)
	      {
		mi1 = m+r3*nc; n=nc; 
		while(n--) 
		  {
		    if(*mi1%lastpivot)
		      cout<<"Error in echelon0!  Entry "<<(*mi1)
			  <<" not divisible by lastpivot "<<lastpivot<<endl;
		    *mi1++ /= lastpivot;
		  }
	      }
          }
        lastpivot=min;
#ifdef DEBUG_ECH_0
cout<<"r="<<r<<": pivot = "<<min<<endl;
#endif
        r++;
       }
#ifdef DEBUG_ECH_0
     //     cout<<"Current mat is:\n";show(m,nr,nc);
#endif
    }
  for (c = rk+ny; c<nc; c++) npcols[ny++] = c;
#ifdef DEBUG_ECH_0
cout<<"After forward elimination, rank = "<<rk<<"; pivots are:"<<endl;
for(r3=0; r3<rk; r3++) cout<<(m+r3*nc)[pcols[r3]]<<",";
cout<<endl;
#endif
  d=1;
  if (ny>0)   // Back-substitute and even up pivots
    {for (r=0; r<rk; r++) clear(m+r*nc,nc);
#ifdef DEBUG_ECH_0
cout<<"After clearing, pivots are:"<<endl;
for(r3=0; r3<rk; r3++) cout<<(m+r3*nc)[pcols[r3]]<<",";
cout<<endl;
#endif
     for (r=0; r<rk; r++)
       {
	 mi1=m+r*nc;
#ifdef DEBUG_ECH_0
cout<<"Before back-subst, row "<<r<<" is:"<<endl;
for(r3=0; r3<nc; r3++) cout<<mi1[r3]<<",";
cout<<": pivot = "<<mi1[pcols[r]]<<endl;
#endif
	 for (r2=r+1; r2<rk; r2++) elim(m,nc,r2,r,pcols[r2]);  
#ifdef DEBUG_ECH_0
cout<<"After back-subst, row "<<r<<" is:"<<endl;
for(r3=0; r3<nc; r3++) cout<<mi1[r3]<<",";
cout<<": pivot = "<<mi1[pcols[r]]<<endl;
#endif
	 clear(mi1,nc);
#ifdef DEBUG_ECH_0
cout<<"After clearing, row "<<r<<" is:"<<endl;
for(r3=0; r3<nc; r3++) cout<<mi1[r3]<<",";
x cout<<": pivot = "<<mi1[pcols[r]]<<endl;
#endif
	 d = lcm(d,mi1[pcols[r]]);
       }
     d = abs(d);
     // cout << "d = " << d << "\n";
     for (r=0, mij=m; r<rk; r++)
       {
	 n=nc;
	 scalar fac = d/mij[pcols[r]];  
	 while(n--) *mij++ *= fac;
       }
   }
  else 
    {
      mij=m;
      for (r=0; r<rk; r++)
	for (c=0; c<nc; c++)
	  *mij++ = (c==pcols[r]);  // 0 or 1 !
    }
  // Copy back into mat
  mat ans(rk,nc);
  n=rk*nc; scalar* ansij=ans.entries; mij=m;
  while(n--) *ansij++ = *mij++; 
  
  delete[] m;
  // fix vectors
  pc.init(rk); npc.init(ny);
  for (i=0; i<rk; i++)  pc[i+1]= pcols[i]+1;
  for (i=0; i<ny; i++) npc[i+1]=npcols[i]+1;
  delete[] pcols;
  delete[] npcols;

  return ans;
}

//  Original version 

// mat echelon0(const mat& entries, vec& pcols, vec& npcols,
//                long& rk, long& ny, long& d)
// {
//  long nc, nr;
//  long r,c,r2,r3,rmin;
//  long min, mr2c,lastpivot;
//  rk=0; ny=0; r=1; lastpivot=1;
// 
//  mat m(entries);
//  nc=ncols(m); nr=nrows(m);
//  pcols.init(nc);
//  npcols.init(nc);
//  for (c=1; (c<=nc)&&(r<=nr); c++)
//   {min = abs(m(r,c));
//    rmin = r;
//    for (r2=r+1; (r2<=nr)&&(min!=1); r2++)
//    { mr2c = abs(m(r2,c));
//      if ((0<mr2c) && ((mr2c<min) || (min==0))) { min=mr2c; rmin=r2 ;}
//    }
//    if (min==0) npcols[++ny] = c;
//    else
//      {pcols[++rk] = c;
//       if (rmin>r) m.swaprows(r,rmin);
//       for (r3 = r+1 ; r3<=nr; r3++)
//          elimrows2(m,r,r3,c,lastpivot);
//       lastpivot=min;
//       r++;
//      }
//  }
//  for (c = rk+ny+1; c<=nc; c++) npcols[++ny] = c;
//  pcols  =  pcols.slice(rk);
//  npcols =  npcols.slice(ny);    // truncate index vectors
// // cout << "In echelon:\n";
// // cout << "pcols = " << pcols << "\n";
// // cout << "npcols = " << npcols << "\n";
//  d=1;
//  lastpivot=1;
//  if (ny>0)
//   {for (r=1; r<=rk; r++)  m.clearrow(r);
//    for (r=1;r<=rk; r++)
//       for (r2=r+1; r2<=rk; r2++)
//         elimrows1(m,r2,r,pcols[r2]);
//    for (r=1; r<=rk; r++)
//       d = (d*m(r,pcols[r]))/gcd(d,m(r,pcols[r]));
//    d = abs(d);
//    for (r=1; r<=rk; r++)
//       {long fac = d/m(r,pcols[r]);
//        m.multrow(r,fac);
//       }
//  }
//  else 
//        for (r=1; r<=rk; r++)
//         for (c=1; c<=nc; c++)
//           m.set(r,c, (c==pcols[r]));  // 0 or 1 !
//  return m.slice(rk,nc);
// }

long rank(const mat& entries)
{
 long rk,nr,nc,r,c,r2,r3,rmin;
 long min, mr2c,lastpivot;
 rk=0; r=1; lastpivot=1;
 mat m(entries);
 nc=ncols(m); nr=nrows(m);
 for (c=1; (c<=nc)&&(r<=nr); c++)
 { min = abs(m(r,c));
   rmin = r;
   for (r2=r+1; (r2<=nr)&&(min!=1); r2++)
   { mr2c = abs(m(r2,c));
     if ((0<mr2c) && ((mr2c<min) || (min==0))) { min=mr2c; rmin=r2 ;}
   }
   if (min!=0)
     {rk++;
      if (rmin>r) m.swaprows(r,rmin);
      for (r3 = r+1 ; r3<=nr; r3++)
         elimrows2(m,r,r3,c,lastpivot);
      lastpivot=min;
      r++;
     }
 }
 return rk;
}

long nullity(const mat& m)
{
 return ncols(m)-::rank(m);
}

long trace(const mat& a)
{ long i; long ans=0;
  for (i=1; i<=nrows(a); i++) ans += a(i,i);
  return ans;
}
 
/*    OLD VERSION
vector<long> charpoly(const mat& a)
{ long i,k,r,n = nrows(a);
  vec tlist = vec(n);
  mat apower(a);
  vector<long> clist(n+1);
  tlist[1] = trace(a);
  for (i=2; i<=n; i++)
      { apower*=a;
        tlist[i] = trace(apower);
      }
   clist[n]=1;
   for (k=1; k<=n; k++)
      { long temp = 0;
         for (r=1; r<=k; r++)  temp+= tlist[r]*clist[n+r-k];
         clist[n-k]= -temp/k;
      }
  return clist;
}
*/

// NEW VERSION -- FADEEV'S METHOD

vector<long> charpoly(const mat& a)
{ long n = nrows(a);
  mat b(a);
  mat id(idmat((scalar)n));
  vector<long> clist(n+1);
  long t = trace(a);
  clist[n]   =  1;
  clist[n-1] = -t;
  for (long i=2; i<=n; i++)
      { b=a*(b-t*id);          //     cout << b;   // (for testing only)
        t=trace(b)/i;
        clist[n-i] = -t;
      }
  if (!(b==t*id)) 
    {
      cout << "Error in charpoly: final b = " << (b-t*id); abort();
    }
  return clist;
}

 
long determinant(const mat& m)
{
 vector<long> cp = charpoly(m);
 long det = cp[0];
 if (nrows(m)%2==1) det=-det;
 return det;
}

mat addscalar(const mat& m, scalar c)
{
  return m+(c*idmat((scalar)nrows(m)));
}
 
vec apply(const mat& m, const vec& v)    // same as *(mat, vec)
{
 long nr=nrows(m), nc=ncols(m);
 vec ans(nr);
 if (nc==dim(v))
   for (long i=1; i<=nr; i++) 
     ans[i] = m.row(i)*v;
 else 
   {
     cout << "Incompatible sizes in *(mat,vec)\n";
     abort();
   }
 return ans;
}

/*  Need this when LONGLONG = long long!
LONGLONG abs(LONGLONG a)
{return ((a<0) ? -a : a);
}
*/

LONGLONG lgcd(LONGLONG aa, LONGLONG bb)
{LONGLONG a,b,c;
 a=aa; b=bb;
 while (b!=0) {c=a%b; a=b; b=c;}
 return ((a<0) ? -a : a);
}

LONGLONG llcm(LONGLONG a, LONGLONG b)
{LONGLONG g = lgcd(a,b);
 if (g==0) return 0;
 return a*(b/g);
}

void lelim(LONGLONG *m, long nc, long r1, long r2, long pos)
{LONGLONG *mr1=m+r1*nc, *mr2=m+r2*nc;
 scalar p = mr1[pos], q = mr2[pos];
 while(nc--)
   {
     (*mr2)=(p*(*mr2))-(q*(*mr1)); 
     mr1++; mr2++;
   }
}

void lclear(LONGLONG* row, long nc)
{long n=nc; LONGLONG *rowi=row; LONGLONG g = 0;
 while((n--)&&(g!=1)) g=lgcd(g,*rowi++);
 if (g<0)g=-g;
 if (g>1) 
   {
     n=nc; rowi=row; while(n--) (*rowi++) /= g;
   }
}

// The following version of echelon uses long-long-integers for internal
// calculation and a minimum of function calls; the structures vec and
// mat are used for input/output but not internally.

mat echelonl(const mat& entries, vec& pc, vec& npc,
                long& rk, long& ny, scalar& d)
{
  long nr, nc, r,c,r2,r3,rmin,i;
  long min, mr2c,lastpivot;
  rk=0; ny=0; r=0; lastpivot=1;
  nc=entries.nco; nr=entries.nro;
  LONGLONG *m, *mi1, *mi2, *mij; LONGLONG temp;
  m = new LONGLONG[nr*nc];
  long n=nr*nc; mij=m; mi1=entries.entries;
  while(n--) *mij++ = (LONGLONG)(*mi1++);

  scalar *pcols = new scalar[nc];
  scalar *npcols = new scalar[nc];
  for (c=0; (c<nc)&&(r<nr); c++)
    {
      mij=m+r*nc+c;  // points to column c in row r
      min = abs(*mij);  rmin = r;
      for (r2=r+1, mij+=nc; (r2<nr)&&(min!=1); r2++, mij+=nc)
       { mr2c = abs(*mij);
         if ((0<mr2c) && ((mr2c<min) || (min==0))) { min=mr2c; rmin=r2 ;}
       }
     if (min==0) npcols[ny++] = c;
     else
       {pcols[rk++] = c;
        if (rmin>r) //swap rows
	  {
	    mi1=m+r*nc; mi2=m+rmin*nc; n=nc;
	    while(n--) {temp = *mi1; *mi1++ = *mi2; *mi2++ = temp;}
	  } 
        for (r3 = r+1 ; r3<nr; r3++)
          {
            lelim(m,nc,r,r3,c);
	    mi1 = m+r3*nc; n=nc; while(n--) *mi1++ /= lastpivot;
          }
        lastpivot=min;
        r++;
      }
    }
  for (c = rk+ny; c<nc; c++) npcols[ny++] = c;
  d=1;
  if (ny>0)   // Back-substitute and even up pivots
    {for (r=0; r<rk; r++) lclear(m+r*nc,nc);
     for (r=0; r<rk; r++)
       {
	 for (r2=r+1; r2<rk; r2++) lelim(m,nc,r2,r,pcols[r2]);  
	 mi1=m+r*nc;
	 lclear(mi1,nc);
	 d = llcm(d,mi1[pcols[r]]);
       }
     d = abs(d);
     // cout << "d = " << d << "\n";
     for (r=0, mij=m; r<rk; r++)
       {
	 n=nc;
	 scalar fac = d/mij[pcols[r]];  
	 while(n--) *mij++ *= fac;
       }
   }
  else 
    {
      mij=m;
      for (r=0; r<rk; r++)
	for (c=0; c<nc; c++)
	  *mij++ = (c==pcols[r]);  // 0 or 1 !
    }
  // Copy back into mat
  mat ans(rk,nc);
  n=rk*nc; scalar* ansij=ans.entries; mij=m;
  while(n--) 
    {
      temp = *mij++; 
      if ((INT_MIN<=temp)&&(temp<=INT_MAX))
	{ 
	  *ansij++=temp;
	}
      else 
	{
	  cout << "Problem in echelonl: entry " << temp << " too big!\n";
	  abort();
	}
    }
  
  delete[] m;
  // fix vectors
  pc.init(rk); npc.init(ny);
  for (i=0; i<rk; i++)  pc[i+1]= pcols[i]+1;
  for (i=0; i<ny; i++) npc[i+1]=npcols[i]+1;
  delete[] pcols;
  delete[] npcols;

  return ans;
}


void elimp(const mat& m, long r1, long r2, long pos, scalar pr)
{
  long nc=m.nco;
  scalar *mr1 = m.entries + (r1-1)*nc + (pos-1),
         *mr2 = m.entries + (r2-1)*nc + (pos-1);
  scalar p = xmod(*mr1,pr), q=xmod(*mr2,pr);
  nc -= (pos-1);
 if(p==1)
   { 
     if(q==0) {return;} // nothing to do
     if(q==1)
       {
         while(nc--)
           {
             (*mr2)= xmod(*mr2-*mr1,pr);
             mr1++; mr2++;
           }
         return;
       }
     if(q==-1)
       {
         while(nc--)
           {
             (*mr2)= xmod(*mr2+*mr1,pr);
             mr1++; mr2++;
           }
         return;
       }
     // general q
     while(nc--)
       {
         (*mr2)= xmod(*mr2-xmodmul(q,*mr1,pr),pr);
         mr1++; mr2++;
       }
     return;
   }
 // general p (p!=1)
 if(q==0) {return;} // nothing to do
 if(q==1)
   { 
     while(nc--)
       {
	 (*mr2)= xmod(xmodmul(p,*mr2,pr)-*mr1,pr);
	 mr1++; mr2++;
       }
     return;
   }
 if(q==-1)
   { 
     while(nc--)
       {
	 (*mr2)= xmod(xmodmul(p,*mr2,pr)+*mr1,pr);
	 mr1++; mr2++;
       }
     return;
   }
 // general q
 while(nc--)
   {
     (*mr2)= xmod(xmodmul(p,*mr2,pr)-xmodmul(q,*mr1,pr),pr);
     mr1++; mr2++;
   }
}

void elimp1(const mat& m, long r1, long r2, long pos, scalar pr)
//same as elimp except assumes pivot is 1
{
 long nc=m.nco;
 scalar *mr1 = m.entries + (r1-1)*nc,
        *mr2 = m.entries + (r2-1)*nc;
 scalar q=xmod(mr2[pos-1],pr);
 if(q==0) return;
 if(q==1)
   { 
     while(nc--)
       {
         (*mr2)= xmod(*mr2-*mr1,pr);
         mr1++; mr2++;
       }
     return;
   }
 if(q==-1)
   { 
     while(nc--)
       {
         (*mr2)= xmod(*mr2+*mr1,pr);
         mr1++; mr2++;
       }
     return;
   }
  // general q
 while(nc--)
   {
     if(*mr1)
       (*mr2)= xmod((*mr2)-xmodmul(q,*mr1,pr),pr);
     mr1++; mr2++;
   }
}

//#define TRACE 1 

// This method uses mod-p arithmetic internally but returns the
// "characteristic zero" echelon form of the mat.  It will only give
// the wrong answer if (a) the rank mod pr is not the actual rank, or (b)
// the actual echelon form has entries which are too big.

mat echelonp(const mat& entries, vec& pcols, vec& npcols,
             long& rk, long& ny, scalar& d, scalar pr)
{
#ifdef TRACE
                cout << "In echelonp\n";
#endif /* TRACE */
 long nc,nr,r,c,r2,r3,rmin;
 scalar min, mr2c;
 nr=nrows(entries), nc=ncols(entries);
 mat m(nr,nc);
 scalar *mij=m.entries, *entriesij=entries.entries;
 long n=nr*nc;
 while(n--) *mij++ = xmod(*entriesij++,pr);
 pcols.init(nc);
 npcols.init(nc);
 rk=0; ny=0; r=1;
 for (c=1; (c<=nc)&&(r<=nr); c++)
 {
   min = m(r,c);   rmin = r;
   for (r2=r+1; (r2<=nr)&&(min==0); r2++)
   { mr2c = m(r2,c);
     if (0!=mr2c) { min=mr2c; rmin=r2 ;}
   }
   if (min==0) npcols[++ny] = c;
   else       
     {
      pcols[++rk] = c;
      if (rmin>r) m.swaprows(r,rmin);
      for (r3 = r+1 ; r3<=nr; r3++) elimp(m,r,r3,c,pr);
      r++;
     }
 }
 for (c = rk+ny+1; c<=nc; c++) npcols[++ny] = c ;
#ifdef TRACE
       cout << "Finished first stage; rk = " << rk;
       cout << ", ny = " << ny << "\n";
       cout << "Back substitution.\n";
#endif /* TRACE */
 pcols  =  pcols.slice(1,rk);
 npcols =  npcols.slice(1,ny);    // truncate index vectors
 if (ny>0)
 { for (r=1; r<=rk; r++)
      for (r2=r+1; r2<=rk; r2++)  
          elimp(m,r2,r,pcols[r2],pr); 
   for (r=1; r<=rk; r++)
      { scalar fac = xmod(invmod(m(r,pcols[r]),pr),pr);
        for (c=1; c<=nc; c++) m(r,c)=xmodmul(fac,m(r,c),pr);
      }
 }
 else 
       for (r=1; r<=rk; r++)
        {for (c=1; c<=nc; c++) m(r,c)=(c==pcols[r]);    // 0 or 1 !
        }
 scalar modulus=pr;
 float lim=floor(sqrt(pr/2.0));
#ifdef TRACE
     cout << "Finished second stage.\n Echelon mat mod "<<pr<<" is:\n";
     cout << m;
     cout << "Now lifting back to Q.\n";
     cout << "lim = " << lim << "\n";
#endif /* TRACE */
 scalar dd = 1;
 mat nmat(rk,nc);
 mat dmat(rk,nc);

#ifdef TRACE
     cout << "rk = " << rk << "\n";
     cout << "ny = " << ny << "\n";
#endif /* TRACE */
 long i,j;
 for (i=1; i<=rk; i++) 
 {  
    for (j=1; j<=rk; j++) 
     {
//    nmat.set(i,pcols[j],(i==j));
      nmat(i,pcols[j])=(i==j);
//    dmat.set(i,pcols[j],1);
      dmat(i,pcols[j])=1;
     }
    for (j=1; j<=ny; j++)
    {scalar n,d;
     long jj = npcols[j];
     modrat(m(i,jj),modulus,lim,n,d);
//   nmat.set(i,jj,n);
     nmat(i,jj)=n;
//   dmat.set(i,jj,d);
     dmat(i,jj)=d;
     dd=(dd*d)/gcd(dd,d);
    }
 }
 dd=abs(dd);
#ifdef TRACE
      cout << "Numerator mat = " << nmat;
      cout << "Denominator mat = " << dmat;
      cout << "Common denominator = " << dd << "\n";
#endif /* TRACE */
 for (i=1; i<=rk; i++)
 {
  for (j=1; j<=nc; j++) m(i,j)=(dd*nmat(i,j))/dmat(i,j);
 }
 d=dd;
 return m; 
}


// The following function computes the echelon form of m modulo the prime pr.

mat echmodp(const mat& entries, vec& pcols, vec& npcols,
                                  long& rk, long& ny, scalar pr)
{
// cout << "In echmodp with entries = " << entries;
 long nc,nr,r,c,r2,r3,rmin;
 scalar min, mr2c;
 nr=entries.nro, nc=entries.nco;
 mat m(nr,nc);
 scalar *mij=m.entries, *entriesij=entries.entries;
 long n=nr*nc;
 while(n--) *mij++ = xmod(*entriesij++,pr);
 pcols.init(nc);
 npcols.init(nc);
 rk=0; ny=0; r=1;
 for (c=1; (c<=nc)&&(r<=nr); c++)
   {
     mij=m.entries+(r-1)*nc+c-1;
     min = *mij;   rmin = r;
     for (r2=r+1, mij+=nc; (r2<=nr)&&(min==0); r2++, mij+=nc)
       { 
	 mr2c = *mij;
	 if (0!=mr2c) { min=mr2c; rmin=r2 ;}
       }
     if (min==0) npcols[++ny] = c;
     else       
       {
	 pcols[++rk] = c;
	 if (rmin>r) m.swaprows(r,rmin);
	 entriesij = m.entries+(r-1)*nc;
         scalar fac;
         if (min!=1)
           {
             if(min==-1)
               {
                 n=nc; while(n--) {*entriesij = - (*entriesij); entriesij++;}
               }
             else
               {
                 //                 cout<<"pivot = "<<min<<endl;
                 fac = xmod(invmod(min,pr),pr);
                 n=nc; while(n--) {*entriesij = xmodmul(fac , *entriesij, pr); entriesij++;}
               }
           }
	 for (r3 = r+1 ; r3<=nr; r3++) elimp1(m,r,r3,c,pr);
	 // for (r3 = r+1 ; r3<=nr; r3++) elimp(m,r,r3,c,pr);
	 r++;
       }
   }
 for (c = rk+ny+1; c<=nc; c++) npcols[++ny] = c ;
 pcols  =  pcols.slice(rk);
 npcols =  npcols.slice(ny);    // truncate index vectors
 // cout << "Rank = " << rk << ".  Nullity = " << ny << ".\n";
 if (ny>0)
   { 
     for (r=1; r<=rk; r++)
       for (r2=r+1; r2<=rk; r2++)  
	 elimp(m,r2,r,pcols[r2],pr); 
     for (r=1; r<=rk; r++)
       { 
	 mij = m.entries+(r-1)*nc;
	 scalar fac = xmod(invmod(mij[pcols[r]-1],pr),pr);
	 n=nc; while(n--) {*mij = xmodmul(fac , *mij, pr); mij++;}
       }
   }
 else 
   {
     mij=m.entries;
     for (r=1; r<=rk; r++)
       for (c=1; c<=nc; c++) 
	 *mij++ = (c==pcols[r]);    // 0 or 1 !
   }
 return m.slice(rk,nc);
}

// Possible FLINT_LEVEL values are as follows.
//
// 0: no FLINT support (or a version <2.3)
// 1: support for 64-bit nmod_mat (standard from version 2.3)
// 2: support for 32-bit hmod_mat (non-standard, from version 2.3)
//
// The configure script should have detected whether the functions
// nmod_mat_rref and/or hmod_mat_rref are available to be used here.
//
#if FLINT_LEVEL!=0
//#define TRACE_FLINT_RREF
#include "flint/fmpz.h"
#if (SCALAR_OPTION==1)&&(FLINT_LEVEL==2)
#include "flint/hmod_mat.h"
#undef uscalar
#undef mod_mat
#undef mod_mat_init
#undef mod_mat_clear
#undef mod_mat_entry
#undef mod_mat_rref
#define uscalar hlimb_t // unsigned int
#define mod_mat hmod_mat_t // uses unsigned ints
#define mod_mat_init hmod_mat_init
#define mod_mat_clear hmod_mat_clear
#define mod_mat_entry hmod_mat_entry
#define mod_mat_rref hmod_mat_rref
#else
#include "flint/nmod_mat.h"
#undef uscalar
#undef mod_mat
#undef mod_mat_init
#undef mod_mat_clear
#undef mod_mat_entry
#undef mod_mat_rref
#define uscalar mp_limb_t // unsigned long
#define mod_mat nmod_mat_t // uses unsigned longs
#define mod_mat_init nmod_mat_init
#define mod_mat_clear nmod_mat_clear
#define mod_mat_entry nmod_mat_entry
#define mod_mat_rref nmod_mat_rref
#endif
#include "flint/profiler.h"

// FLINT has two types for modular matrices: standard in FLINT-2.3 has
// nmod_mat_t with entries of type mp_limb_t (unsigned long);
// non-standard (in an optional branch) is hmod_mat_t, with entries
// hlimb_t (unsigned int).  We use the former when scalar=long and the
// latter when scalar=int, provided that the optional functions are
// present, which should have been determined by the configure script.
// The unsigned scalar types are #define'd as uscalar.

mat ref_via_flint(const mat& M, scalar pr)
{
  long nr=nrows(M), nc=ncols(M);
  long i, j;

  // copy of the modulus for FLINT
  uscalar mod = (uscalar)pr;

  // create flint matrix copy of M:
  mod_mat A;
  mod_mat_init(A, nr, nc, mod);
  for(i=0; i<nr; i++)
    for(j=0; j<nc; j++)
      mod_mat_entry(A,i,j) = M(i+1,j+1);

  // reduce A to rref:
#ifdef TRACE_FLINT_RREF
  timeit_t t;
  timeit_start(t);
  cerr<<"(nr,nc)=("<<nr<<","<<nc<<"): "<<flush;
#endif
  mod_mat_rref(A);
#ifdef TRACE_FLINT_RREF
  timeit_stop(t);
  cerr<<" cpu = "<<(t->cpu)<<" ms, wall = "<<(t->wall)<<" ms"<<endl;
#endif

  // copy back to a new matrix for return:
  mat ans(nr,nc);
  for(i=0; i<nr; i++)
    for(j=0; j<nc; j++)
      ans(i+1,j+1) = mod_mat_entry(A,i,j);

  mod_mat_clear(A);
  return ans;
}

// The following function computes the reduced echelon form
// of M modulo the prime pr, calling FLINT's nmod_mat_rref function.

mat ref_via_flint(const mat& M, vec& pcols, vec& npcols,
                                  long& rk, long& ny, scalar pr)
{
  long nr=nrows(M), nc=ncols(M);
  long i, j, k;

#ifdef TRACE_FLINT_RREF
#if (SCALAR_OPTION==1)
  cout << "In ref_via_flint(M) with M having "<<nr<<" rows and "<<nc<<" columns, using hmod_mat and modulus "<<pr<<"."<<endl;
#else
  cout << "In ref_via_flint(M) with M having "<<nr<<" rows and "<<nc<<" columns, using nmod_mat and modulus "<<pr<<"."<<endl;
#endif
  //  cout << "Size of  scalar = "<<8*sizeof(scalar)<<" bits"<<endl;
  //  cout << "Size of uscalar = "<<8*sizeof(uscalar)<<" bits"<<endl;
#endif

  // copy of the modulus
  uscalar mod = (uscalar)pr;

  // create flint matrix copy of M:
  mod_mat A;
  mod_mat_init(A, nr, nc, mod);
  for(i=0; i<nr; i++)
    for(j=0; j<nc; j++)
      mod_mat_entry(A,i,j) = (uscalar)posmod(M(i+1,j+1),pr);

#ifdef TRACE_FLINT_RREF
  timeit_t t;
  timeit_start(t);
  cerr<<"(nr,nc)=("<<nr<<","<<nc<<"): "<<flush;
#endif

  // reduce A to rref:
  rk = mod_mat_rref(A);
#ifdef TRACE_FLINT_RREF
  timeit_stop(t);
  cerr<<"rank = "<<rk<<". cpu = "<<(t->cpu)<<" ms, wall = "<<(t->wall)<<" ms"<<endl;
#endif

  // construct vectors of pivotal and non-pivotal columns
  ny = nc-rk;
  pcols.init(rk);
  npcols.init(ny);
  for (i = j = k = 0; i < rk; i++)
    {
      while (mod_mat_entry(A, i, j) == 0UL)
        {
          npcols[k+1] = j+1;
          k++;
          j++;
        }
      pcols[i+1] = j+1;
      j++;
    }
  while (k < ny)
    {
      npcols[k+1] = j+1;
      k++;
      j++;
    }

  // copy back to a new matrix for return:
  mat ans(rk,nc);
  for(i=0; i<rk; i++)
    for(j=0; j<nc; j++)
      ans(i+1,j+1) = mod_mat_entry(A,i,j);

  mod_mat_clear(A);
  return ans;
}
#endif // FLINT_LEVEL

// The following function computes the upper-triangular echelon form
// of m modulo the prime pr.

mat echmodp_uptri(const mat& entries, vec& pcols, vec& npcols,
                                  long& rk, long& ny, scalar pr)
{
// cout << "In echmodp_uptri with matrix = " << entries;
 long nc,nr,r,c,r2,r3,rmin;
 scalar min, mr2c;
 nr=entries.nro, nc=entries.nco;
 mat m(nr,nc);
 scalar *mij=m.entries, *entriesij=entries.entries;
 long n=nr*nc;
 while(n--) *mij++ = xmod(*entriesij++,pr);
 pcols.init(nc);
 npcols.init(nc);
 rk=0; ny=0; r=1;
 for (c=1; (c<=nc)&&(r<=nr); c++)
   {
     mij=m.entries+(r-1)*nc+c-1;
     min = *mij;   rmin = r;
     for (r2=r+1, mij+=nc; (r2<=nr)&&(min==0); r2++, mij+=nc)
       {
	 mr2c = *mij;
	 if (0!=mr2c) { min=mr2c; rmin=r2 ;}
       }
     if (min==0) npcols[++ny] = c;
     else
       {
	 pcols[++rk] = c;
	 if (rmin>r) m.swaprows(r,rmin);
	 entriesij = m.entries+(r-1)*nc;
         scalar fac;
         if (min!=1)
           {
             if(min==-1)
               {
                 n=nc; while(n--) {*entriesij = - (*entriesij); entriesij++;}
               }
             else
               {
                 //                 cout<<"pivot = "<<min<<endl;
                 fac = xmod(invmod(min,pr),pr);
                 n=nc; while(n--) {*entriesij = xmodmul(fac , *entriesij, pr); entriesij++;}
               }
           }
	 for (r3 = r+1 ; r3<=nr; r3++) elimp1(m,r,r3,c,pr);
	 r++;
       }
   }
 for (c = rk+ny+1; c<=nc; c++) npcols[++ny] = c ;
 pcols  =  pcols.slice(rk);
 npcols =  npcols.slice(ny);    // truncate index vectors
 // cout << "Rank = " << rk << ".  Nullity = " << ny << ".\n";
 return m.slice(rk,nc);
}

mat matmulmodp(const mat& m1, const mat& m2, scalar pr)
{
 long j,k, m=m1.nro, n=m1.nco, p=m2.nco;
 mat m3(m,p); 
 scalar *a=m1.entries, *b=m2.entries, *c=m3.entries, *bp, *cp;
 if (n==m2.nro)  // algorithm from Dr Dobb's Journal August 1993
   {
     while(m--)
       {
	 bp=b; k=n;
	 while(k--)
	   {
	     cp=c; j=p;
	     while(j--)
	       {
		 *cp += xmodmul(*a , *bp++, pr);
		 *cp = xmod(*cp,pr);
		 cp++;
	       }
	     a++;
	   }
	 c += p;
       }
   }
 else 
   {
     cout << "Incompatible sizes in mat product\n";
     abort();
   }
 return m3;
}

int liftmat(const mat& mm, scalar pr, mat& m, scalar& dd, int trace)
{
  scalar modulus=pr,n,d; long nr,nc,nrc; dd=1;
  int succ,success=1;
  float lim=floor(sqrt(pr/2.0));
  m = mm; scalar *mp;
  if(trace)
    {
      cout << "Lifting mod-p mat;  mat mod "<<pr<<" is:\n";
      cout << m;
      cout << "Now lifting back to Q.\n";
      cout << "lim = " << lim << "\n";
    }
  nr = m.nro; nc = m.nco;  nrc = nr*nc; mp=m.entries;
  while(nrc--)
    {  
      succ = modrat(*mp++,modulus,lim,n,d);
      success = success && succ;
      dd=lcm(d,dd);
    }
  if(!success) 
    {
      //cout << "Problems encountered with modrat lifting of mat." << endl;
      return 0;
    }
   dd=abs(dd);
  if(trace) cout << "Common denominator = " << dd << "\n";
  nrc=nr*nc; mp=m.entries;
  while(nrc--)
      {
	*mp=mod(xmodmul(dd,(*mp),pr),pr); 
	mp++;
      }
  return 1;
}

double sparsity(const mat& m)
{
    long nr=nrows(m), nc=ncols(m);
    if(nr==0) return 1;
    if(nc==0) return 1;
    scalar* matij=m.entries;
    double count=0;
    long n=nr*nc;
    long i=n;
    while(i--) {if(*matij++) count+=1;}
    return count/n;
}