1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
|
// points.cc: implementations for Point class for points on elliptic curves
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
// originally adapted from Elliptic.cc by Oisin McGuiness
#include <eclib/points.h> // which includes curve.h
#include <eclib/cperiods.h>
#include <NTL/RR.h> // for the realify_point() function
//#define DEBUG_TORSION
//
// Point member functions
//
// Shifts P via T = (u, r, s, t) on to newc.
// N.B. Assumes that (1) T(P.E) = newc
// (2) T(P) is on newc
// "back" means use reverse transform
Point transform(const Point& P, Curvedata* newc,
const bigint& u,
const bigint& r, const bigint& s, const bigint& t,
int back)
{
if(P.iszero()) return Point(newc);
if(!P.isvalid())
cout << "Attempting to trabsform the point " << P
<< "which is not a valid point on its curve " << P.getcurve() << "!\n";
Point Q(newc,transform(P,u,r,s,t,back));
if(!Q.isvalid())
{
cout << "Result of transforming the point " << P << " on curve "<<(Curve)*(P.E) << " via [u,r,s,t]=["<<u<<","<<r<<","<<s<<","<<t<<"]";
if(back) cout<<" (inverse) ";
cout << " is " << Q << " which is not a valid point on its curve "
<< (Curve)(*newc) << "!\n";
}
return Q;
}
// Genuine elliptic curve point functions:
// addition and subtraction
void Point::operator+=(const Point& Q) // P += Q;
{
Point sum = (*this) + Q ;
E = sum.E; X = sum.X; Y = sum.Y; Z = sum.Z; reduce();
ord = 0; height = -1;
}
void Point::operator-=(const Point& Q) // P -= Q ;
{
Point sum = -Q; sum+=(*this);
E = sum.E; X = sum.X; Y = sum.Y; Z = sum.Z; reduce();
ord = 0; height = -1;
}
Point Point::operator+(const Point& Q) const // P + Q
{
Point ans(E);
// make sure that both points are on the same curve
if(E != Q.E){
cout << "## Can't add points on different curves!" << "\n" ;
abort();
return ans;
}
// NOTE: we don't do any reductions here, but rely on assignment to do it
// check special cases first
if(Z==0) return Q ;
if(Q.iszero()) return *this ;
if(eq(*this , Q)) {return Q.twice();}
Point minusQ=-Q;
if(eq(*this , minusQ)) {return ans;} // zero
// we now have genuine work to do
// let's set up some local variables to avoid repeated references
// coefficients
bigint A1,A2,A3,A4,A6; E->getai(A1,A2,A3,A4,A6);
// coordinates of P
const bigint& X1 = X ;
const bigint& Y1 = Y ;
const bigint& Z1 = Z ;
// coordinates of Q
const bigint& X2 = Q.X ;
const bigint& Y2 = Q.Y ;
const bigint& Z2 = Q.Z ;
const bigint& Z12 = Z1 * Z2 ;
const bigint& L = - Y2 * Z1 + Y1 * Z2 ; /* lambda */
const bigint& M = - X2 * Z1 + X1 * Z2 ; /* mu */
const bigint& N = - Y1 * X2 + Y2 * X1 ; /* nu */
const bigint& Mz = M * M * Z12 ;
const bigint& t = L * L * Z12 + M * ( A1 * L * Z12 - M * (A2 * Z12
+ X1 * Z2 + X2 * Z1 ) ) ;
const bigint& newX = M * t ;
const bigint& newY = - ( t * (L + A1 * M) + Mz * (N + A3 * M )) ;
const bigint& newZ = M * Mz ;
ans.init(E, newX, newY, newZ);
return ans;
}
Point Point::operator-(const Point& Q) const // P - Q
{
Point ans = (-Q) ;
ans += (*this);
return ans;
}
Point Point::twice(void) const // doubles P
{
// do trivial cases
Point ans(E);
if( Z==0) return ans;
bigint A1,A2,A3,A4,A6; E->getai(A1,A2,A3,A4,A6);
Point minusthis = -(*this);
if(eq(*this,minusthis)) return ans; // order 2
const bigint& Zsq = Z * Z ;
const bigint& L = 3 * X * X + 2 * A2 * X * Z +
A4 * Zsq - A1 * Y * Z ;
const bigint& M = 2 * Y + A1 * X + A3 * Z ;
const bigint& Mz = M * Z ;
const bigint& N = - X * X * X -A3 * Y * Zsq + A4 * X *Zsq +
2 * A6 * Z *Zsq ;
const bigint& t = L * L + Mz * ( A1 * L - M * ( A2 * Z + 2 * X ) );
const bigint& newX = t * Mz ;
const bigint& newY = - ( L * t + Mz * ( A1 * t+ M * ( N + A3 * Mz * Z) ) );
const bigint& newZ = Mz * Mz * Mz;
ans.init(E, newX, newY, newZ) ;
return ans;
}
Point Point::operator-(void) const // -Q
{
Point negation(*this);
negation.Y = -Y - (E->a3)*Z - (E->a1)*X;
return negation;
}
// calculates nP
Point operator*(int n, const Point& P)
{
Point ans(*(P.E));
if(P.iszero() || n == 0) return ans;
int negative = (n < 0) ;
if(negative) n = - n ;
if(n == 1) {
ans = P;
if(negative) ans = -P;
return ans ;
}
// now n >= 2
if(n == 2){
ans = P.twice() ;
if(negative) ans = -ans;
return ans ;
}
// now n >= 3
if(n&1) ans = P ; // else ans is ZERO
Point Q = P ;
while(n > 1){
Q = Q.twice() ; // 2^k P
n /= 2 ;
if(n&1) ans = ans + Q ;
}
if(negative) ans = -ans ;
return ans ;
}
int order(Point& p)
{
// ASSUME that point is valid; check before calling if unknown
if (p.ord) {return p.ord;}
bigint eight, z=getZ(p); eight=8;
if (is_zero(z)) {p.ord = 1; return 1; }
if (z>eight) {p.ord =-1; return -1;}
Point q = p; long ord=1;
while ( (sign(z)!=0) && (z<=eight) ) // (worst denom of a torsion point)
{ord++; q+=p; z = getZ(q); }
if (sign(z)!=0) ord = -1;
p.ord = ord;
return ord;
}
int order(Point& p, vector<Point>& multiples)
{
#ifdef DEBUG_TORSION
cout<<"In order() with p = "<<p<<endl;
#endif
// ASSUME that point is valid; check before calling if unknown
multiples.clear(); multiples.reserve(13);
multiples.push_back(Point(*(p.E)));
if (p.iszero()) {p.ord=1; return 1; }
multiples.push_back(p);
Point q = p;
bigint eight; eight=8;
while ( (!q.iszero()) && (getZ(q)<=eight)
&& (multiples.size()<13) ) // 12 is max poss order
{
q+=p;
if (!q.iszero()) multiples.push_back(q);
}
if (q.iszero())
p.ord = multiples.size();
else
p.ord = -1;
#ifdef DEBUG_TORSION
cout<<"Returning ord="<<p.ord<<", multiples = "<<multiples<<endl;
#endif
return p.ord;
}
int Point::isvalid() const // P on its curve ?
{
if(E == 0){
cout << "## Bad point: null curve pointer!\n" ;
abort();
return 0 ;
}
// Null point, useful for terminating input:
if((sign(X)==0)&&(sign(Y)==0)&&(sign(Z)==0)) return 0;
// Point at infinity is on a curve
if((sign(X)==0)&&(sign(Z)==0)) return 1 ;
else{
// should calculate
// y^2 +a1 x y + a3 y
// and
// x^3 + a2 x^2 + a4 x + a6
// where
// x = X/Z, y = Y/Z
// and verify equality.
//
// In homogeneous coordinates:
//
// Lhs = Y^2 Z + a1 XYZ + a3 YZ^2 = (YZ) *(Y + a1 X + a3 Z)
//
//
// Rhs = X^3 +a2 X^2 Z + a4 X Z^2 + a6 Z^3
//
bigint A1,A2,A3,A4,A6; E->getai(A1,A2,A3,A4,A6);
const bigint& Lhs = Y*Z*(Y + A1*X + A3*Z) ;
const bigint& Rhs = A6*pow(Z,3) + X*(A4*Z*Z + X*(A2*Z + X)) ;
return Lhs == Rhs ;
}
}
// Find all points with a given rational x-coordinate:
vector<Point> points_from_x(Curvedata &E, const bigrational& x)
{
// cout<<"Trying to construct points with x="<<x<<endl;
bigint a1,a2,a3,a4,a6,b2,b4,b6,b8;
E.getai(a1,a2,a3,a4,a6);
E.getbi(b2,b4,b6,b8);
vector<Point> ans;
bigint xn = num(x), xd2=den(x), xd, xd4, s, t, yn;
// cout<<"xd2 = "<<xd2<<endl;
if(isqrt(xd2,xd)) // xd2=xd^2
{
// cout<<"xd = "<<xd<<endl;
xd4 = xd2*xd2;
s = ((4*xn+b2*xd2)*xn+(2*b4*xd4))*xn+b6*xd4*xd2;
// cout<<"s = "<<s<<endl;
if(isqrt(s,t)) // s=t^2
{
// cout<<"t = "<<t<<endl;
yn = t - (a1*xn+a3*xd2)*xd;
divide_exact(yn,BIGINT(2),yn);
// cout<<"yn = "<<yn<<endl;
Point P(E,xn*xd,yn,xd2*xd);
// cout<<"point="<<P<<endl;
ans.push_back(P);
if (!is_zero(t)) ans.push_back(-P);
}
}
return ans;
}
// find all the torsion points on a curve (Curvedata member function)
vector<Point> old_torsion_points(Curvedata& E); // code is below
long Curvedata::get_ntorsion()
{
if(ntorsion==0)
{
#ifdef DEBUG_TORSION
cout<<"Calling torsion_points() on "<<(Curve)(*this)<<endl;
#endif
vector<Point> ans = torsion_points(*this);
ntorsion = ans.size();
#ifdef DEBUG_TORSION
cout<<"torsion_points() returns "<<ans<<" of size "<<ntorsion<<endl;
#endif
}
#ifdef DEBUG_TORSION
cout<<"Curvedata::get_ntorsion() returns "<<ntorsion<<endl;
#endif
return ntorsion;
}
// Cperiods is a class containing a basis for the period lattice L;
// it knows how to compute points from z mod L; so this function
// effectively does the same as PARI's pointell() (called ellzto point
// in the next PARI release)
//
Point make_tor_pt(Curvedata& E, Cperiods& per,
const bigfloat& ra1, const bigfloat& ra2, const bigfloat& ra3,
const bigcomplex& z)
{
bigcomplex cx,cy;
#ifdef DEBUG_TORSION
cout<<"In make_tor_pt() with z = " << z << endl;
#endif
per.XY_coords(cx,cy,z);
cx = cx-(ra1*ra1+4*ra2)/to_bigfloat(12);
cy = (cy - ra1*cx - ra3)/to_bigfloat(2);
#ifdef DEBUG_TORSION
cout<<"(x,y) = ("<<(cx)<<","<<(cy)<<")\n";
#endif
bigint x=Iround(real(cx)), y=Iround(real(cy));
Point P(E, x, y);
return P;
}
vector<Point> two_torsion(Curvedata& E)
{
#ifdef DEBUG_TORSION
cout<<"\nIn two_torsion() with curve "<<(Curve)E<<"\n";
#endif
bigint a1, a2, a3, a4, a6, b2, b4, b6, b8;
E.getai(a1,a2,a3,a4,a6);
E.getbi(b2,b4,b6,b8);
int scaled=0;
if (odd(a1) || odd(a3))
{
b4*=BIGINT(8);
b6*=BIGINT(16);
scaled=1;
}
else
{
b2=a2; b4=a4; b6=a6;
}
vector<bigint> xlist = Introotscubic(b2,b4,b6);
int n, n2tors = xlist.size();
// If there are 3 points of order 2, we order them for consistency:
if(n2tors==3) sort(xlist.begin(),xlist.end());
vector<Point> two_tors;
two_tors.push_back(Point(E)) ; // zero point
for(n=0; n<n2tors; n++)
{
bigint ei = xlist[n];
if(scaled)
two_tors.push_back(Point(E,2*ei,-a1*ei-4*a3,BIGINT(8)));
else
two_tors.push_back(Point(E,ei,BIGINT(0),BIGINT(1)));
}
#ifdef DEBUG_TORSION
cout<<"\ntwo_torsion() returning "<<two_tors<<"\n";
#endif
return two_tors;
}
// Returns vector of x values such that x/3 is the rational x-coord of
// a point in E[3], possibly with y not rational. If y is rational
// then these x will in fact be multiples of 3 since rational
// 3-torsion is integral
vector<bigint> three_torsion_x(Curvedata& E)
{
#ifdef DEBUG_TORSION
cout<<"\nIn three_torsion_x() with curve "<<(Curve)E<<"\n";
#endif
bigint b2, b4, b6, b8;
E.getbi(b2,b4,b6,b8);
vector<bigint> xlist = Introotsquartic(b2,9*b4,27*b6,27*b8);
// NB The implementation of Introosquartic() in marith.cc does not
// fix the order of the roots, which depends on the order of the
// factors in NTL's Z[X] factorization routine. HENCE the order of
// the 3-torsion point x-coordinates (when there are two) is not
// well-defined without the sorting done here.
#ifdef DEBUG_TORSION
cout<<"\nthree_torsion_x() finds unsorted xlist = "<<xlist<<"\n";
#endif
if(xlist.size()==2)
{
sort(xlist.begin(),xlist.end());
#ifdef DEBUG_TORSION
cout<<"\nthree_torsion_x() returns sorted xlist = "<<xlist<<"\n";
#endif
}
return xlist;
}
vector<Point> three_torsion(Curvedata& E)
{
#ifdef DEBUG_TORSION
cout<<"\nIn three_torsion() with curve "<<(Curve)E<<"\n";
#endif
bigint a1, a2, a3, a4, a6, b2, b4, b6, b8, xi, d, rd;
E.getai(a1,a2,a3,a4,a6);
E.getbi(b2,b4,b6,b8);
vector<bigint> xlist = three_torsion_x(E);
vector<Point> three_tors;
three_tors.push_back(Point(E)) ; // zero point
for(unsigned int n=0; n<xlist.size(); n++)
{
xi = xlist[n];
if(xi%3==0) // 3-torsion must be integral
{
xi/=3;
d = ((4*xi+b2)*xi+(2*b4))*xi+b6;
if(isqrt(d,rd))
{
Point P(E,2*xi,rd-(a1*xi+a3),BIGINT(2));
three_tors.push_back(P);
three_tors.push_back(-P);
}
}
}
#ifdef DEBUG_TORSION
cout<<"\nthree_torsion() returning "<<three_tors<<"\n";
#endif
return three_tors;
}
// New torsion point routine using Mazur's theorem to limit possibilities
// and computing possible real torsion from the period lattice. Suggestion
// of Darrin Doud.
//
vector<Point> torsion_points(Curvedata& E) // After Darrin Doud, adapted by JC
{
if ( E.isnull() ) return vector<Point>(0);
//
// table[i][] contains a list of possible maximal orders for a point,
// given that the 2-torsion subgroup has order i
//
static long table[5][5] = {{},{5,7,9,3},{12,6,8,4,10},{},{8,6,4}};
static long nt[5] = {0,4,5,0,3};
#ifdef DEBUG_TORSION
cout<<"\nIn torsion_points() with curve "<<(Curve)E<<"\n";
#endif
bigint a1,a2,a3,a4,a6,sa2,sa4,sa6, x, y ;
E.getai(a1,a2,a3,a4,a6);
bigfloat ra1=I2bigfloat(a1), ra2=I2bigfloat(a2), ra3=I2bigfloat(a3);
long i,j,ntp=1,nt2;
vector<Point> points;
vector<Point> cycle;
Cperiods per(E); bigcomplex w1,w2,z,z2;
per.getwRI(w1,w2); z2=w2/to_bigfloat(2);
int ncc = getconncomp(E);
int found;
#ifdef DEBUG_TORSION
cout<<"Periods: "<<per<<"\nReal Period = "<<w1<<endl;
cout<<ncc<<" real component(s)"<<endl;
#endif
points.push_back(Point(E)) ; // zero point
Point p, q;
// We find the two-torsion algebraically
vector<Point> two_tors = two_torsion(E);
nt2=two_tors.size();
#ifdef DEBUG_TORSION
cout<<"Size of 2-torsion subgroup = " << nt2 << endl;
cout << two_tors << endl;
#endif
for(i=0, found=0; (i<nt[nt2])&&(!found); i++)
{
long ni=table[nt2][i];
#ifdef DEBUG_TORSION
cout<<"Looking for a point of order " << ni << "\n";
#endif
if(ni==3)
{
p=Point(E);
vector<Point> p3 = three_torsion(E);
if(p3.size()>1) {p=p3[1];}
}
else
{
z=w1/to_bigfloat(ni);
p = make_tor_pt(E,per,ra1,ra2,ra3,z);
}
#ifdef DEBUG_TORSION
cout<<"p = " << p <<"?\n";
#endif
found=(p.isvalid())&&(order(p,cycle)==ni);
if(!found&&(ncc==2)&&even(ni))
{
p = make_tor_pt(E,per,ra1,ra2,ra3,z+z2);
#ifdef DEBUG_TORSION
cout<<"p = " << p <<"?\n";
#endif
found=(p.isvalid())&&(order(p,cycle)==ni);
if(!found&&((ni%4)==2))
{
p = make_tor_pt(E,per,ra1,ra2,ra3,z+z+z2);
#ifdef DEBUG_TORSION
cout<<"p = " << p <<"?\n";
#endif
found=(p.isvalid())&&(order(p,cycle)==ni);
}
}
if(found)
{
ntp=ni;
points=cycle;
#ifdef DEBUG_TORSION
cout<<"Found a point " << p << " of order " << ni << endl;
cout<<"generating subgroup "<<cycle<<endl;
#endif
}
#ifdef DEBUG_TORSION
else
{
cout<<"none\n";
}
#endif
}
#ifdef DEBUG_TORSION
cout<<"Number of points in cyclic part = " << ntp << endl;
cout<<points<<endl;
#endif
if(ntp==1) {return two_tors;} // C1, C2 or C2xC2
if(nt2==4)
// non-cyclic case, C2xC4, C2xC6 or C2xC8
// Find a point of order 2 not in the second factor and add it in
{
for(i=1; i<4; i++) // 0 is first point in two_tors !
{
p=two_tors[i];
if(find(points.begin(),points.end(),p)==points.end())
{
#ifdef DEBUG_TORSION
cout<<"Using 2-torsion point "<<p<<" as coset rep\n";
#endif
for(j=0; j<ntp; j++)
{
points.push_back(points[j]+p);
}
ntp*=2;
break;
}
#ifdef DEBUG_TORSION
cout<<"2-torsion point "<<p<<" is in subgroup\n";
#endif
}
}
return points;
}
vector<Point> old_torsion_points(Curvedata& E)
{
if ( E.isnull() ) return vector<Point>(0);
bigint a1,a2,a3,a4,a6,sa2,sa4,sa6, d, x, y ;
E.getai(a1,a2,a3,a4,a6);
long i,nroots; int scaled_flag;
vector<Point> points;
points.push_back(Point(E)) ; // zero point
if ( (sign(a1)==0) && (sign(a3)==0) )
{sa2=a2; sa4=a4; sa6=a6; scaled_flag=0; }
else
{sa2 = a1*a1 + 4*a2;
sa4 = 8*a1*a3 + 16*a4;
sa6 = 16*a3*a3 + 64*a6;
scaled_flag=1;
}
d = sa2*sa2*(sa4*sa4 - 4*sa2*sa6) + 18*sa2*sa4*sa6
- 4*sa4*sa4*sa4 - 27*sa6*sa6;
Point p;
// First test y=0 for points of order 2:
vector<bigint> xlist = Introotscubic(sa2, sa4, sa6);
nroots = xlist.size();
for (i=0; i<nroots; i++)
{
x = xlist[i];
if (scaled_flag) p.init(E, 2*x, - a1*x - 4*a3, BIGINT(8));
else p.init(E, x, BIGINT(0));
points.push_back(p);
}
// Now test y such that y^2 divides d:
vector<bigint> possible_y( sqdivs(d) );
vector<bigint>::iterator yvar=possible_y.begin();
while( yvar!=possible_y.end())
{
y = *yvar++;
xlist = Introotscubic(sa2, sa4, sa6-y*y);
nroots = xlist.size();
for (i=0; i<nroots; i++)
{
x = xlist[i];
if (scaled_flag) p.init(E, 2*x, y - a1*x - 4*a3, BIGINT(8));
else p.init(E, x, y);
if (order(p) > 0)
{
points.push_back(p);
points.push_back(-p); // N.B. order>2 here!
}
}
}
return points;
}
// end of file: points.cc
|