File: mquartic.cc

package info (click to toggle)
eclib 2014-09-21-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,216 kB
  • ctags: 4,287
  • sloc: cpp: 45,827; makefile: 222; sh: 108
file content (323 lines) | stat: -rw-r--r-- 9,548 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
// mquartic.cc:   Implementation of class quartic and related functions
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
// 
// This file is part of the eclib package.
// 
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
// 
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// 
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
// 
//////////////////////////////////////////////////////////////////////////
 
#include <eclib/mquartic.h>

// constructors
quartic::quartic() 
{
  have_zpol=0; equiv_code=0;
  roots=new bigcomplex[4];
  //cout<<"Quartic constructor #1: " << this << endl;
}

quartic::quartic(const bigint& qa, const bigint& qb, const bigint& qc, 
		 const bigint& qd, const bigint& qe, 
		 bigcomplex* qr,	 int qt,
		 const bigint& qi,const bigint& qj,const bigint& qdisc)
:a(qa),b(qb),c(qc),d(qd),e(qe),type(qt),ii(qi),jj(qj),disc(qdisc)
{ 
  have_zpol=0; equiv_code=0;
  roots=new bigcomplex[4]; 
  for(int i=0; i<4; i++) roots[i] = qr[i];
  //cout<<"Quartic constructor #2: " << this << ", roots="<<roots<< endl;
}

quartic::quartic(const bigint& qa, const bigint& qb, const bigint& qc, 
		 const bigint& qd, const bigint& qe)
:a(qa),b(qb),c(qc),d(qd),e(qe)
{
  have_zpol=0; equiv_code=0;
  roots=new bigcomplex[4]; 
  set_roots_and_type();
}

//#define DEBUG_ROOTS

void quartic::set_roots_and_type()
{
  ii = II(a,b,c,d,e);
  jj = JJ(a,b,c,d,e);
  disc = 4*pow(ii,3)-sqr(jj);
  bigint  H = H_invariant(a,b,c), R = R_invariant(a,b,c,d);
  bigint Q = H*H-16*a*a*ii;  // = 3*Q really
  bigfloat xH = I2bigfloat(H);
#ifdef DEBUG_ROOTS
  bigint diff = -H*H*H + 48*a*a*ii*H - 64*a*a*a*jj - 27*R*R;
  cout<<"H = "<<H<<", R = "<<R<<", diff = "<<diff<<endl;
  if(is_zero(diff)) cout<<"Syzygy satisfied.\n";
  else cout<<"Syzygy NOT satisfied.\n";
#endif
  int nrr;
  if(disc<0) 
    {type=3; nrr=2;}       // 2 real roots
  else 
    {
      if((sign(H)<0)&&(sign(Q)>0)) 
	{type=2; nrr=4;}   // 4 real roots
      else 
	{type=1; nrr=0;}   // 0 real roots
    }
#ifdef DEBUG_ROOTS
  cout<<"Type = " << type << " ("<<nrr<<" real roots)\n";
#endif
  bigcomplex c1(to_bigfloat(0)), c2(-3*I2bigfloat(ii)), c3(I2bigfloat(jj));
  vector<bigcomplex> cphi = solvecubic( c1, c2, c3);
#ifdef DEBUG_ROOTS
  cout<<"Roots of cubic are "<<cphi<<endl;
#endif
  bigfloat a4=4*I2bigfloat(a), xb=I2bigfloat(b);
  bigfloat oneover4a = to_bigfloat(1)/a4;
#ifdef DEBUG_ROOTS
  cout<<"a4 = "<<a4<<", xb = "<<xb<<endl;
#endif
  
  if(type<3)
    {
#ifdef DEBUG_ROOTS
      cout<<"Positive discriminant\n";
#endif
      // all the phi are real;  order them so that a*phi[i] decreases
      bigfloat phi1 = real(cphi[0]);
      bigfloat phi2 = real(cphi[1]);
      bigfloat phi3 = real(cphi[2]);
      if(a>0)      orderreal(phi1,phi2,phi3); 
      else         orderreal(phi3,phi2,phi1); 

#ifdef DEBUG_ROOTS
      cout<<"phi = "<<phi1<<", "<<phi2<<", "<<phi3<<"\n";
      cout<<"xH = " << xH << ", a4*phi3 = " << a4*phi3 <<"\n";
#endif
      if(type==2) // all roots are real
	{
#ifdef DEBUG_ROOTS
	  cout<<"Type 2\n";
#endif
	  bigfloat r1 = safe_sqrt((a4*phi1-xH)/3);
	  bigfloat r2 = safe_sqrt((a4*phi2-xH)/3);
	  bigfloat r3 = safe_sqrt((a4*phi3-xH)/3);
	  if(R<0)  r3 = -r3;
#ifdef DEBUG_ROOTS
	  cout<<"r_i = "<<r1<<", "<<r2<<", "<<r3<<"\n";
	  cout<<"product = "<<r1*r2*r3<<", R = "<<R<<endl;
#endif
	  roots[0] = bigcomplex(( r1 + r2 - r3 - xb) * oneover4a);
	  roots[1] = bigcomplex(( r1 - r2 + r3 - xb) * oneover4a);
	  roots[2] = bigcomplex((-r1 + r2 + r3 - xb) * oneover4a);
	  roots[3] = bigcomplex((-r1 - r2 - r3 - xb) * oneover4a);
	  // Those are all real and in descending order of size
	}
      else // no roots are real
	{
#ifdef DEBUG_ROOTS
	  cout<<"Type 1\n";
#endif
	  bigfloat r1  = safe_sqrt((a4*phi1-xH)/3);
	  bigfloat ir2 = safe_sqrt((xH-a4*phi2)/3);
	  bigfloat ir3 = safe_sqrt((xH-a4*phi3)/3);
	  if(R>0)  r1 = -r1;
#ifdef DEBUG_ROOTS
	  cout<<"r_i = "<<r1<<", "<<ir2<<"i, "<<ir3<<"i\n";
	  cout<<"product = "<<-r1*ir2*ir3<<", R = "<<R<<endl;
#endif
	  roots[0] = bigcomplex( r1-xb,  ir2 - ir3) * oneover4a;
	  roots[1] = conj(roots[0]); // bigcomplex( r1-xb,  ir2 - ir2) * oneover4a;
	  roots[2] = bigcomplex(-r1-xb,  ir2 + ir3 ) * oneover4a;
	  roots[3] = conj(roots[2]); // bigcomplex(-r1-xb, -ir2 - ir3 ) * oneover4a;
	}
    }
  else // disc < 0
    {
#ifdef DEBUG_ROOTS
      cout<<"Negative discriminant\nType 3\n";
#endif
      bigfloat realphi;       // will hold the real root, which will be cphi[2]
      if (is_real(cphi[1])) 
	{
	  realphi=real(cphi[1]);
	  cphi[1]=cphi[2];
	  cphi[2]=realphi;
	}
      else 
	if (is_real(cphi[2])) 
	  {
	    realphi=real(cphi[2]);
	  }
	else 
	  {
	    realphi=real(cphi[0]);
	    cphi[0]=cphi[2];
	    cphi[2]=realphi;
	  }
#ifdef DEBUG_ROOTS
      cout<<"Sorted roots of cubic (real one last) are \n";
      cout<<cphi[0]<<"\n"<<cphi[1]<<"\n"<<cphi[2]<<endl;
#endif
      bigfloat three(to_bigfloat(3));
      bigcomplex r1 = sqrt((a4*cphi[0]-xH)/three);
      bigfloat r3   = safe_sqrt((a4*realphi-xH)/three);
      if(R<0)  r3 = -r3;

#ifdef DEBUG_ROOTS
      cout<<"r_i = "<<r1<<", "<<conj(r1)<<", "<<r3<<"\n";
      cout<<"product = "<<r1*conj(r1)*r3<<", R = "<<R<<endl;
#endif
      roots[0] = bigcomplex( r3 - xb, 2*imag(r1) ) * oneover4a;
      roots[1] = conj(roots[0]);
      roots[2] = bigcomplex(( 2*real(r1) - r3 - xb)) * oneover4a;
      roots[3] = bigcomplex((-2*real(r1) - r3 - xb)) * oneover4a;
      // roots[2] and roots[3] are real
    }
#ifdef DEBUG_ROOTS
  cout << "finished setting roots of quartic.\n";
  dump(cout);
#endif  
}

quartic::~quartic() 
{ 
  //cout<<"Quartic destructor: " << this << ", roots="<<roots<<endl;
  delete[] roots;
}

quartic::quartic(const quartic& q)
:a(q.a),b(q.b),c(q.c),d(q.d),e(q.e),type(q.type),ii(q.ii),jj(q.jj),disc(q.disc)
{ 
  have_zpol=0; equiv_code=q.equiv_code;
  roots=new bigcomplex[4];
  for(int i=0; i<4; i++) roots[i] = q.roots[i];
  //cout<<"Quartic constructor #3: " << this << endl;
}

// member functions & operators

void quartic::assign(const bigint& qa, const bigint& qb, const bigint& qc, 
		     const bigint& qd, const bigint& qe)
{
  have_zpol=0; equiv_code=0;
  a=qa; b=qb; c=qc; d=qd; e=qe; 
  set_roots_and_type();
}

void quartic::assign(const bigint& qa, const bigint& qb, const bigint& qc, 
		     const bigint& qd, const bigint& qe, 
		     bigcomplex* qr,	     int qt,
		     const bigint& qi,const bigint& qj,const bigint& qdisc)
{ 
  have_zpol=0; equiv_code=0;
  a=qa; b=qb; c=qc; d=qd; e=qe; 
  for(int i=0; i<4; i++) roots[i] = qr[i];
  type=qt; ii=qi; jj=qj; disc=qdisc;
//  cout<<"Quartic assign, now: "; dump(cout);
}

void quartic::operator=(const quartic& q)
{ 
  have_zpol=0; equiv_code = q.equiv_code;
  //cout<<" Quartic op=, LHS was: "; dump(cout);
  //cout<<" RHS = "; q.dump(cout);
  a=q.a; b=q.b; c=q.c; d=q.d; e=q.e; 
  for(int i=0; i<4; i++) roots[i] = q.roots[i];
  type=q.type; ii=q.ii; jj=q.jj; disc=q.disc;
  //cout<<" Quartic op=, LHS now: "; dump(cout);
}

int quartic::trivial() const // Checks for a rational root
{
  return rational_roots().size()>0;
}

vector<bigrational> quartic::rational_roots() const // returns rational roots
{
  bigint num;
  int i, start = (type==1)? 5 : (type==2)? 1 : 3;
  bigint ac = a*c, a2d = a*a*d, a3e = a*a*a*e;
  bigfloat ra = I2bigfloat(a);
  vector<bigrational> ans;
  for (i = start; i<=4 ; i++)
    {
      num = Iround(ra*real((roots)[i-1]));
      if (((((num+b)*num+ac)*num+a2d)*num+a3e)== 0)
        ans.push_back(bigrational(num,a));
    }
  return(ans);
}

void quartic::make_zpol()
{
  if(have_zpol) return;
  bigint b2 = sqr(b);
  asq=sqr(a);
  p = -H_invariant(a,b,c);
  psq = sqr(p);
  r = R_invariant(a,b,c,d);
  have_zpol=1;
}

// find the number of roots of aX^4 + bX^3 + cX^2 + dX + e = 0 (mod p)
// except 4 is returned as 3 so result is 0,1,2 or 3.
long quartic::nrootsmod(long p) const
{
#ifdef TEST_EQCODE
  cout << "Counting roots mod " << p << " of " << (*this) << "\n";
#endif
  long ap = mod(a,p);
  long bp = mod(b,p);
  long cp = mod(c,p);
  long dp = mod(d,p);
  long ep = mod(e,p);
#ifdef TEST_EQCODE
  cout << "reduced coefficients: " << ap <<","<< bp <<","<< cp <<","<< dp <<","<< ep << "\n";
#endif

  long nroots = (ap==0);  // must count infinity as a root!
  for (long i = 0; (i < p)&&(nroots<3) ; i++)
    {
      long temp = ((((ap*i+bp)*i + cp)*i + dp)*i + ep);
      if ((temp%p)==0) {nroots++;} 
    }
  if(nroots==4) return 3; 
#ifdef TEST_EQCODE
  cout << "returning code " << nroots << "\n";
#endif
  return nroots;
}

unsigned long quartic::set_equiv_code(const vector<long>& plist)
{
#ifdef TEST_EQCODE
  cout << "Setting equiv_code for " << (*this) << "\n";
#endif
  equiv_code=0;
#ifdef NEW_EQUIV // else leave all codes 0, i.e. disable this test
  for(unsigned long i=0; i<plist.size(); i++)
    {
      int code = nrootsmod(plist[i]);
      equiv_code |= (code<<(2*i));
    }
#endif
#ifdef TEST_EQCODE
  cout << "Final code = " << equiv_code << "\n";
#endif
  return equiv_code;
}