1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
// FILE nfd.cc: implementation of class nfd (higher-dimensional newforms)
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
#include <iostream>
#include <eclib/marith.h>
#include <eclib/msubspace.h>
#include <eclib/moddata.h>
#include <eclib/symb.h>
#include <eclib/homspace.h>
#include <NTL/mat_ZZ.h>
#include <NTL/mat_poly_ZZ.h>
#include <NTL/ZZXFactoring.h>
#include <eclib/nfd.h>
#define OUTPUT_PARI_STYLE
nfd::nfd(homspace* in_h1, int one_p, int w_split, int mult_one, int verbose)
{
h1=in_h1;
long n = h1->modulus;
long dimh = h1->h1dim();
long denh = h1->h1denom(); dH=denh;
vector<long> badprimes = h1->plist;
mat K = basis(h1->kern).as_mat();
mat_m tp, tp1; mat_m m;
long d, i,j, p;
bigint ap1;
Hscales.resize(dimh+1);
Hscales[0]=1;
for(i=1; i<=dimh; i++) Hscales[i]=Hscales[i-1]*denh;
// Compute the desired linear combination of Tp:
if(one_p) // Compute one Tp:
{
primevar pr;
while (n%pr==0) pr++;
p=pr;
cout << "Computing T_p for p = " << p << "..." << flush;
tp = transpose(h1->newheckeop(p,0));
cout<<"done."<<endl;
}
else
{
tp.init(dimh,dimh); // zero matrix
while(1)
{
cout<<"Enter a (good) prime (or 1 for id, 0 to stop): "; cin>>p;
if(p==0) break;
if(p==1)
{
cout<<"Coefficient of identity: "; cin>>ap1;
if(ap1!=0) tp = addscalar(tp,ap1);
}
else
{
cout << "Computing T_p for p = " << p << "..." << flush;
tp1 = transpose(h1->newheckeop(p,0));
cout<<"done."<<endl;
cout<<"coefficient of T_"<<p<<": "; cin>>ap1;
if(ap1!=1) tp1*=ap1;
if(ap1!=0) tp+=tp1;
}
}
}
// Compute the appropriate W-eigenspace and restrict to it
msubspace SW(dimh);
int dimsw=dimh;
if(w_split)
{
vector<long> badprimes = h1->plist;
int nq = badprimes.size();
for(i=0; (i<nq)&&(dimsw>0); i++)
{
long q = badprimes[i];
bigint eq;
cout<<"Enter eigenvalue of W("<<q<<"): ";
cin>>eq;
eq *=dH;
mat_m wq = transpose(h1->heckeop(q,0));
if(dimsw<dimh)
{
SW=subeigenspace(wq,eq,SW);
}
else // still at top level
{
SW=eigenspace(wq,eq);
}
dimsw=dim(SW);
cout<<"eigenspace now has dimension "<<dimsw<<endl;
}
if(dimsw<dimh) tp = restrict_mat(tp,SW);
}
if(dimsw==0)
{
cout<<"This W-eigenspace is trivial!"<<endl;
return;
}
mat_ZZ ntl_tp;
ntl_tp.SetDims(dimsw,dimsw);
for(i=1; i<=dimsw; i++)
for(j=1; j<=dimsw; j++)
ntl_tp(i,j)=tp(i,j);
bigint swden=denom(SW);
Sscales.resize(dimsw+1);
Sscales[0]=1;
for(i=1; i<=dimsw; i++) Sscales[i]=Sscales[i-1]*swden;
// Compute char poly of restriction of tp to this subspace:
ZZX ntl_cptp; ZZ cont;
CharPoly(ntl_cptp, ntl_tp);
vec_pair_ZZX_long factors;
// SetCoeff(ntl_cptp,dimsw,1);
for(i=0; i<dimsw; i++)
{
bigint temp = coeff(ntl_cptp,i);
divide_exact(temp,Hscales[dimsw-i]*Sscales[dimsw-i],temp);
SetCoeff(ntl_cptp,i,temp);
}
cout<<"char poly = "<<ntl_cptp<<endl;
if(mult_one)
{
// factor the charpoly:
SquareFreeDecomp(factors,ntl_cptp);
if(verbose) cout<<"NTL char poly square-free factors = "<<factors<<endl;
if(factors[0].b>1)
{
cout<<"No factors of multiplicity 1"<<endl;
return;
}
else
{
cout<<"Factors of multiplicity 1 are:"<<endl;
}
factor(cont,factors,factors[0].a);
}
else
{
factor(cont,factors,ntl_cptp);
cout<<"Factors are:"<<endl;
}
long nf = factors.length();
for(i=0; i<nf; i++)
{
cout<<(i+1)<<":\t"<<factors[i].a
<<"\t(degree "<<deg(factors[i].a)<<")";
if(!mult_one) cout<<"\t to power "<<factors[i].b;
cout<<endl;
}
// select subspace:
int looking=1;
vector<bigint> coeffs;
while(looking)
{
cout<<"Enter factor number: "; cin>>j;
if((j<1)||(j>nf))
{cout<<"Must be between 1 and "<<nf<<endl; continue;}
j--;
if(factors[j].b!=1) {cout<<"Multiplicity>1!\n"; continue;}
d = deg(factors[j].a);
cout<<"Degree = "<<d<<endl;
m = tp;
minpol.resize(d);
coeffs.resize(d);
for(i=d-1; i>=0; i--)
{
minpol[i]=coeff(factors[j].a,i);
coeffs[i]=coeff(factors[j].a,i)*Hscales[d-i]*Sscales[d-i];
m = addscalar(m,coeffs[i]);
if(i) m = m*tp;
}
if(verbose)
{
cout<<"(unscaled) min poly = [1 ";
for(i=d-1; i>=0; i--) cout<<coeffs[i]<<" ";
cout<<"]"<<endl;
}
cout<<"(rescaled) min poly = "<<factors[j].a<<endl;
S = kernel(m);
if(dim(S)!=d)
{
cout<<"Problem: eigenspace has wrong dimension ("<<dim(S)<<")"
<<endl;
}
else looking=0;
}
// if(verbose)
cout<<"finished constructing S, now restricting T_p to S"<<endl;
tp0 = restrict_mat(tp,S);
// if(verbose)
cout<<"done. now combining S and SW"<<endl;
if(w_split)// make S a subspace of H_1, not of the W-eigenspace
{
mat_m SWbasis=basis(SW);
bigint SWden; SWden=denom(SW);
msubspace mSW(SWbasis,pivots(SW),SWden);
S=combine(mSW,S);
}
long dims=dim(S);
dS=denom(S);
long sden=I2long(dS);
long sden2=sden*denh;
dHS=dH*dS;
// if(verbose)
{
if(sden2>1) cout<<sden2<<"*";
cout<<"Matrix of T("<<p<<") restricted to S is ";
showmatrix(tp0); cout<<endl;
}
// = matrix of T_p on irreducible subspace of dual space
// if(verbose)
{
cout<<"The former poly is the min poly of alpha_1 = "
<<sden2<<"*alpha"<<endl;
}
cout<<"The latter is the min poly of alpha, ";
cout<<"which is the eigenvalue of T("<<p<<")"<<endl;
if(verbose) cout<<"Finished computing (dual) subspace S"<<endl;
if(verbose>1||(sden2>1))
{
cout<<"S has denom "<<sden<<", cumulative denom = "<<sden2<<endl;
}
V = transpose(basis(S)); // so V is dims x dimh
Sscales.resize(dims+1);
Sscales[0]=1;
for(i=1; i<=dims; i++) Sscales[i]=Sscales[i-1]*sden;
mat_m A=transpose(tp0);
W.init(dims,dims); Winv.init(dims,dims);
vec_m v(dims); v[1]=1; // so v=[1,0,...,0]
W.setcol(1,v);
for(i=2; i<=dims; i++) {v = A*v; W.setcol(i,v);}
Wdetnum = inverse(W,Winv);
WinvV = Winv*V;
if(verbose)
{
cout<<"W = ";showmatrix(W); cout<<endl;
cout<<"W^(-1)= (1/"<<Wdetnum<<")*";showmatrix(Winv);cout<<endl;
if(verbose>1)
{
cout<<"WinvV = ";showmatrix(WinvV);cout<<endl;
}
}
// compute projcoord, precomputed projections of the modular symbol basis
long ncoord = h1->coord_vecs.size()-1;
projcoord.init(ncoord,dims);
coord_fac=0;
vec_m mrowi(dims);
vec rowi(dims), coordi(dimh);
for (i=1; i<=ncoord; i++)
{
coordi = (h1->coord_vecs[i]).as_vec();
if(h1->cuspidal) coordi = h1->cuspidalpart(coordi);
mrowi = V*coordi;
rowi=mrowi.shorten((int)i);
projcoord.setrow(i,rowi);
coord_fac=gcd(coord_fac,(long)vecgcd(rowi));
}
if(verbose>1) cout<<"content of projccord = "<<coord_fac<<endl;
if(coord_fac>1) projcoord /= coord_fac;
Wdetdenom = coord_fac;
Wdetnum*=dHS;
Winv_scaled=Winv;
bigint g; g=mvecgcd(Winv_scaled.row(1));
for(i=2; i<=dims; i++)
{
Winv_scaled.multrow(i,Hscales[i-1]*Sscales[i-1]);
g=gcd(g,mvecgcd(Winv_scaled.row(i)));
}
// now g is the content of Winv_scaled
Winv_scaled/=g;
Wdetdenom*=g;
g = gcd(Wdetnum,Wdetdenom);
if(g>1) {Wdetnum/=g; Wdetdenom/=g;}
cout<<"Basis for Hecke eigenvalues, in terms of powers of alpha:"<<endl;
for(i=1; i<=dims; i++)
{
cout<<"("<<Wdetdenom<<"/"<<Wdetnum<<")*";
cout<<Winv_scaled.col(i)<<endl;
}
}
// ap_vec has length dim(S); last entries hold numerator and
// denominator of content
vec_m nfd::ap(long p)
{
mat K = basis(h1->kern).as_mat();
long rk = nrows(K);
matop *matlist;
long k,l,n = h1->modulus, dims=dim(S);
vec_m apvec(dims);
int bad = ::divides(p,n);
if(bad) return apvec; // temporary fix!
if(bad) matlist=new matop(p,n);
else matlist=new matop(p);
for(k=0; k<rk; k++)
{
long Kkj = K(k+1,pivots(S)[1]);
if(Kkj!=0)
{
bigint mKkj; mKkj = Kkj;
if(bad)
{
continue; // not yet implemented
// modsym s = h1->freemods[k];
// for(l=0; l<matlist->size(); l++)
// apvec += mKkj*(*matlist)[l](s,h1,projcoord);
// apvec += mKkj*h1->applyop(*matlist,s,projcoord);
}
else
{
symb s = h1->symbol(h1->freegens[k]);
for(l=0; l<matlist->size(); l++)
apvec += mKkj*(*matlist)[l](s,h1,projcoord);
}
}
}
delete matlist;
return apvec;
}
mat_m nfd::oldheckeop(long p)
{
return restrict_mat(transpose(h1->newheckeop(p,0)),S);
}
mat_m nfd::heckeop(long p)
{
mat K = basis(h1->kern).as_mat();
long rk = nrows(K);
matop *matlist;
long j,k,l,n = h1->modulus, dimh=h1->h1dim(), dims=dim(S);
int bad = ::divides(p,n);
if(bad)
{
cout<<"q = "<<p<<"\t";
matlist=new matop(p,n);
}
else
{
cout<<"p = "<<p<<"\t";
matlist=new matop(p);
}
mat_m TE(dimh,dims);
vec_m colj(dimh);
for (j=0; j<dims; j++)
{
colj.init(dimh);
for(k=0; k<rk; k++)
{
long Kkj = K(k+1,pivots(S)[j+1]);
if(Kkj!=0)
{
bigint mKkj; mKkj = Kkj;
if(bad)
{
vec vt = (h1->applyop(*matlist,h1->freemods[k])).as_vec();
if(h1->cuspidal) vt=h1->cuspidalpart(vt);
colj += (mKkj*vt);
}
else
{
symb s = h1->symbol(h1->freegens[k]);
for(l=0; l<matlist->size(); l++)
{
vec vt = ((*matlist)[l](s,h1)).as_vec();
if(h1->cuspidal) vt=h1->cuspidalpart(vt);
colj += mKkj*vt;
}
}
}
}
TE.setcol(j+1,colj);
}
delete matlist;
return transpose(V*TE);
}
bigint inverse(const mat_m& a, mat_m& ainv)
{
long d = nrows(a);
mat_m aug=colcat(a,midmat(d));
long rk, ny; vec pc,npc; bigint denom;
mat_m ref = echelon(aug, pc, npc, rk, ny, denom);
ainv = ref.slice(1,d,d+1,2*d);
// cout<<"Inverse = "<<denom<<"*"<<ainv<<endl;
return denom;
}
void showmatrix(const mat_m& m)
{
#ifdef OUTPUT_PARI_STYLE
long i,j, nc=ncols(m),nr=nrows(m);
cout << "[";
for(i=0; i<nr; i++)
{
if(i) cout<<";";
for(j=0; j<nc; j++)
{
if(j) cout<<",";
cout<<m(i+1,j+1);
}
}
cout << "]\n";
#else
cout<<m;
#endif
}
void showmatrix(const mat& m)
{
#ifdef OUTPUT_PARI_STYLE
m.output_pari(cout);
#else
cout<<m;
#endif
}
|