1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
|
// mwprocs.cc: implementation of class mw for Mordell-Weil basis
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
//#define DEBUG_QSIEVE
#include <eclib/interface.h>
#include <eclib/compproc.h>
#include <eclib/matrix.h>
#include <eclib/subspace.h>
#include <eclib/points.h>
#include <eclib/polys.h>
#include <eclib/curvemod.h>
#include <eclib/pointsmod.h>
#include <eclib/ffmod.h>
#include <eclib/divpol.h>
#include <eclib/tlss.h>
#include <eclib/elog.h>
#include <eclib/saturate.h>
#include <eclib/sieve_search.h>
#include <eclib/mwprocs.h>
//
// some locally called general functions, belong in library maybe:
//
// unlikely to be called by anything but find_inf:
vector<bigcomplex> roots_of_cubic(const Curve& E)
{
bigint a1,a2,a3,a4,a6;
E.getai(a1,a2,a3,a4,a6);
bigfloat ra1=I2bigfloat(a1),
ra2=I2bigfloat(a2),
ra3=I2bigfloat(a3),
ra4=I2bigfloat(a4),
ra6=I2bigfloat(a6);
bigcomplex c1 = ra2 + ra1*(ra1/4) ;
bigcomplex c2 = ra4 + ra1*(ra3/2) ;
bigcomplex c3 = ra6 + ra3*(ra3/4) ;
return solvecubic(c1,c2,c3);
}
bigfloat min_real(vector<bigcomplex> array)
{
//cout<<"In min_real() with array:\t"<<array<<endl;
bigfloat minr, r; int first=1; minr=0;
for (unsigned int i=0; i<array.size(); i++)
{ if(abs(imag(array[i]))<0.001) // then the root is regarded as real
{
r = real(array[i]);
if (first||(minr > r)) {minr = r; first=0;}
}
}
//cout<<"minr finally " << minr << "\n";
return minr;
}
int order_real_roots(vector<double>& bnd, vector<bigcomplex> roots);
//checks (and returns) how many roots are actually real, and puts those in
//bnd, in increasing order, by calling set_the_bound
int set_the_bounds(vector<double>& bnd, bigfloat x0, bigfloat x1, bigfloat x2);
//This transforms (if possible) x0, x1 and x1 into double; the search
//should be made on [x0,x1]U[x2,infty] so if x1 or x2 overflows, the search
//is on [x0,infty]. The function returns 3 in the first case, 1 in the second.
//If x0 overflows, it returns 0. A warning is printed out.
#define matentry(m,i,j) *((m)+((i)*MAXRANK)+(j))
bigfloat det(bigfloat *m, long m_size);
// fwd declaration: det and detminor jointly recursive
bigfloat* get_minor(bigfloat *m, long m_size, long i0, long j0)
{
long i, j, ii, jj;
bigfloat *minor = new bigfloat[MAXRANK*MAXRANK];
for (i=0; i<m_size-1; i++)
{
ii=i; if(i>=i0)ii++;
for (j=0; j<m_size-1; j++)
{
jj=j; if(j>=j0) jj++;
matentry(minor,i,j) = matentry(m,ii,jj);
}
}
return minor;
}
bigfloat det_minor(bigfloat *m, long m_size, long i0, long j0)
{
bigfloat *minor = get_minor(m,m_size,i0,j0);
bigfloat det_return = det(minor, m_size-1);
delete [] minor;
return det_return;
}
bigfloat det(bigfloat *m, long m_size)
{
switch (m_size) {
case 0:
return to_bigfloat(1); break;
case 1:
return matentry(m,0,0); break;
case 2:
return matentry(m,0,0)*matentry(m,1,1) - matentry(m,1,0)*matentry(m,0,1);
break;
default:
// use recursion
/* // Old naive minor-expansion method:
bigfloat ans = 0;
long sign = 1, j;
for (j=0; j<m_size; j++)
{ ans += sign * matentry(m,0,j) * det_minor(m, m_size, 0, j);
sign *= -1;
}
return ans;
*/
// New Gaussian method (20/1/95)
long i,j,i0;
bigfloat ans=to_bigfloat(1), pivot=matentry(m,0,0), piv, temp,
eps=to_bigfloat(1.0e-6);
for(i0=0; i0<m_size && abs(pivot)<eps; i0++) pivot=matentry(m,i0,0);
if(i0==m_size) return to_bigfloat(0); // first column all 0
if(i0>0) // swap rows 0, i0:
{
ans=to_bigfloat(-1);
for(j=0; j<m_size; j++)
{
temp=matentry(m,i0,j);
matentry(m,i0,j)=matentry(m,0,j);
matentry(m,0,j)=temp;
}
}
// eliminate first column
pivot=matentry(m,0,0);
for(i=1; i<m_size; i++)
{
piv=matentry(m,i,0)/pivot;
for(j=0; j<m_size; j++)
matentry(m,i,j) = matentry(m,i,j)-matentry(m,0,j)*piv;
}
return ans*pivot*det_minor(m,m_size,0,0);
break;
}
return to_bigfloat(1); // shouldn't get here in fact
}
//#define DEBUG 1
vector<long> cleardenoms(vector<bigfloat> alpha)
{
long len = alpha.size();
vector<long> nlist(len); // returned
vector<long> dlist(len);
long i, lcmd = 1;
bigfloat x, last=alpha[len-1];
for (i=0; i < len-1; i++) // i doesn't include rank (new value)
{ x = alpha[i] / last;
ratapprox(x, nlist[i], dlist[i]);
lcmd = (lcmd*dlist[i]) / ::gcd(lcmd, dlist[i]); // ie lcm(d, dlist[i])
// ie we find the lcm of whole of dlist
#ifdef DEBUG
cout<<"ratapprox: of "<< x <<" is "<<nlist[i]<<" / "<<dlist[i]<<endl;
cout<<" lcm of denoms so far: "<<lcmd<<endl;
#endif
}
for (i=0; i < len-1; i++)
nlist[i] *= (lcmd / dlist[i]); // clear the denominators
nlist[len-1] = lcmd;
return nlist;
}
mw::mw(Curvedata *EE, int verb, int pp, int maxr)
:E(EE), rank(0), maxrank(maxr), reg(to_bigfloat(1)), verbose(verb), process_points(pp), satsieve(EE,verb)
{
#ifdef DEBUG
verbose=1;
#endif
height_pairs = new bigfloat[MAXRANK*MAXRANK];
}
mw::~mw()
{
delete [] height_pairs;
}
// NB We cannot use the default parameter mechanism as this must fit
// the template for the virtual function declared in class
// point_processor!
int mw::process(const bigint& x, const bigint& y, const bigint& z)
{
return process(x,y,z,MAXSATPRIME);
}
int mw::process(const bigint& x, const bigint& y, const bigint& z, int sat)
{
#ifdef DEBUG
cout<<"mw::process with x = "<< x <<", y = "<<y<<", z = "<<z<<endl;
#endif
bigint rz; isqrt(z,rz);
bigint x1=x*rz, y1=y, z1=z*rz;
if(iso)
{
y1 -= (a1*x1+4*a3*z1);
x1 *= 2;
z1 *= 8;
}
Point P(E, x1,y1,z1);
if(P.isvalid()) return process(P,sat);
// error:
cout<<"Raw point x,y,z = "<<x<<", "<<y<<", "<<z<<endl;
cout<<"converted point x,y,z = "<<x1<<", "<<y1<<", "<<z1<<"\t";
cout<<"--not on curve!"<<endl;
return 0;
}
int mw::process(const vector<Point>& Plist, int sat)
{
// process the points without saturation, do that at the end
if(verbose)
cout<<"Processing "<<Plist.size()<<" points ..."<<endl;
int flag=0;
for(vector<Point>::const_iterator P=Plist.begin(); P!=Plist.end(); P++)
flag = (process(*P,0));
if(verbose)
cout<<"Finished processing the points (which had rank "<<rank<<")"<<endl;
if((sat>0)&&(rank>0))
{
if (verbose) cout<<"saturating up to "<<sat<<"..."<<flush;
satsieve.set_points(basis);
int index = satsieve.do_saturation_upto(sat);
if(verbose) cout<<"done"<<endl;
if(index>1)
{
basis = satsieve.getgens();
if(verbose)
cout<<"Gained index "<<index<<", new generators = "<<basis<<endl;
}
// compute the height pairing matrix and regulator
int i, j;
for (i=0; i < rank; i++)
{
mat_entry(i,i) = height(basis[i]);
for (j=0; j < i; j++)
{
mat_entry(i,j)
= mat_entry(j,i)
= height_pairing(basis[i], basis[j]);
}
}
reg = det(height_pairs,rank);
if(verbose)
cout<<"Regulator = "<<reg<<endl;
}
return flag;
}
int mw::process(const Point& PP, int sat)
{
#ifdef DEBUG
cout<<"mw::process with P = "<< PP <<endl;
#endif
Point P = PP; // so we can process const points
long ord = order(P);
long i, j, rank1=rank+1;
#ifdef DEBUG
cout<<"P = "<< P <<" has order "<<ord<<endl;
bigfloat hP=height(P);
cout<<"P = "<< P <<" has height "<<hP<<endl;
#endif
if (verbose)
{cout<<"P"<<rank1<<" = "<<P;
#ifdef DEBUG
cout<<" (height "<<height(P)<<")";
#endif
cout << "\t" << flush;
#ifdef DEBUG
cout << "\n";
if(!P.isvalid()) cout << "###Warning### Not on curve!\n";
#endif
}
if (ord > 0)
{
if (verbose) cout<<" is torsion point, order "<<ord<<endl;
return 0;
} // we're not interested in torsion points
if(!process_points)
{
basis.push_back(P); rank++;
if(verbose) cout<<"P = "<<P<<", ht(P) = "<<height(P)<<endl;
return 0;
}
if (rank==0) // first non-torsion point
{
reg = height(P);
mat_entry(0,0) = reg; // ie height_pairs[0][0] = reg
basis.push_back(P); rank=1;
if (verbose) cout<<" is generator number 1\n";
#ifdef DEBUG
cout << "first non-torsion point, reg so far = "<<reg<<"\n";
// cout << "returning "<<(maxrank<2)<<endl;
#endif
if(sat>0)
{
satsieve.set_points(basis);
if (verbose) cout<<"saturating up to "<<sat<<"..."<<flush;
int index = satsieve.do_saturation_upto(sat);
if(verbose) cout<<"done"<<endl;
if(index>1)
{
basis = satsieve.getgens();
if(verbose) cout<<"Gained index "<<index<<", new generator = "<<basis[0]<<endl;
reg = height(basis[0]);
mat_entry(0,0) = reg;
}
}
return (maxrank<2); // 1 if max reached
}
// otherwise general procedure:
#ifdef DEBUG
cout<<"additional non-torsion point..."<<endl;
#endif
// update the height pairing matrix (at least for now)
// but don't add point yet
mat_entry(rank,rank) = height(P); // also sets height in P
for (i=0; i < rank; i++)
{
Point Q = basis[i];
bigfloat hp = height_pairing(Q, P);
mat_entry(i,rank) = hp;
mat_entry(rank,i) = hp;
}
// compute cofactors of new last column
vector<bigfloat> alpha(rank1); // to store cofactors
long detsign = ( odd(rank) ? +1 : -1 ); //set for flip before first use
for (i=0; i < rank; i++)
{
detsign = -detsign;
alpha[i] = det_minor(height_pairs, rank1, i, rank) * detsign;
#ifdef DEBUG
cout<<"alpha["<<i<<"] = "<<alpha[i]<<"\n";
#endif
}
alpha[rank] = reg; // ie the previous value, before this point
#ifdef DEBUG
cout<<"alpha["<<rank<<"] = "<<alpha[rank]<<"\n";
#endif
// find the new determinant
bigfloat newreg = to_bigfloat(0);
for (i=0; i <= rank; i++) newreg += mat_entry(i,rank) * alpha[i];
#ifdef DEBUG
cout<<"After adding P, new height pairing matrix:\n";
for(i=0; i<=rank; i++)
{
for(j=0; j<=rank; j++) cout << mat_entry(i,j) << "\t";
cout << "\n";
}
cout<<"\nreg is now " << newreg << "\t";
#endif
// test for simple case, new point is indep previous
if ( abs(newreg/reg) > 1.0e-4 )
{
reg = newreg;
#ifdef DEBUG
cout << "treating as NON-zero" << "\n";
#endif
basis.push_back(P); rank=rank1;
if (verbose) cout<<" is generator number "<<rank<<endl;
if(sat>0)
{
satsieve.reset_points(basis);
if (verbose) cout<<"saturating up to "<<sat<<"..."<<flush;
int index = satsieve.do_saturation_upto(sat);
if(verbose) cout<<"done (index = "<<index<<")."<<endl;
if(index>1)
{
basis = satsieve.getgens();
if(verbose) cout<<"Gained index "<<index<<", new generators = "<<basis<<endl;
// completely recompute the height pairing matrix
for (i=0; i < rank; i++)
{
mat_entry(i,i) = height(basis[i]);
for (j=0; j < i; j++)
{
mat_entry(i,j)
= mat_entry(j,i)
= height_pairing(basis[i], basis[j]);
}
}
reg /= (index*index);
}
}
#ifdef DEBUG
cout << "about to return, rank = "<<rank<<", maxrank = "<<maxrank<<": returning "<<(maxrank==rank)<<endl;
#endif
return (maxrank==rank); // 1 if max reached
}
// otherwise, express new point as lin-comb of the previous Now that
// we are saturating as we go, this should not happen (unless the
// index is divisible by a prime > sat)
#ifdef DEBUG
cout << "treating as ZERO" << "\n";
cout << "Finding a linear relation between P and current basis\n";
#endif
vector<long> nlist = cleardenoms(alpha);
long index = nlist[rank];
#ifdef DEBUG
cout<<"index = "<<index<<endl;
#endif
// test simple case when new is just Z-linear comb of old
if ( index == 1 )
{ if (verbose)
{
cout<<" = "<<-nlist[0]<<"*P1";
for(i=1; i<rank; i++)
cout<<" + "<<-nlist[i]<<"*P"<<(i+1);
cout<<" (mod torsion)\n";
}
// Check:
Point Q = P;
for(i=0; i<rank; i++) Q += nlist[i]*basis[i];
int oQ = order(Q);
if(oQ==-1) // infinite order, problem!
{
cout<<"Problem in mw::process(), bad linear combination!\n";
cout<<"Difference = "<<Q<<" with height "<<height(Q)<<endl;
}
else if(verbose>1)
{
cout<<"Difference = "<<Q<<" with height "<<height(Q)<<endl;
}
return 0; // with regulator and basis (and h_p matrix) unchanged
} // end of if(index==1)
// otherwise add P to the list now, compute to gain index
basis.push_back(P);
if (verbose)
{
for (i=0; i < rank; i++)
cout<<nlist[i]<<"*P"<<(i+1)<<" + ";
cout<<index<<"*"<<"P"<<(rank1)<<" = 0 (mod torsion)\n";
}
// Check:
Point Q = index*P;
for(i=0; i<rank; i++) Q += nlist[i]*basis[i];
int oQ = order(Q);
if(oQ==-1) // infinite order, problem!
{
cout<<"Problem in mw::process(), bad linear combination!\n";
cout<<"Difference = "<<Q<<" with height "<<height(Q)<<endl;
}
else if(verbose>1)
{
cout<<"Difference = "<<Q<<" with height "<<height(Q)<<endl;
}
// find minimum coeff. |ai|
long min = 0, ni;
long imin = -1;
for (i=0; i <= rank; i++)
{ ni = abs(nlist[i]);
if ( (ni>0) && ( (imin==-1) || (ni<min) ) )
{ min = ni; imin = i; }
}
// find aj with ai ndiv aj, write aj = ai*q + r with 0<r<|ai|
// since then ai*Pi + aj*Pj = ai(Pi + q*Pj) + r*Pj,
// replace generator Pi with Pi + q*Pj
// and replace aj by r, and i by j
// after finite no. steps obtain some minimal ai = 1
// then we can just discard Pi.
long r, q;
while ( min > 1 )
{
for (i=0; i <= rank; i++)
{
r = mod(nlist[i], min);
q = (nlist[i] - r) / nlist[imin];
if ( r!=0 )
{
basis[imin] += q*basis[i];
imin=i; min=abs(r); nlist[imin]=r;
#ifdef DEBUG
if (verbose)
{ for (j=0; j < rank; j++)
cout<<nlist[j]<<"*"<<basis[j]<<" + ";
cout<<nlist[rank]<<"*"<<basis[rank]<<" = 0 (mod torsion)\n";
}
#endif
break; // out of the for loop, back into the while
}
} // ends for
} // ends while
if (verbose)
cout<<"Gaining index "<<index<<"; ";
// delete basis[imin]
basis.erase(basis.begin()+imin);
// for(j=imin; j<rank; j++) basis[j]=basis[j+1];
// completely recompute the height pairing matrix
for (i=0; i < rank; i++) // 19/8/02: this was <=rank
{ mat_entry(i,i) = height(basis[i]);
for (j=0; j < i; j++)
{
mat_entry(i,j)
= mat_entry(j,i)
= height_pairing(basis[i], basis[j]);
}
}
reg /= (index*index);
if (verbose)
{
cout<<"\nNew set of generators: \n";
for(i=0; i<rank; i++)
{
if(i)cout<<", ";
cout<<"P"<<(i+1)<<" = "<< basis[i];
}
cout<<endl;
}
return 0; // rank did not increase
} // end of function mw::process(Point)
int mw::saturate(bigint& index, vector<long>& unsat, long sat_bd, int odd_primes_only)
{
if (verbose) cout<<"saturating basis..."<<flush;
// This code does a dummy call to index_bound() in order to get
// points from the search done there into the mwbasis. But it was
// decided to let the user do some searching if relevant instead
#if(0)
vector<Point> pts;
bigint ib = index_bound(E,basis,pts,0,(verbose>1));
// Must make sure that the new points have the correct Curvedata pointer!
for(unsigned int i=0; i<pts.size(); i++)
pts[i].init(E,getX(pts[i]),getY(pts[i]),getZ(pts[i]));
bigfloat oldreg = reg;
int oldrank=rank;
process(pts,0); //no saturation here! This may update basis
bigint ind = Iround(sqrt(oldreg/reg));
if(verbose&&(ind>1))
{
cout<<"after search, gained index "<<ind
<<", regulator = "<<reg<<endl;
}
if((rank>oldrank))
{
cout<<"after search, rank increases to "<<rank
<<", regulator = "<<reg<<endl;
}
#endif
satsieve.set_points(basis);
int ok = 1;
if(rank>0) ok=satsieve.saturate(unsat,index,sat_bd,1,10,odd_primes_only);
if(verbose) cout<<"done"<<endl;
if(!ok)
cout<<"Failed to saturate MW basis at primes "<<unsat<<endl;
if(index>1)
{
basis = satsieve.getgens();
// completely recompute the height pairing matrix
for (int i=0; i < rank; i++)
{
mat_entry(i,i) = height(basis[i]);
for (int j=0; j < i; j++)
{
mat_entry(i,j)
= mat_entry(j,i)
= height_pairing(basis[i], basis[j]);
}
}
long ind = I2long(index);
reg /= (ind*ind);
if(verbose)
{
cout<<"Gained index "<<index<<endl;
cout<<"New regulator = "<<reg<<endl;
}
}
#if(0)
index *=ind;
#endif
return ok;
}
void mw::search(bigfloat h_lim, int moduli_option, int verb)
{
#ifdef DEBUG
cout<<"In mw::search; maxrank = "<<maxrank<<endl;
#endif
if(moduli_option)
{
sieve s(E, this, moduli_option, verb);
s.search(h_lim);
}
else // use Stoll's sieve, Sophie Labour's conversion:
{
vector<bigint> c(4);
E -> getai(a1,a2,a3,a4,a6);
iso = !((a1==0)&&(a3==0));
if(iso)
{
c[0]=16*getb6(*E);
c[1]= 8*getb4(*E);
c[2]= getb2(*E);
c[3]=1;
}
else
{
c[0]=a6;
c[1]=a4;
c[2]=a2;
c[3]=1;
}
if(iso) h_lim+=2.08;
// if(iso) cout<<"Adding log(8) to h_lim, increasing it to "<<h_lim<<endl;
qsieve s(this, 3, c, h_lim, verb);
bigcomplex c1(I2bigfloat(c[2])),
c2(I2bigfloat(c[1])),
c3(I2bigfloat(c[0]));
vector<bigcomplex> roots=solvecubic(c1,c2,c3);
vector<double> bnd(3);
int nrr=order_real_roots(bnd,roots);
#ifdef DEBUG_QSIEVE
cout<<endl;
cout<<"cubic "<<c[0]<<" "<<c[1]<<" "<<c[2]<<" "<<c[3]<<endl;
cout<<"coeff "<<c1<<" "<<c2<<" "<<c3<<endl;
cout<<"roots "<<roots<<endl;
cout<<"bnd "<<bnd<<endl;
cout<<"smallest "<<bnd[0]<<endl;
#endif
s.set_intervals(bnd,nrr,1);
s.search(); //searches and processes
}
}
void mw::search_range(bigfloat xmin, bigfloat xmax, bigfloat h_lim,
int moduli_option, int verb)
{
sieve s(E, this, moduli_option, verb);
s.search_range(xmin,xmax,h_lim);
}
//#define DEBUG_SIEVE
sieve::sieve(Curvedata * EE, mw* mwb, int moduli_option, int verb)
: E(EE), mwbasis(mwb), verbose(verb)
{
E->getai(a1,a2,a3,a4,a6);
int ncomp = getconncomp(*E);
posdisc = ncomp==2;
long i, j;
// find pt of order two in E(R) with minimal x-coord
vector<bigcomplex> roots = roots_of_cubic(*E);
if(posdisc)
{
x1=real(roots[0]);
x2=real(roots[1]);
x3=real(roots[2]);
orderreal(x3,x2,x1); // so x1<x2<x3
xmin=x1;
}
else
x3=xmin = min_real(roots);
if (verbose)
{
cout << "sieve: real points have ";
if(posdisc) cout<<x1<<" <= x <= " << x2 << " or ";
cout << x3 << " <= x; xmin = " << xmin << endl;
}
// set up list of auxiliary moduli
// and a list of which residues modulo each of these are squares
switch(moduli_option) {
case 1:
num_aux = 10;
auxs = new long[num_aux];
auxs[0]=3;
auxs[1]=5;
auxs[2]=7;
auxs[3]=11;
auxs[4]=13;
auxs[5]=17;
auxs[6]=19;
auxs[7]=23;
auxs[8]=29;
auxs[9]=31;
break;
case 2:// the following taken from Gebel's scheme
num_aux = 3;
auxs = new long[num_aux];
auxs[0]=5184; // = (2^6)*(3^4) // old: 6624; // = (2^5)*(3^2)*23
auxs[1]=5929; // = (7^2)*(11^2) // old: 8075; // = (5^2)*17*19
auxs[2]=4225; // = (5^2)*(13^2) // old: 7007; // = (7^2)*11*13
break;
case 3:
default:
num_aux = 9;
auxs = new long[num_aux];
auxs[0]=32;
auxs[1]= 9;
auxs[2]=25;
auxs[3]=49;
auxs[4]=11;
auxs[5]=13;
auxs[6]=17;
auxs[7]=19;
auxs[8]=23;
break;
}
#ifdef DEBUG_SIEVE
if(verbose)
{
cout<<"Using "<<num_aux<<" sieving moduli:\n";
for(i=0; i<num_aux; i++) cout << auxs[i]<<"\t";
cout<<endl;
}
#endif
xgood_mod_aux = new int*[num_aux];
// x1good_mod_aux = new int*[num_aux];
squares = new int*[num_aux];
amod = new long[num_aux];
for (i = 0; i < num_aux; i++)
{
long aux = auxs[i];
long half_aux = ((aux + 1) / 2);
squares[i] = new int[aux];
for (j = 0; j < aux; j++) squares[i][j]=0;
for (j = 0; j < half_aux; j++) squares[i][(j*j)%aux]=1;
xgood_mod_aux[i] = new int[aux];
// x1good_mod_aux[i] = new int[aux];
//
// // set the flag matrix for c=1:
//
// long pd1 = posmod(a1, aux);
// long pd2 = posmod(a2, aux);
// long pd3 = posmod(a3, aux);
// long pd4 = posmod(a4, aux);
// long pd6 = posmod(a6, aux);
//
// long disc, temp, temp2, x=0;
//
// long dddf= posmod(24,aux);
// long ddf = posmod(2*(pd1*pd1)%aux + 8*pd2+24 , aux);
// long df = posmod(pd1*(pd1+2*pd3)%aux + 4*(pd4+pd2+1) , aux);
// long f = posmod(((pd3*pd3)%aux+4*pd6) , aux);
//
// while(x<aux)
// {
// x1good_mod_aux[i][x] = squares[i][f];
// x++;
// f += df; if(f >=aux) f -=aux;
// df += ddf; if(df >=aux) df -=aux;
// ddf +=dddf; if(ddf>=aux) ddf-=aux;
// }
} // end of aux loop
#ifdef DEBUG_SIEVE
if(verbose)
{
cout<<"squares lists:\n";
for(i=0; i<num_aux; i++)
{
cout << auxs[i]<<":\t";
for(j=0; j<auxs[i]; j++) if(squares[i][j]) cout<<j<<"\t";
cout<<endl;
}
}
#endif
// variables for collecting efficiency data:
modhits = new long[num_aux];
ascore=0; npoints=0;
for(i=0; i<num_aux; i++) modhits[i]=0;
// if(verbose)
// {
// cout << "Finished constructing sieve, using ";
// switch(moduli_option)
// {
// case 1: cout << "ten primes 3..31"; break;
// case 2: cout << "Gebel's three moduli"; break;
// case 3: cout << "prime powers"; break;
// }
// cout << endl;
// }
}
sieve::~sieve()
{
delete [] auxs;
for(long i=0; i<num_aux; i++)
{
delete [] xgood_mod_aux[i];
// delete [] x1good_mod_aux[i];
delete [] squares[i];
}
delete [] xgood_mod_aux;
// delete [] x1good_mod_aux;
delete [] squares;
delete [] amod;
delete [] modhits;
}
void sieve::search(bigfloat h_lim)
{
// N.B. On 32-bit machines, h_lim MUST be < 21.48 else exp(h_lim)>2^31
// and overflows
// On 64-bit machines, h_lim must be < 43.668.
long i,j;
// set initial bounds for point coefficients
alim = I2long(Ifloor(exp(h_lim)));
clim = clim1 = clim2 = clim0 = I2long(Ifloor(exp(h_lim / 2)));
long temp;
if(posdisc)
{
if(x2<-1)
{
temp = I2long(Ifloor(sqrt(alim/(-x2))));
if(clim1>temp) clim1=temp;
}
if(x1>1)
{
temp = I2long(Ifloor(sqrt(alim/x1)));
if(clim1>temp) clim1=temp;
}
}
if (x3>1)
{
temp = I2long(Ifloor(sqrt(alim/x3)));
if(clim2>temp) clim2=temp;
}
clim=clim2;
if(posdisc) if(clim1>clim2) clim=clim1;
if (verbose)
cout<< "sieve::search: trying a up to "<<alim<<" and c up to "<<clim<<endl;
// declare and initialize other loop variables
long pd1,pd2,pd3,pd4,pd6, csq, aux;
cflag = new int[10000]; // max needed; only used up to c each time,
// and only when c<=10000 (use_cflag==1)
//
// MAIN LOOP
//
#define FIRSTC 1 // for debugging etc
for (c = FIRSTC; c <= clim; c++)
{
// some preliminary calculations of multiples of c etc.
csq = c*c /* long */;
c2 = csq /* bigint */;
c3 = c*c2; c4 = c2*c2; c6 = c2*c4;
d1 = a1*c; d2 = a2*c2; d3 = a3*c3; d4 = a4*c4; d6 = a6*c6;
#ifdef DEBUG_SIEVE
if(verbose)
{
cout<<"c = "<<c<<"\n";
cout<<"d1,...,d6 = "<<d1<<", "<<d2<<", "<<d3<<", "<<d4<<", "<<d6<<"\n";
}
#endif
use_cflag = (c<=10000);
if(use_cflag)
{
// set up flag array of residues coprime to c
cflag[0]=(c==1);
for(i=1; i<c; i++) cflag[i] = cflag[c-i] = (::gcd(i,c)==1);
}
// set the main flag matrix
for (long index = 0; index < num_aux; index++)
{
aux = auxs[index];
// if(gcd(c,aux)==1) // the easy case
// {
// long xcc=0, csqm=csq%aux;;
// int* flag = xgood_mod_aux[index];
// int* flag1 = x1good_mod_aux[index];
// x=aux;
// while(x--)
// {
// *flag = *flag1++;
// xcc+=csqm; flag+=csqm;
// if(xcc>=aux) {xcc-=aux; flag-=aux;}
// }
// }
// else // c, aux have common factor
// {
// if(odd(aux)&&((csq%aux)==0))
// {
// int* flag = xgood_mod_aux[index];
// int* sqs = squares[index];
// x=aux;
// while(x--) *flag++ = *sqs++;
// } // end of if(odd(aux))
// else //default: full recomputation
{
pd1 = posmod(d1 , aux);
pd2 = posmod(d2 , aux);
pd3 = posmod(d3 , aux);
pd4 = posmod(d4 , aux);
pd6 = posmod(d6 , aux);
long dddf= 24%aux;
long ddf = posmod(2*(pd1*pd1)%aux + 8*pd2+24 , aux);
long df = posmod(pd1*(pd1+2*pd3)%aux + 4*(pd4+pd2+1) , aux);
long f = posmod(((pd3*pd3)%aux+4*pd6) , aux);
int* flag = xgood_mod_aux[index];
int* sqs = squares[index];
long x=aux;
#ifdef DEBUG_SIEVE
if(verbose)
{
cout<<"aux = "<< aux <<"\n ";
cout<<"pd1,...,pd6 = "<<pd1<<", "<<pd2<<", "<<pd3<<", "<<pd4<<", "<<pd6<<"\n";
}
#endif
while(x--)
{
*flag++ = sqs[f];
#ifdef DEBUG_SIEVE
if(verbose)
{
cout<<"x = "<< aux-x-1 <<", f(x) = "<<f<<": flag = "<<sqs[f]<<"\n";
}
#endif
f += df; if(f >=aux) f -=aux;
df += ddf; if(df >=aux) df -=aux;
ddf +=dddf; if(ddf>=aux) ddf-=aux;
}
} // end of default case
// } // end of non-coprime case
} // end of aux loop
#ifdef DEBUG_SIEVE
if(verbose)
{
for(i=0; i<num_aux; i++)
{
cout<<"possible x mod "<<auxs[i]<<": ";
for(j=0; j<auxs[i]; j++) if(xgood_mod_aux[i][j]) cout<<j<<"\t";
cout<<endl;
}
}
#endif
if(verbose>1)
{
for(i=0; i<num_aux; i++)
{
int n=0;
cout<<"Number of possible x mod "<<auxs[i]<<": ";
for(j=0; j<auxs[i]; j++) if(xgood_mod_aux[i][j]) n++;
cout<<n<<" ("<<100.0*n/auxs[i]<<" percent)";
cout<<endl;
}
}
// set up for a-loop(s)
if(posdisc&&(c<=clim1))
{
long amin = -alim, amax = alim;
long temp = I2long(Ifloor(csq*x1));
if(temp>amin) amin=temp;
temp = I2long(Ifloor(csq*x2));
if(temp<amax) amax=temp;
a_search(amin,amax);
}
if(c<=clim2)
{
long temp = I2long(Ifloor(csq*x3));
long amin = -alim, amax = alim;
if(temp>amin) amin=temp;
a_search(amin,amax);
}
} // ends c- loop
delete []cflag;
} // end of sieve::search()
void sieve::search_range(bigfloat xmin, bigfloat xmax, bigfloat h_lim)
{
// N.B. h_lim MUST be < 21.48 else exp(h_lim)>2^31 and overflows
long i;
// set initial bounds for point coefficients
alim = I2long(Ifloor(exp(h_lim)));
clim = clim1 = clim2 = clim0 = I2long(Ifloor(exp(h_lim / 2)));
long temp;
if(xmax<-1)
{
temp = I2long(Ifloor(sqrt(alim/(-xmax))));
if(clim1>temp) clim1=temp;
}
if(xmin>1)
{
temp = I2long(Ifloor(sqrt(alim/xmin)));
if(clim1>temp) clim1=temp;
}
clim=clim2;
if(clim1>clim2) clim=clim1;
if (verbose)
cout<< "sieve::search: trying a up to "<<alim<<" and c up to "<<clim<<endl;
// declare and initialize other loop variables
long pd1,pd2,pd3,pd4,pd6, csq, aux;
cflag = new int[10000]; // max needed; only used up to c each time,
// and only when c<=10000 (use_cflag==1)
//
// MAIN LOOP
//
for (c = 1; c <= clim; c++)
{
if(c>clim1) continue;
// some preliminary calculations of multiples of c etc.
csq = c*c /* long */;
c2 = csq /* bigint */;
c3 = c*c2; c4 = c2*c2; c6 = c2*c4;
d1 = a1*c; d2 = a2*c2; d3 = a3*c3; d4 = a4*c4; d6 = a6*c6;
long amin = -alim, amax = alim;
long temp = I2long(Iceil(csq*xmin));
if(temp>amin) amin=temp;
temp = I2long(Ifloor(csq*xmax));
if(temp<amax) amax=temp;
cout<<"amin = " << amin << ", amax = " << amax << endl;
if(amin>amax) continue; // skip this c
if((amax-amin)<10) // don't both sieving for a
{
a_simple_search(amin,amax);
}
else
{
// set up flag array of residues coprime to c
use_cflag = (c<=10000);
if(use_cflag)
{
cflag[0]=(c==1);
for(i=1; i<c; i++) cflag[i] = cflag[c-i] = (::gcd(i,c)==1);
}
// set the main flag matrix
for (long index = 0; index < num_aux; index++)
{
aux = auxs[index];
pd1 = posmod(d1 , aux);
pd2 = posmod(d2 , aux);
pd3 = posmod(d3 , aux);
pd4 = posmod(d4 , aux);
pd6 = posmod(d6 , aux);
long dddf= 24%aux;
long ddf = posmod(2*(pd1*pd1)%aux + 8*pd2+24 , aux);
long df = posmod(pd1*(pd1+2*pd3)%aux + 4*(pd4+pd2+1) , aux);
long f = posmod(((pd3*pd3)%aux+4*pd6) , aux);
int* flag = xgood_mod_aux[index];
int* sqs = squares[index];
long x=aux;
while(x--)
{
*flag++ = sqs[f];
f += df; if(f >=aux) f -=aux;
df += ddf; if(df >=aux) df -=aux;
ddf +=dddf; if(ddf>=aux) ddf-=aux;
}
} // end of aux loop
a_search(amin,amax);
}
} // ends c- loop
delete []cflag;
} // end of sieve::search() version 2 (explicit xmin, xmax)
void sieve::a_search(const long& amin, const long& amax)
{
bigint pb,qb,db,rdb,rdb2,b,ac;
long i, a=amin;
a--;
if (verbose) cout<<"sieve::search: trying c = "<<c<<"\t"
<<"("<<amin<<" <= a <= "<<amax<<")"<<endl;
for (i=0; i < num_aux; i++) amod[i] = posmod(a, auxs[i]);
amodc = posmod(a,c);
#ifdef DEBUG_SIEVE
if(verbose)
{
cout<<"Initial a = "<<a<<" modulo moduli = \t";
for(i=0; i<num_aux; i++) cout << amod[i]<<"\t";
cout<<endl;
}
#endif
while (a < amax)
{
a++;
// check that a is good for all the auxiliaries
amodc++; if(amodc==c) amodc=0;
int try_x;
if(use_cflag) try_x = cflag[amodc];
else try_x = (::gcd(a,c)==1);
if(try_x)
{
ascore++;
}
// DON'T add "else continue; (with next a)
// as the amod[i] are not yet updated!
// for ( i=0; (i<num_aux); i++)
for ( i=num_aux-1; (i>=0); i--)
{ long& amodi = amod[i];
amodi++;
if (amodi == auxs[i]) amodi = 0;
if(try_x)
{
try_x = xgood_mod_aux[i][amodi];
if(!try_x) modhits[i]++;
}
}
if (!try_x) continue;
pb=a; pb*=d1; pb+=d3; // pb = a*d1 + d3;
// qb = d6 + a*(d4 + a*(d2 + a));
qb=a; qb+=d2; qb*=a; qb+=d4; qb*=a; qb+=d6;
db = sqr(pb); db += (4*qb);
if(isqrt(db,rdb))
{
b = rdb-pb; b/=2; ac = a*c;
Point P(*E, ac, b, c3);
mwbasis->process(P);
npoints++;
}
} // ends a-loop
}
void sieve::a_simple_search(const long& amin, const long& amax)
{
bigint pb,qb,db,rdb,rdb2,b,ac;
long a;
if (verbose) cout<<"sieve::search: trying c = "<<c<<"\t"
<<"("<<amin<<" <= a <= "<<amax<<")\n";
for (a=amin; a<amax; a++)
{
// pb = a*d1 + d3;
pb=a; pb*=d1; pb+=d3;
// qb = d6 + a*(d4 + a*(d2 + a));
qb=a; qb+=d2; qb*=a; qb+=d4; qb*=a; qb+=d6;
db = sqr(pb); db += (4*qb);
if(isqrt(db,rdb))
{
b = rdb-pb; b/=2; ac = a*c;
Point P(*E, ac, b, c3);
mwbasis->process(P);
npoints++;
}
} // ends a-loop
}
void sieve::stats(void)
{
cout << "\nNumber of points found: "<<npoints<<"\n";
cout << "\nNumber of a tested: "<<ascore<<"\n";
cout<<"Numbers eliminated by each modulus:\n";
long nmodhits=0;
for(long i=0; i<num_aux; i++)
{
cout<<auxs[i]<<": "<<modhits[i]<<"\n";
nmodhits+=modhits[i];
}
cout<<"Number eliminated by all moduli: "<<nmodhits<<"\n";
bigfloat eff = to_bigfloat(nmodhits*100.0)/(ascore-npoints);
cout<<"Sieve efficiency: "<<eff<<"\n";
}
int order_real_roots(vector<double>& bnd, vector<bigcomplex> roots)
{//checks (and returns) how many roots are actually real, and puts those in
//bnd, in increasing order, by calling set_the_bound
long i,nrr=0;
vector<bigfloat> real_roots;
for (i=0;i<3;i++)
{
if (is_approx_zero(roots[i].imag()))
{
real_roots.push_back(roots[i].real());
if (is_approx_zero(real_roots[nrr])) real_roots[nrr]=0;
nrr++;
}
}
// cout<<"nrr = "<<nrr<<endl;
// cout<<"real_roots = "<<real_roots<<endl;
// cout<<"Now ordering them..."<<endl;
switch (nrr)
{
case 1: // possible overflow in assignment from bigfloat to double
return !doublify(real_roots[0],bnd[0]);
break;
case 3:
orderreal(real_roots[2],real_roots[1],real_roots[0]);
return set_the_bounds(bnd,real_roots[0],real_roots[1],real_roots[2]);
default:
cout<<"mw_info::set_the_bounds: two real roots for the elliptic curve...\n";
}
return 0; //we should not get here...
}
//This transforms (if possible) x0, x1 and x2 into double; the search
//should be made on [x0,x1]U[x2,infty] so if x1 or x2 overflows, the
//search is made on [x0,infty]. The function returns 3 in the first
//case, 1 in the second. If x0 overflows, it returns 0. A warning is
//printed out.
int set_the_bounds(vector<double>& bnd, bigfloat x0, bigfloat x1, bigfloat x2)
{
if (doublify(x0,bnd[0]))
{
cout<<"##WARNING##: lowest bound "<<x0<<" is not a double.\n";
cout<<"Search will be made over [-height,height]."<<endl;
return 0;
}
else
{
if (doublify(x1,bnd[1]) || doublify(x2,bnd[2]))
{
cout<<"##WARNING##: second or third root is not a double.\n";
cout<<"]x2,x3[ not excluded in search."<<endl;
return 1;
}
else
{
return 3;
}
}
}
//end of file mwprocs.cc
|