File: points.cc

package info (click to toggle)
eclib 2014-09-21-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,216 kB
  • ctags: 4,287
  • sloc: cpp: 45,827; makefile: 222; sh: 108
file content (642 lines) | stat: -rw-r--r-- 17,754 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
// points.cc:  implementations for Point class for points on elliptic curves
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
// 
// This file is part of the eclib package.
// 
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
// 
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// 
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
// 
//////////////////////////////////////////////////////////////////////////
 
// originally adapted from Elliptic.cc by Oisin McGuiness

#include <eclib/points.h>  // which includes curve.h
#include <eclib/cperiods.h>
#include <NTL/RR.h>   // for the realify_point() function

//#define DEBUG_TORSION

//
// Point member functions
//

// Shifts P via T = (u, r, s, t) on to newc.   
// N.B. Assumes that (1) T(P.E) = newc
//                   (2) T(P) is on newc
// "back" means use reverse transform

Point transform(const Point& P, Curvedata* newc, 
		const bigint& u, 
		const bigint& r, const bigint& s, const bigint& t, 
		int back)
{
  if(P.iszero()) return Point(newc);
  if(!P.isvalid())
    cout << "Attempting to trabsform the point " << P 
	 << "which is not a valid point on its curve " << P.getcurve() << "!\n";
  Point Q(newc,transform(P,u,r,s,t,back));
  if(!Q.isvalid())
    {
      cout << "Result of transforming the point " << P << " on curve "<<(Curve)*(P.E) << " via [u,r,s,t]=["<<u<<","<<r<<","<<s<<","<<t<<"]";
      if(back) cout<<" (inverse) ";
      cout << " is " << Q << " which is not a valid point on its curve " 
	   << (Curve)(*newc) << "!\n";
    }
  return Q;
}

// Genuine elliptic curve point functions:

// addition and subtraction
void Point::operator+=(const Point& Q)  // P += Q; 
{
  Point sum = (*this) + Q ;
  E = sum.E; X = sum.X; Y = sum.Y; Z = sum.Z; reduce();
  ord = 0; height = -1;
}

void Point::operator-=(const Point& Q)  // P -= Q ; 
{
  Point sum = -Q;  sum+=(*this);
  E = sum.E; X = sum.X; Y = sum.Y; Z = sum.Z; reduce();
  ord = 0; height = -1;
}
        
Point Point::operator+(const Point& Q) const // P + Q
{
  Point ans(E);
  // make sure that both points are on the same curve
  if(E != Q.E){
    cout << "## Can't add points on different curves!" << "\n" ;
    abort();
    return ans;
  }
  // NOTE: we don't do any reductions here, but rely on assignment to do it
  // check special cases first
  if(Z==0) return Q ;
  if(Q.iszero()) return *this ;
  if(eq(*this , Q))      {return Q.twice();}
  Point minusQ=-Q;
  if(eq(*this , minusQ)) {return ans;}       // zero
        
  // we now have genuine work to do
  // let's set up some local variables to avoid repeated references
  // coefficients
  bigint A1,A2,A3,A4,A6;  E->getai(A1,A2,A3,A4,A6);
  // coordinates of P
  const bigint& X1 = X ;
  const bigint& Y1 = Y ;
  const bigint& Z1 = Z ;
  // coordinates of Q
  const bigint& X2 = Q.X ;
  const bigint& Y2 = Q.Y ;
  const bigint& Z2 = Q.Z ;
  const bigint& Z12 = Z1 * Z2 ;
        
  const bigint& L = - Y2 * Z1 + Y1 * Z2 ;    /* lambda */
  const bigint& M = - X2 * Z1 + X1 * Z2 ;    /* mu    */
  const bigint& N = - Y1 * X2 + Y2 * X1 ;    /* nu   */
        
  const bigint& Mz =  M * M * Z12  ; 
  
  const bigint& t = L * L * Z12 + M * ( A1 * L * Z12 - M * (A2 * Z12
                                        + X1 * Z2 + X2 * Z1 ) )  ;
  const bigint& newX =  M * t ;
  const bigint& newY = - (  t * (L + A1 * M) +   Mz * (N + A3 * M )) ;    
  const bigint& newZ = M * Mz ;
  ans.init(E, newX, newY, newZ);
  return ans;
}

Point Point::operator-(const Point& Q) const // P - Q
{
  Point ans = (-Q) ;
  ans += (*this);
  return ans;
}

Point Point::twice(void) const // doubles P
{
  // do trivial cases
  Point ans(E);
  if( Z==0) return ans;
  bigint A1,A2,A3,A4,A6;  E->getai(A1,A2,A3,A4,A6);
  Point minusthis = -(*this);
  if(eq(*this,minusthis)) return ans;   // order 2

  const bigint& Zsq = Z * Z ;
  
  const bigint& L = 3 * X * X  +  2 * A2 * X * Z  +  
                                     A4 * Zsq  -  A1 * Y * Z ;
  const bigint& M = 2 * Y  +  A1 * X  +  A3 * Z ;
        
  const bigint& Mz = M * Z ;
  const bigint& N =  - X * X * X -A3 * Y * Zsq  + A4 * X *Zsq  +  
    2 * A6 * Z *Zsq ;
        
  const bigint& t  = L * L  +  Mz * ( A1 * L  -  M * ( A2 * Z  + 2 * X ) );  

  const bigint& newX = t * Mz ;
  const bigint& newY = - ( L * t +  Mz * ( A1 * t+ M * ( N  + A3 * Mz * Z) ) );
  const bigint& newZ = Mz * Mz * Mz;

  ans.init(E, newX, newY, newZ) ;
  return ans;
}

Point Point::operator-(void) const // -Q
{
  Point negation(*this);
  negation.Y = -Y - (E->a3)*Z - (E->a1)*X;
  return negation;
}

// calculates nP
Point operator*(int n, const Point& P)
{
  Point ans(*(P.E));
  if(P.iszero() || n == 0) return ans;
  int negative = (n < 0) ;
  if(negative) n = - n ;
  if(n == 1) {
    ans = P;
    if(negative) ans =  -P;
    return ans ;
  }
  // now n >= 2
  if(n == 2){
    ans = P.twice() ;
    if(negative) ans =  -ans;
    return ans ;
  }
  // now n >= 3
  if(n&1) ans = P ;    // else ans is ZERO
  Point  Q = P ; 
  while(n > 1){
    Q = Q.twice() ; // 2^k P
    n /= 2 ;
    if(n&1) ans = ans + Q ;
  }
  if(negative) ans = -ans ;
  return ans ;
}

int order(Point& p)
{
  // ASSUME that point is valid; check before calling if unknown
  if (p.ord) {return p.ord;}
  bigint eight, z=getZ(p); eight=8;
  if (is_zero(z))  {p.ord = 1; return 1; }
  if (z>eight)     {p.ord =-1; return -1;}
  Point q = p;  long ord=1;
  while ( (sign(z)!=0) && (z<=eight) ) // (worst denom of a torsion point)
    {ord++;   q+=p;  z = getZ(q); }
  if (sign(z)!=0) ord = -1;
  p.ord = ord;
  return ord;
}

int order(Point& p, vector<Point>& multiples)
{
#ifdef DEBUG_TORSION
  cout<<"In order() with p = "<<p<<endl;
#endif
  // ASSUME that point is valid; check before calling if unknown
  multiples.clear(); multiples.reserve(13);
  multiples.push_back(Point(*(p.E)));
  if (p.iszero()) {p.ord=1; return 1; }
  multiples.push_back(p);
  Point q = p;
  bigint eight; eight=8;
  while ( (!q.iszero()) && (getZ(q)<=eight) 
	                 && (multiples.size()<13) ) // 12 is max poss order
  { 
    q+=p;
    if (!q.iszero()) multiples.push_back(q);
  }
  if (q.iszero()) 
    p.ord = multiples.size();
  else
    p.ord = -1;
#ifdef DEBUG_TORSION
  cout<<"Returning ord="<<p.ord<<", multiples = "<<multiples<<endl;
#endif
  return p.ord;
}

int Point::isvalid() const // P on its curve ?
{
  if(E == 0){
    cout << "## Bad point: null curve pointer!\n" ;
    abort();
    return 0 ;
  }
// Null point, useful for terminating input:
  if((sign(X)==0)&&(sign(Y)==0)&&(sign(Z)==0)) return 0;   
// Point at infinity is on a curve
  if((sign(X)==0)&&(sign(Z)==0)) return 1 ;
  else{
    // should calculate 
    //                       y^2 +a1 x y + a3 y 
    //  and
    //                       x^3 + a2 x^2 + a4 x + a6
    // where 
    //          x = X/Z, y = Y/Z
    // and verify equality.
    //
    // In homogeneous coordinates:
    //
    // Lhs = Y^2 Z + a1 XYZ + a3 YZ^2 = (YZ) *(Y + a1 X + a3 Z)
    //
    //
    // Rhs = X^3 +a2 X^2 Z + a4 X Z^2 + a6 Z^3
    //
    bigint A1,A2,A3,A4,A6;    E->getai(A1,A2,A3,A4,A6);
    const bigint& Lhs = Y*Z*(Y + A1*X + A3*Z) ;
    const bigint& Rhs = A6*pow(Z,3) + X*(A4*Z*Z + X*(A2*Z + X)) ;
    return Lhs == Rhs ;
  }
}

// Find all points with a given rational x-coordinate:
vector<Point> points_from_x(Curvedata &E, const bigrational& x)
{
  //  cout<<"Trying to construct points with x="<<x<<endl;
  bigint a1,a2,a3,a4,a6,b2,b4,b6,b8;
  E.getai(a1,a2,a3,a4,a6);
  E.getbi(b2,b4,b6,b8);
  vector<Point> ans;
  bigint xn = num(x), xd2=den(x), xd, xd4, s, t, yn;
  //  cout<<"xd2 = "<<xd2<<endl;
  if(isqrt(xd2,xd)) // xd2=xd^2
    {
      //      cout<<"xd = "<<xd<<endl;
      xd4 = xd2*xd2;
      s = ((4*xn+b2*xd2)*xn+(2*b4*xd4))*xn+b6*xd4*xd2;
      //      cout<<"s = "<<s<<endl;
      if(isqrt(s,t)) // s=t^2
        {
          //          cout<<"t = "<<t<<endl;
          yn = t - (a1*xn+a3*xd2)*xd;
          divide_exact(yn,BIGINT(2),yn);
          //          cout<<"yn = "<<yn<<endl;
          Point P(E,xn*xd,yn,xd2*xd);
          //          cout<<"point="<<P<<endl;
          ans.push_back(P);
          if (!is_zero(t)) ans.push_back(-P);
        }
    }
  return ans;
}


// find all the torsion points on a curve (Curvedata member function)

vector<Point> old_torsion_points(Curvedata& E);  // code is below

long Curvedata::get_ntorsion()
{
  if(ntorsion==0)
    {
#ifdef DEBUG_TORSION
      cout<<"Calling torsion_points() on "<<(Curve)(*this)<<endl;
#endif
      vector<Point> ans = torsion_points(*this);
      ntorsion = ans.size();
#ifdef DEBUG_TORSION
      cout<<"torsion_points() returns "<<ans<<" of size "<<ntorsion<<endl;
#endif
    }
#ifdef DEBUG_TORSION
      cout<<"Curvedata::get_ntorsion() returns "<<ntorsion<<endl;
#endif
  return ntorsion;
}

// Cperiods is a class containing a basis for the period lattice L;
// it knows how to compute points from z mod L; so this function
// effectively does the same as PARI's pointell() (called ellzto point
// in the next PARI release)
//
Point make_tor_pt(Curvedata& E, Cperiods& per, 
		  const bigfloat& ra1, const bigfloat& ra2, const bigfloat& ra3, 
		  const bigcomplex& z)
{
  bigcomplex cx,cy;
#ifdef DEBUG_TORSION
  cout<<"In make_tor_pt() with z = " << z << endl;
#endif
  per.XY_coords(cx,cy,z);
  cx = cx-(ra1*ra1+4*ra2)/to_bigfloat(12);
  cy = (cy - ra1*cx - ra3)/to_bigfloat(2);
#ifdef DEBUG_TORSION
  cout<<"(x,y) = ("<<(cx)<<","<<(cy)<<")\n";
#endif
  bigint x=Iround(real(cx)), y=Iround(real(cy));
  Point P(E, x, y);
  return P;
}


vector<Point> two_torsion(Curvedata& E)
{
#ifdef DEBUG_TORSION
  cout<<"\nIn two_torsion() with curve "<<(Curve)E<<"\n";
#endif
  bigint a1, a2, a3, a4, a6, b2, b4, b6, b8;
  E.getai(a1,a2,a3,a4,a6);
  E.getbi(b2,b4,b6,b8);
  int scaled=0;
  if (odd(a1) || odd(a3)) 
    { 
      b4*=BIGINT(8);
      b6*=BIGINT(16);
      scaled=1;
    }
  else 
    {
      b2=a2; b4=a4; b6=a6;
    }
  vector<bigint> xlist = Introotscubic(b2,b4,b6);
  int n, n2tors = xlist.size();

  // If there are 3 points of order 2, we order them for consistency:
  if(n2tors==3)  sort(xlist.begin(),xlist.end());

  vector<Point> two_tors;
  two_tors.push_back(Point(E)) ;     // zero point
  for(n=0; n<n2tors; n++)
    {
      bigint ei = xlist[n];
      if(scaled) 
	two_tors.push_back(Point(E,2*ei,-a1*ei-4*a3,BIGINT(8)));
      else 
	two_tors.push_back(Point(E,ei,BIGINT(0),BIGINT(1)));
    }
#ifdef DEBUG_TORSION
  cout<<"\ntwo_torsion() returning "<<two_tors<<"\n";
#endif
  return two_tors;
}

// Returns vector of x values such that x/3 is the rational x-coord of
// a point in E[3], possibly with y not rational.  If y is rational
// then these x will in fact be multiples of 3 since rational
// 3-torsion is integral
vector<bigint> three_torsion_x(Curvedata& E)
{
#ifdef DEBUG_TORSION
  cout<<"\nIn three_torsion_x() with curve "<<(Curve)E<<"\n";
#endif
  bigint b2, b4, b6, b8;
  E.getbi(b2,b4,b6,b8);
  vector<bigint> xlist = Introotsquartic(b2,9*b4,27*b6,27*b8);
  // NB The implementation of Introosquartic() in marith.cc does not
  // fix the order of the roots, which depends on the order of the
  // factors in NTL's Z[X] factorization routine.  HENCE the order of
  // the 3-torsion point x-coordinates (when there are two) is not
  // well-defined without the sorting done here.
#ifdef DEBUG_TORSION
  cout<<"\nthree_torsion_x() finds unsorted xlist =  "<<xlist<<"\n";
#endif
  if(xlist.size()==2)
    {
      sort(xlist.begin(),xlist.end());
#ifdef DEBUG_TORSION
      cout<<"\nthree_torsion_x() returns sorted xlist =  "<<xlist<<"\n";
#endif
    }
  return xlist;
}

vector<Point> three_torsion(Curvedata& E)
{
#ifdef DEBUG_TORSION
  cout<<"\nIn three_torsion() with curve "<<(Curve)E<<"\n";
#endif
  bigint a1, a2, a3, a4, a6, b2, b4, b6, b8, xi, d, rd;
  E.getai(a1,a2,a3,a4,a6);
  E.getbi(b2,b4,b6,b8);
  vector<bigint> xlist = three_torsion_x(E);
  vector<Point> three_tors;
  three_tors.push_back(Point(E)) ;     // zero point
  for(unsigned int n=0; n<xlist.size(); n++)
    {
      xi = xlist[n];
      if(xi%3==0) // 3-torsion must be integral
	{
	  xi/=3;
	  d = ((4*xi+b2)*xi+(2*b4))*xi+b6;
	  if(isqrt(d,rd)) 			    
	    {
	      Point P(E,2*xi,rd-(a1*xi+a3),BIGINT(2));
	      three_tors.push_back(P);
	      three_tors.push_back(-P);
	    }
	}
    }
#ifdef DEBUG_TORSION
  cout<<"\nthree_torsion() returning "<<three_tors<<"\n";
#endif
  return three_tors;
}

// New torsion point routine using Mazur's theorem to limit possibilities 
// and computing possible real torsion from the period lattice.  Suggestion 
// of Darrin Doud.
//
vector<Point> torsion_points(Curvedata& E)  // After Darrin Doud, adapted by JC
{
  if ( E.isnull() ) return vector<Point>(0);
//
// table[i][] contains a list of possible maximal orders for a point,
// given that the 2-torsion subgroup has order i
//
  static long table[5][5] = {{},{5,7,9,3},{12,6,8,4,10},{},{8,6,4}};
  static long nt[5] = {0,4,5,0,3};
#ifdef DEBUG_TORSION
  cout<<"\nIn torsion_points() with curve "<<(Curve)E<<"\n";
#endif
  bigint a1,a2,a3,a4,a6,sa2,sa4,sa6, x, y ;
  E.getai(a1,a2,a3,a4,a6);
  bigfloat ra1=I2bigfloat(a1), ra2=I2bigfloat(a2), ra3=I2bigfloat(a3);
  long i,j,ntp=1,nt2;
  vector<Point> points;
  vector<Point> cycle;
  Cperiods per(E);  bigcomplex w1,w2,z,z2; 
  per.getwRI(w1,w2); z2=w2/to_bigfloat(2);
  int ncc = getconncomp(E);
  int found;
#ifdef DEBUG_TORSION
  cout<<"Periods: "<<per<<"\nReal Period = "<<w1<<endl;
  cout<<ncc<<" real component(s)"<<endl;
#endif
  points.push_back(Point(E)) ;       // zero point
  Point p, q;

  // We find the two-torsion algebraically
  
  vector<Point> two_tors = two_torsion(E);
  nt2=two_tors.size();
#ifdef DEBUG_TORSION
  cout<<"Size of 2-torsion subgroup = " << nt2 << endl;
  cout << two_tors << endl;
#endif

  for(i=0, found=0; (i<nt[nt2])&&(!found); i++)
    {
      long ni=table[nt2][i]; 
#ifdef DEBUG_TORSION
      cout<<"Looking for a point of order " << ni << "\n";
#endif
      if(ni==3)
	{
	  p=Point(E);
	  vector<Point> p3 = three_torsion(E);
	  if(p3.size()>1) {p=p3[1];}
	}
      else
	{
	  z=w1/to_bigfloat(ni);
	  p = make_tor_pt(E,per,ra1,ra2,ra3,z);
	}
#ifdef DEBUG_TORSION
      cout<<"p = " << p <<"?\n";
#endif
      found=(p.isvalid())&&(order(p,cycle)==ni);
      if(!found&&(ncc==2)&&even(ni))
	{
	  p = make_tor_pt(E,per,ra1,ra2,ra3,z+z2);
#ifdef DEBUG_TORSION
	  cout<<"p = " << p <<"?\n";
#endif
	  found=(p.isvalid())&&(order(p,cycle)==ni);
	  if(!found&&((ni%4)==2))
	    {
	      p = make_tor_pt(E,per,ra1,ra2,ra3,z+z+z2);
#ifdef DEBUG_TORSION
	      cout<<"p = " << p <<"?\n";
#endif
	      found=(p.isvalid())&&(order(p,cycle)==ni);
	    }
	}
      if(found)
	{
	  ntp=ni;
	  points=cycle;
#ifdef DEBUG_TORSION
	  cout<<"Found a point " << p << " of order " << ni << endl;
	  cout<<"generating subgroup "<<cycle<<endl;
#endif
	}
#ifdef DEBUG_TORSION
      else
	{
	  cout<<"none\n";
	}
#endif
    }

#ifdef DEBUG_TORSION
  cout<<"Number of points in cyclic part = " << ntp << endl;
  cout<<points<<endl;
#endif
  
  if(ntp==1) {return two_tors;}                   // C1, C2 or C2xC2
  if(nt2==4)
  // non-cyclic case, C2xC4, C2xC6 or C2xC8
  // Find a point of order 2 not in the second factor and add it in
    {
      for(i=1; i<4; i++) // 0 is first point in two_tors !
	{
	  p=two_tors[i];
	  if(find(points.begin(),points.end(),p)==points.end())
	    {
#ifdef DEBUG_TORSION
	      cout<<"Using 2-torsion point "<<p<<" as coset rep\n";
#endif
	      for(j=0; j<ntp; j++)
		{
		  points.push_back(points[j]+p);
		}
	      ntp*=2;
	      break;
	    }
#ifdef DEBUG_TORSION
	  cout<<"2-torsion point "<<p<<" is in subgroup\n";
#endif
	}
    }
  return points;
}

vector<Point> old_torsion_points(Curvedata& E)
{
  if ( E.isnull() ) return vector<Point>(0);
  bigint a1,a2,a3,a4,a6,sa2,sa4,sa6, d, x, y ;
  E.getai(a1,a2,a3,a4,a6);
  long i,nroots;  int scaled_flag;
  vector<Point> points;
  points.push_back(Point(E)) ;     // zero point
  if ( (sign(a1)==0) && (sign(a3)==0) )
    {sa2=a2; sa4=a4; sa6=a6; scaled_flag=0; }
  else
    {sa2 = a1*a1 + 4*a2;
     sa4 = 8*a1*a3 + 16*a4;
     sa6 = 16*a3*a3 + 64*a6;
     scaled_flag=1;
    }
  d = sa2*sa2*(sa4*sa4 - 4*sa2*sa6) + 18*sa2*sa4*sa6
                    - 4*sa4*sa4*sa4 - 27*sa6*sa6;
  Point p;

// First test y=0 for points of order 2:

  vector<bigint> xlist = Introotscubic(sa2, sa4, sa6);
  nroots = xlist.size();
  for (i=0; i<nroots; i++)
    {
      x = xlist[i];
      if (scaled_flag) p.init(E, 2*x, - a1*x - 4*a3, BIGINT(8));
      else p.init(E, x, BIGINT(0));
      points.push_back(p);
    }

// Now test y such that y^2 divides d:

  vector<bigint> possible_y( sqdivs(d) );
  vector<bigint>::iterator yvar=possible_y.begin();
  while( yvar!=possible_y.end())
  {
    y = *yvar++;
    xlist = Introotscubic(sa2, sa4, sa6-y*y);
    nroots = xlist.size();
    for (i=0; i<nroots; i++)
    {
      x = xlist[i];
      if (scaled_flag) p.init(E, 2*x, y - a1*x - 4*a3, BIGINT(8));
      else p.init(E, x, y);
      if (order(p) > 0)
        {
          points.push_back(p);
          points.push_back(-p); // N.B. order>2 here!
        }
    }
  }
  return points;
}

// end of file: points.cc