1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
// msubspace.cc: implementations of multiprecision subspace class
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
//#define CHECK_RESTRICT // define this to make restrict_mat and prestrict check
// invariance of subspaces.
#include <eclib/marith.h>
#include <eclib/msubspace.h>
// Definitions of nonmember, nonfriend operators and functions:
msubspace combine(const msubspace& s1, const msubspace& s2)
{
bigint d = s1.denom * s2.denom;
mat_m b1=s1.basis, b2=s2.basis;
long nr = b1.nro, nc = b2.nco;
mat_m b = b1*b2;
bigint g; long n=nr*nc; bigint* bp=b.entries;
while ((n--)&&(!is_one(g))) g=gcd(g,*bp++);
if(!(is_zero(g)||is_one(g)))
{
d/=g; bp=b.entries; n=nr*nc; while(n--) (*bp++)/=g;
}
vec_i p = s1.pivots[s2.pivots];
return msubspace(b,p,d);
}
//This one is used a LOT
mat_m restrict_mat(const mat_m& m, const msubspace& s)
{ long i,j,k,d = dim(s), n=m.nro;
bigint dd = s.denom;
mat_m ans(d,d);
const mat_m& sb = s.basis;
bigint *ap, *a=m.entries, *b=sb.entries, *bp, *c=ans.entries, *cp;
int *pv=s.pivots.entries;
for(i=0; i<d; i++)
{
bp=b; k=n; ap=a+n*(pv[i]-1);
while(k--)
{
cp=c; j=d;
while(j--)
{
*cp++ += *ap * *bp++;
}
ap++;
}
c += d;
}
// N.B. The following check is strictly unnecessary and slows it down,
// but is advisable!
#ifdef CHECK_RESTRICT
int check = 1; n = nrows(sb);
for (i=1; (i<=n) && check; i++)
for (j=1; (j<=d) && check; j++)
check = (dd*m.row(i)*sb.col(j) == sb.row(i)*ans.col(j));
if (!check)
{
cout<<"Error in restrict_mat: msubspace not invariant!\n";
abort();
}
#endif
return ans;
}
msubspace kernel(const mat_m& mat, int method)
{
long rank, nullity, n, r, i, j;
bigint d, zero; zero=0;
vec_i pcols,npcols;
mat_m m = echelon(mat,pcols,npcols, rank, nullity, d, method);
long dim = ncols(m);
mat_m basis(dim,nullity);
for (n=1; n<=nullity; n++) basis.set(npcols[n],n,d);
for (r=1; r<=rank; r++)
{ i = pcols[r];
for (j=1; j<=nullity; j++) basis.set(i,j, -m(r,npcols[j]));
}
msubspace ans(basis, npcols, d);
return ans;
}
msubspace image(const mat_m& mat, int method)
{
vec_i p,np;
bigint d;
long rank, nullity;
mat_m b = transpose(echelon(transpose(mat),p,np,rank,nullity,d,method));
msubspace ans(b,p,d);
return ans;
}
msubspace eigenspace(const mat_m& mat, const bigint& lambda, int method)
{
mat_m m = addscalar(mat,-lambda);
msubspace ans = kernel(m,method);
return ans;
}
msubspace subeigenspace(const mat_m& mat, const bigint& l, const msubspace& s, int method)
{
mat_m m = restrict_mat(mat,s);
msubspace ss = eigenspace(m, l*(denom(s)),method);
msubspace ans = combine(s,ss );
return ans;
}
msubspace pcombine(const msubspace& s1, const msubspace& s2, const bigint& pr)
{
bigint d = s1.denom * s2.denom; // redundant since both should be 1
mat_m b1=s1.basis, b2=s2.basis;
mat_m b = matmulmodp(b1,b2,pr);
vec_i p = s1.pivots[s2.pivots];
return msubspace(b,p,d);
}
mat_m prestrict(const mat_m& m, const msubspace& s, const bigint& pr)
{ long i,j,k,d = dim(s), n=m.nro;
bigint dd = s.denom; // will be 1 if s is a mod-p msubspace
mat_m ans(d,d);
const mat_m& sb = s.basis;
bigint *ap, *a=m.entries, *b=sb.entries, *bp, *c=ans.entries, *cp;
int *pv=s.pivots.entries;
for(i=0; i<d; i++)
{
bp=b; k=n; ap=a+n*(pv[i]-1);
while(k--)
{
cp=c; j=d;
while(j--)
{
*cp += mod(*ap * *bp++, pr);
*cp = mod(*cp, pr);
cp++;
}
ap++;
}
c += d;
}
#ifdef CHECK_RESTRICT
mat_m& left = matmulmodp(m,sb,pr), right = matmulmodp(sb,ans,pr);
if(dd!=1) left*=dd;
int check = (left==right);
if (!check)
{
cout<<"Error in prestrict: msubspace not invariant!\n";
abort();
}
#endif
return ans;
}
msubspace pkernel(const mat_m& mat, const bigint& pr)
{
long rank, nullity, n, r, i, j;
vec_i pcols,npcols;
mat_m m = echmodp(mat,pcols,npcols, rank, nullity, pr);
long dim = ncols(m);
mat_m basis(dim,nullity);
bigint one; one=1;
for (n=1; n<=nullity; n++) basis.set(npcols[n],n,one);
for (r=1; r<=rank; r++)
{ i = pcols[r];
for (j=1; j<=nullity; j++) basis.set(i,j, -m(r,npcols[j]));
}
msubspace ans(basis, npcols, one);
return ans;
}
msubspace pimage(const mat_m& mat, const bigint& pr)
{
vec_i p,np;
long rank, nullity;
mat_m b = transpose(echmodp(transpose(mat),p,np,rank,nullity,pr));
msubspace ans(b,p,BIGINT(1));
return ans;
}
msubspace peigenspace(const mat_m& mat, const bigint& lambda, const bigint& pr)
{
mat_m m = addscalar(mat,-lambda);
msubspace ans = pkernel(m,pr);
return ans;
}
msubspace psubeigenspace(const mat_m& mat, const bigint& l, const msubspace& s, const bigint& pr)
{
mat_m m = prestrict(mat,s,pr);
msubspace ss = peigenspace(m, l*(denom(s)),pr);
msubspace ans = pcombine(s,ss,pr);
return ans;
}
//Attempts to lift from a mod-p msubspace to a normal Q-msubspace by expressing
//basis as rational using modrat and clearing denominators
//
msubspace lift(const msubspace& s, const bigint& pr, int trace)
{
bigint modulus=pr,dd,n,d; long nr,nc,nrc;
int succ,success=1;
bigint lim=sqrt(pr>>1);
mat_m m = s.basis; bigint *mp;
if(trace)
{
cout << "Lifting mod-p msubspace.\n basis mat_m mod "<<pr<<" is:\n";
cout << m;
cout << "Now lifting back to Q.\n";
cout << "lim = " << lim << "\n";
}
nr = m.nro; nc = m.nco; nrc = nr*nc; mp=m.entries;
dd=1;
while(nrc--)
{
succ = modrat(*mp++,modulus,lim,n,d);
success = success && succ;
dd=lcm(d,dd);
}
if(!success)
cout << "Problems encountered with modrat lifting of msubspace." << endl;
dd=abs(dd);
if(trace) cout << "Common denominator = " << dd << "\n";
nrc=nr*nc; mp=m.entries;
while(nrc--)
{
*mp=mod(dd*(*mp),pr);
mp++;
}
msubspace ans(m, pivots(s), dd);
return ans;
}
|