1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
|
// mglobsol.cc: implementation of class quartic_sieve and functions for quartic solubility testing
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
// (1) simple search with function ratpoint()
// (2) sieve-assisted search using class quartic_sieve
#include <eclib/mglobsol.h>
int test(const bigint& x, const bigint& z, const bigint& y2, bigint&xx, bigint&yy, bigint&zz)
{
bigint y;
int ans = isqrt(y2,y);
if (ans) { xx=x; yy=y; zz=z; }
return ans;
}
int ratpoint(const quartic& g, const bigint& min, const bigint& max, bigint& xx, bigint&yy, bigint& zz)
{ bigint a=g.geta(), b=g.getb(), c=g.getcc(), d=g.getd(), e=g.gete();
bigint n,sx,gg; int found = 0;
// Check for rational points at 0 or infinity:
if(isqrt(a,n)) {xx=1; yy=n; zz=0; return 1;}
if(isqrt(e,n)) {xx=0; yy=n; zz=1; return 1;}
bigint x,x2,x3,x4,z,z2,z3,z4,ax4,bx3z,cx2z2,dxz3,ez4;
static const bigint zero = BIGINT(0);
static const bigint one = BIGINT(1);
for (n=min; (n<=max) && (!found); ++n)
{
if (n==1)
{
found=test( one, zero, a, xx, yy, zz); // pt at infty iff a square
if (!found)
found=test( zero, one, e, xx, yy, zz); // 0 iff e square
}
else
{
for (sx=1; (sx<n) && (! found); ++sx)
{
gg=gcd(sx,n);
if (gg==1)
{
x=sx;
x2=x*x; x3=x*x2; x4=x*x3; z=n-x; z2=z*z; z3=z*z2; z4=z*z3;
ax4=a*x4; bx3z=b*x3*z; cx2z2=c*x2*z2; dxz3=d*x*z3; ez4=e*z4;
found = test(x,z,ax4+bx3z+cx2z2+dxz3+ez4,xx,yy,zz);
if (!found)
found = test(-x,z,ax4-bx3z+cx2z2-dxz3+ez4,xx,yy,zz);
}
}
}
}
return found;
} /* end of ratpoint */
quartic_sieve::quartic_sieve(quartic * gg, int moduli_option, int verb)
: g(gg), verbose(verb)
{
a=g->geta();
b=g->getb();
c=g->getcc();
d=g->getd();
e=g->gete();
nwprimes= 0;
easy=0;
if(isqrt(a,roota)) easy+=1;
if(isqrt(e,roote)) easy+=2;
// if(easy&1) cout<<"Easy case: "<<a<<" is square, root = "<<roota<<endl;
// if(easy&2) cout<<"Easy case: "<<e<<" is square, root = "<<roote<<endl;
use_stoll = !moduli_option;
if(use_stoll) // using Stoll search so rest not needed.
return;
// set up list of primes p which cannot divide w (=denom(x)) since (a/p)=-1
// (idea of J. Gebel)
// similar list of primes p which cannot divide u (=numer(x)) since (e/p)=-1
if(!easy)
{
nwprimes=25;
wprimes = new long[nwprimes];
long nwp=0;
long a8=mod(a,8); long b8=mod(2*b,8); long c8=mod(4*c,8);
long e8=mod(e,8); long d8=mod(2*d,8);
long z0, t, tt, x, p;
int two_is_ok = 0;
for(z0=0; (z0<4) && !two_is_ok; z0++)
{
t = (a8+c8*z0*z0)%8;
for(x=1; (x<8) && !two_is_ok; x+=2)
{
tt = mod((t + b8*x*z0),8);
if((tt==0)||(tt==1)||(tt==4)) two_is_ok=1;
}
}
if(!two_is_ok) wprimes[nwp++]=2;
primevar pr; pr++; // to start at 3
for(;nwp<nwprimes; pr++)
{
p=pr;
if(legendre(a,p)==-1) wprimes[nwp++]=p;
}
if(verbose)
{
cout<<"w-primes: ";
for(nwp=0; nwp<nwprimes; nwp++) cout<<wprimes[nwp]<<" ";
cout<<endl;
}
// repeat for u-primes:
uprimes = new long[nwprimes];
nwp=0;
two_is_ok = 0;
for(z0=0; (z0<4) && !two_is_ok; z0++)
{
t = (e8+c8*z0*z0)%8;
for(x=1; (x<8) && !two_is_ok; x+=2)
{
tt = (t + d8*x*z0)%8;
if((tt==0)||(tt==1)||(tt==4)) two_is_ok=1;
}
}
if(!two_is_ok) uprimes[nwp++]=2;
pr.init(); pr++; // to start at 3
for(;nwp<nwprimes; pr++)
{
p=pr;
if(legendre(e,p)==-1) uprimes[nwp++]=p;
}
if(verbose)
{
cout<<"u-primes: ";
for(nwp=0; nwp<nwprimes; nwp++) cout<<uprimes[nwp]<<" ";
cout<<endl;
}
}
// set up list of auxiliary moduli
// and a list of which residues modulo each of these are squares
switch(moduli_option) {
case 1:
num_aux = 10;
auxs = new long[num_aux];
auxs[0]=3;
auxs[1]=5;
auxs[2]=7;
auxs[3]=11;
auxs[4]=13;
auxs[5]=17;
auxs[6]=19;
auxs[7]=23;
auxs[8]=29;
auxs[9]=31;
break;
case 2:// the following taken from Gebel's scheme
num_aux = 3;
auxs = new long[num_aux];
auxs[0]=5184; // = (2^6)*(3^4) // old: 6624; // = (2^5)*(3^2)*23
auxs[1]=5929; // = (7^2)*(11^2) // old: 8075; // = (5^2)*17*19
auxs[2]=4225; // = (5^2)*(13^2) // old: 7007; // = (7^2)*11*13
break;
case 3:
default:
num_aux = 9;
auxs = new long[num_aux];
auxs[0]=32;
auxs[1]= 9;
auxs[2]=25;
auxs[3]=49;
auxs[4]=11;
auxs[5]=13;
auxs[6]=17;
auxs[7]=19;
auxs[8]=23;
break;
}
xgood_mod_aux = new int*[num_aux];
// x1good_mod_aux = new int*[num_aux];
squares = new int*[num_aux];
umod = new long[num_aux];
long i,j;
for (i = 0; i < num_aux; i++)
{
long aux = auxs[i];
long half_aux = ((aux + 1) / 2);
squares[i] = new int[aux];
for (j = 0; j < aux; j++) squares[i][j]=0;
for (j = 0; j < half_aux; j++) squares[i][posmod( j*j, aux )]=1;
xgood_mod_aux[i] = new int[aux];
} // end of aux loop
if(verbose>1)
{
cout << "Finished constructing quartic_sieve, using ";
switch(moduli_option)
{
case 1: cout << "ten primes 3..31"; break;
case 2: cout << "three composite moduli"; break;
case 3: cout << "prime powers"; break;
}
cout << endl;
}
}
quartic_sieve::~quartic_sieve()
{
if(nwprimes) { delete[] wprimes; delete[] uprimes;}
if(use_stoll) // using Stoll search so rest not needed.
return;
delete[] auxs;
for(long i=0; i<num_aux; i++)
{
delete[] xgood_mod_aux[i];
delete[] squares[i];
}
delete[] xgood_mod_aux;
delete[] squares;
delete[] umod;
}
//#define DEBUG_RANGES
void sort(bigfloat& x1, bigfloat& x2, bigfloat& x3, bigfloat& x4)
// sorts into increasing order
{
#ifdef DEBUG_RANGES
cout << "sort called with roots "<<x1<<", "<<x2<<", "<<x3<<", "<<x4<<"\n";
#endif
bigfloat t;
if(x1>x2) {t=x1; x1=x2; x2=t;}
if(x2>x3) {t=x2; x2=x3; x3=t;}
if(x3>x4) {t=x3; x3=x4; x4=t;} // now x4 is biggest
if(x1>x2) {t=x1; x1=x2; x2=t;}
if(x2>x3) {t=x2; x2=x3; x3=t;} // now x3 is second biggest
if(x1>x2) {t=x1; x1=x2; x2=t;}
#ifdef DEBUG_RANGES
cout << "sort returns roots "<<x1<<", "<<x2<<", "<<x3<<", "<<x4<<"\n";
#endif
}
long quartic_sieve::search(double h_lim, long maxnpts, int posxonly)
{
npoints = 0;
maxnpoints=maxnpts;
if(easy&1) // a is a square with root roota
{
pu=1; pv=roota; pw=0; npoints++;
// cout<<"Easy case: "<<a<<" is square, root = "<<roota<<endl;
// cout<<"Rational point is ("<<pu<<":"<<pv<<":"<<pw<<")"<<endl;
}
if(npoints>=maxnpoints) return npoints;
if(easy&2) // e is a square with root roote
{
pu=0; pv=roote; pw=1; npoints++;
// cout<<"Easy case: "<<e<<" is square, root = "<<roote<<endl;
// cout<<"Rational point is ("<<pu<<":"<<pv<<":"<<pw<<")"<<endl;
}
if(npoints>=maxnpoints) return npoints;
// Now do some harder work:
if(use_stoll) return stoll_search(h_lim,posxonly);
// set initial bounds for point coefficients
ulim = (long)floor(exp(h_lim));
if (verbose)
cout << "quartic_sieve::search: trying u,w up to "<<ulim<<endl;
int type = g->gettype();
bigcomplex * roots = g->getroots();
bigfloat x1, x2, x3, x4,t, zero=to_bigfloat(0);
switch (type) {
case 0: default: // no roots info known
#ifdef DEBUG_RANGES
cout << "sieve::search: no info about real roots.\n";
#endif
search_range(0,zero,0,zero,posxonly);
return npoints;
break;
case 1: // no real roots
#ifdef DEBUG_RANGES
cout << "sieve::search: no real roots.\n";
#endif
search_range(0,zero,0,zero,posxonly);
return npoints;
break;
case 3: // 2 real roots, one or two ranges
x1 = real(roots[2]); x2 = real(roots[3]);
if(x1>x2) {t=x1; x1=x2; x2=t;}
#ifdef DEBUG_RANGES
cout << "sieve::search: type 3, real roots "<<x1<<", "<<x2<<"\n";
#endif
if(a>0)
{
search_range(1,x2,0,zero,posxonly); // x2<x
if(npoints<maxnpoints)
search_range(0,zero,1,x1,posxonly); // x<x1
}
else
{
search_range(1,x1,1,x2,posxonly); // x1<x<x2
}
return npoints;
break;
case 2: // 4 real roots, 2 or 3 ranges
x1 = real(roots[0]); x2 = real(roots[1]);
x3 = real(roots[2]); x4 = real(roots[3]);
sort(x1,x2,x3,x4); // put in increasing order
#ifdef DEBUG_RANGES
cout << "sieve::search: type 2, real roots "<<x1<<", "<<x2<<", "<<x3<<", "<<x4<<"\n";
#endif
if(a>0)
{
search_range(1,x2,1,x3,posxonly); // x2<x<x3
if(npoints<maxnpoints)
search_range(0,zero,1,x1,posxonly); // x<x1
if(npoints<maxnpoints)
search_range(1,x4,0,zero,posxonly); // x4<x
}
else
{
search_range(1,x1,1,x2,posxonly); // x1<x<x2
if(npoints<maxnpoints)
search_range(1,x3,1,x4,posxonly); // x3<x<x4
}
return npoints;
}
}
long quartic_sieve::stoll_search(double h_lim, int posxonly)
{
// cout<<"In quartic_sieve::stoll_search()"<<endl;
vector<bigint> coef(5);
coef[0]=e; coef[1]=d; coef[2]=c; coef[3]=b; coef[4]=a;
qsieve s(this, 4, coef, to_bigfloat(h_lim), verbose);
// Find and set search intervals
int type = g->gettype(), lb_flag;
bigcomplex * roots = g->getroots();
vector<double> real_roots(4); int nrr=0;
bigfloat x1, x2, x3, x4, t;
switch (type) {
case 0: case 1: default: // no roots info known or no real roots
#ifdef DEBUG_RANGES
if(type==0)
cout << "sieve::stoll_search: no info about real roots.\n";
else
cout << "sieve::search: no real roots.\n";
#endif
s.set_intervals(real_roots,0,0,posxonly);
break;
case 3: // 2 real roots, one or two ranges
nrr=2;
x1 = real(roots[2]); x2 = real(roots[3]);
if(x1>x2) {t=x1; x1=x2; x2=t;}
#ifdef DEBUG_RANGES
cout << "sieve::search: type 3, real roots "<<x1<<", "<<x2<<"\n";
#endif
if(doublify(x1,real_roots[0])||doublify(x2,real_roots[1]))
{
cout<<"##WARNING##: real roots "<<x1<<", "<<x2<<"are not doubles.\n";
cout<<"Search will be made over [-height,height]."<<endl;
nrr=0;
}
lb_flag = (a<0);
s.set_intervals(real_roots,nrr,lb_flag,posxonly);
break;
case 2: // 4 real roots, 2 or 3 ranges
nrr=4;
x1 = real(roots[0]); x2 = real(roots[1]);
x3 = real(roots[2]); x4 = real(roots[3]);
sort(x1,x2,x3,x4); // put in increasing order
if(doublify(x1,real_roots[0])||doublify(x2,real_roots[1])
||doublify(x3,real_roots[2])||doublify(x4,real_roots[3]))
{
cout<<"##WARNING##: real roots "<<x1<<", "<<x2<<", "<<x3<<", "<<x4
<<"are not all doubles.\n";
cout<<"Search will be made over [-height,height]."<<endl;
nrr=0;
}
lb_flag = (a<0);
s.set_intervals(real_roots,nrr,lb_flag,posxonly);
}
// cout<<"About to start search..."<<flush;
npoints = s.search();
// cout<<"...finished, "<<npoints<<" points found"<<endl;
return npoints;
}
long quartic_sieve::search_range(int lower, bigfloat lower_bound,
int upper, bigfloat upper_bound, int posxonly)
{
// Adjust bounds so exact roots are not missed by rounding error
#if !defined(NTL_ALL)
bigfloat eps_adjust(to_bigfloat(0.000001));
if(lower) lower_bound-=eps_adjust;
if(upper) upper_bound+=eps_adjust;
#endif
if(posxonly) // make sure only positive x are used
{
if(upper&&upper_bound<0) return npoints;
if(lower) // revise or create a lower bound
{if(lower_bound<0) lower_bound=0;}
else
{lower=1; lower_bound=0;}
}
#ifdef DEBUG_RANGES
cout<<"sieve::search_range: ";
if(lower) cout<<"lower bound = "<<lower_bound<<"; ";
else cout<<"no lower bound; ";
if(upper) cout<<"upper bound = "<<upper_bound<<".\n";
else cout<<"no upper bound.\n";
// cout<<"a="<<a<<"\n";
// cout<<"b="<<b<<"\n";
// cout<<"c="<<c<<"\n";
// cout<<"d="<<d<<"\n";
// cout<<"e="<<e<<"\n";
#endif
// declare other loop variables
bigint w2,w3,w4, aw,bw,cw,dw,ew;
long i, paw,pbw,pcw,pdw,pew, u, w, aux;
bigint vsq, v, f;
//
// MAIN LOOP on w (denominator)
//
//#define W_START 259000000 // For debugging purposes!
#define W_START 1
long wstart=W_START;
int odd_w_only=0;
if(nwprimes>0) if(wprimes[0]==2) odd_w_only=1;
long wstep = 1+odd_w_only;
if(odd_w_only)
{
if(!odd(wstart)) wstart++;
}
int* wflag = new int[10000];
int odd_u_only=0;
if(nwprimes>0) if(uprimes[0]==2) odd_u_only=1;
long ustep = 1+odd_u_only;
for (w = wstart; (w <= ulim) && (npoints<maxnpoints); w+=wstep)
{
// set up limits for u-loop
long first_u = -ulim;
long last_u = ulim;
long min_u = I2long(Iceil(w*lower_bound));
long max_u = I2long(Ifloor(w*upper_bound));
#ifdef DEBUG_RANGES
cout<<"sieve::search_range: (w="<<w<<"), min_u="<<min_u<<", max_u="<<max_u<<endl;;
#endif
if(lower) if(first_u < min_u) first_u = min_u;
if(upper) if(last_u > max_u) last_u = max_u;
#ifdef DEBUG_RANGES
cout<<"sieve::search_range: first_u="<<first_u<<", last_u="<<last_u<<endl;;
#endif
if(odd_u_only)
{
if(!odd(first_u)) first_u++;
if(!odd(last_u)) last_u--;
}
if(first_u>last_u) {continue;} // to next w value
// Check that w has no impossible prime factors:
int w_is_ok = 1; long nwp;
for(nwp=0; (nwp<nwprimes) && w_is_ok; nwp++)
w_is_ok = ndivides(wprimes[nwp],w);
if(!w_is_ok)
{
// if(verbose) cout << " -- skipping w="<<w<<" (bad prime factor) \n";
continue; // skip to next w
}
if (verbose)
{
cout<<"quartic_sieve::search: trying w = "<<w;
cout<<" ("<<first_u<<" <= u <= "<<last_u<<")\n";
}
int use_w_sieve = ((last_u-first_u)>10);
int use_gcd_table = use_w_sieve&&(w<10000)&&((last_u-first_u)>(w/2));
long umodw=0;
int w_vars_set = 0;
if(use_w_sieve)
{
// some preliminary calculations of multiples of w etc.
w2 = sqr(BIGINT(w)); w3 = w*w2; w4 = w2*w2;
aw = a; bw = b*w; cw = c*w2; dw = d*w3; ew = e*w4;
for ( i=0; i < num_aux; i++)
umod[i] = posmod(first_u-ustep, auxs[i]);
// set up flag array of residues coprime to w
if(use_gcd_table)
{
umodw = posmod(first_u-ustep,w);
wflag[0]=(w==1);
for(i=1; i<=w-i; i++) wflag[i] = wflag[w-i] = (gcd(i,w)==1);
}
// set the main flag matrix
for (long index = 0; index < num_aux; index++)
{
aux = auxs[index];
paw = posmod(aw, aux);
pbw = posmod(bw, aux);
pcw = posmod(cw, aux);
pdw = posmod(dw, aux);
pew = posmod(ew, aux);
long ddddf= posmod(24*paw , aux);
long dddf = posmod(36*paw + 6*pbw , aux);
long ddf = posmod(14*paw + 6*pbw + 2*pcw , aux);
long df = posmod(paw+pbw+pcw+pdw, aux);
long f = posmod(pew , aux);
int* flag = xgood_mod_aux[index];
int* sqs = squares[index];
long x=aux;
while(x--)
{
*flag++ = sqs[f];
f += df; if(f >= aux) f -= aux;
df += ddf; if(df >= aux) df -= aux;
ddf += dddf; if(ddf >= aux) ddf -= aux;
dddf += ddddf; if(dddf >= aux) dddf -= aux;
}
} // end of aux loop
} // end of if(use_w_sieve)
for (u=first_u; (u <= last_u) && (npoints<maxnpoints); u+=ustep)
{
int u_is_ok=1;
// check that u is good for all the auxiliaries
if(use_w_sieve)
{
for ( i=0; (i<num_aux); i++)
{ long& umodi = umod[i];
umodi+=ustep;
while (umodi >= auxs[i]) umodi -= auxs[i];
if(u_is_ok)
{
u_is_ok = xgood_mod_aux[i][umodi];
// if(!u_is_ok)
// cout<<"(u,w)=("<<u<<","<<w<<") failed sieve mod "<<auxs[i]<<endl;
}
}
// if(u_is_ok) cout<<"(u,w)=("<<u<<","<<w<<") passed sieve "<<endl;
// else cout<<"(u,w)=("<<u<<","<<w<<") failed sieve "<<endl;
}
// check that gcd(u,w)==1
if(use_gcd_table)
{
umodw+=ustep; while(umodw>=w) umodw-=w;
u_is_ok = wflag[umodw]; // true if gcd(u,w)=1
}
if(!u_is_ok) continue;
// Check that u has no impossible prime factors:
for(nwp=0; (nwp<nwprimes) && u_is_ok; nwp++)
u_is_ok = ndivides(uprimes[nwp],u);
if(!u_is_ok) continue;
if(!w_vars_set)
{
w2 = sqr(BIGINT(w)); w3 = w*w2; w4 = w2*w2;
aw = a; bw = b*w; cw = c*w2; dw = d*w3; ew = e*w4;
w_vars_set=1;
}
f=aw; f*=u; f+=bw; f*=u; f+=cw; f*=u; f+=dw; f*=u; f+=ew;
// f = ew+u*(dw+u*(cw+u*(bw+u*aw)));
if(isqrt(f,v))
{
#ifdef DEBUG_RANGES
cout<<"u="<<u<<"\n";
cout<<"f="<<f<<"\n";
cout<<"v="<<v<<", v^2 = " << v*v << "\n";
#endif
npoints++;
pu=u; pv=v; pw=w;
}
} // ends u-loop
} // ends w- loop
delete[] wflag;
return npoints;
} // end of quartic_sieve::search_range()
/* END OF FILE MGLOBSOL.CC */
|