1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
|
// pointsmod.cc: implementation of classes pointmodq and curvemodqbasis
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
// curvemodqbasis is derived from curvemodq (see file curvemod.h) and
// contains a Z-basis for the group of points
// The baby-step-giant step algorithm in my_bg_algorithm was
// originally adapted from LiDIA's bg_algorithm(); it has some changes.
// The point-counting and group structure algorithm in
// my_isomorphism_type() provide the same functionality as LiDIA's
// isomorphism_type() but has been rewritten from scratch; a main
// difference from the LiDIA version is the use of Weil pairing when
// the group is not cyclic. This is only intended for use when q is
// small-medium sized (NOT cryptographic!). The current
// implementation is only for prime fields, but the same strategy
// would work over arbitrary finite fields.
#include <eclib/curve.h>
#include <eclib/points.h>
#include <eclib/polys.h>
#include <eclib/curvemod.h>
#include <eclib/pointsmod.h>
#include <eclib/ffmod.h>
void set_order_point(pointmodq& P, const bigint& n)
{P.set_order(n);}
pointmodq::pointmodq(const gf_element&x, const curvemodq& EE) // a point with X=x or oo if none
: order(BIGINT(0)), E(EE)
{
set_x_coordinate(x);
}
// make a point with given x & return true, or return false if none
int pointmodq::set_x_coordinate(const gf_element& x)
{
is0flag=1; order=0;
gf_element two=to_ZZ_p(2);
gf_element four=to_ZZ_p(4);
gf_element a1,a2,a3,a4,a6; E.get_ai(a1,a2,a3,a4,a6);
// cout<<"E = "<<E<<endl;
// cout<<"Trying x = "<<x<<endl;
const bigint q=E.q;
gf_element b2 = a1*a1 + four*a2;
gf_element b4 = two*a4 + a1*a3;
gf_element b6 = a3*a3 + four*a6;
gf_element d = ((four*x+b2)*x+(two*b4))*x+b6;
switch(legendre(rep(d),q)) // NTL has no modular sqrt!?
{
case -1: return 0;
case 0: case 1:
is0flag=0;
X=x;
Y=(sqrt(galois_field(q),d)-(a1*x+a3))/two;
if(!(on_curve()))
{
cout<<"Error in pointmodq::set_x_coordinate("<<x<<"): result "
<<(*this)<<" is not a valid point on "<<E<<endl;
cout<<"b2,b4,b6 = "<<b2<<","<<b4<<","<<b6<<" mod "<<q<<endl;
cout<<"d = "<<d<<" mod "<<q<<endl;
abort();
}
}
return 1;
}
bigint pointmodq::get_order()
{
if(order==BIGINT(0)) order=my_order_point(*this);
return order;
}
bigint pointmodq::get_order(const bigint& mult)
{
if(order==BIGINT(0)) order=my_order_point(*this,mult);
return order;
}
bigint pointmodq::get_order(const bigint& lower, const bigint& upper)
{
if(order==BIGINT(0)) order=my_order_point(*this,lower,upper);
return order;
}
void pointmodq::output(ostream& os) const
{
if(is0flag)
os<<"oo mod "<<(E.q);
else
os<<"("<<X<<","<<Y<<") mod "<<(E.q);
}
// addition of points, etc
pointmodq pointmodq::operator+(const pointmodq& Q) const // add Q to this
{
pointmodq ans(Q.get_curve()); // initialized to oo
if(is0flag) return Q;
if(Q.is0flag) return *this;
gf_element XQ=Q.X, YQ=Q.Y;
if(X==XQ)
{
if(Y==YQ) return this->twice();
else return ans; // =oo
}
gf_element lambda = (Y-YQ)/(X-XQ);
gf_element mu = Y-lambda*X;
ans.X = lambda*(lambda+(E.a1))-(E.a2)-X-XQ;
ans.Y = lambda*(ans.X)+mu;
ans.is0flag=0;
ans.order=0;
if(!(ans.on_curve()))
{
cout<<"error in pointmodq::operator+() adding "<<(*this)<<" to "<<Q<<endl;
abort();
}
return ans.negate();
}
pointmodq pointmodq::operator-(const pointmodq& Q) const // sub Q from this
{
return *this + Q.negate();
}
pointmodq pointmodq::negate(void) const // negates P
{
if(is0flag) return pointmodq(E);
return pointmodq(X,-Y-(E.a1)*X-(E.a3),E);
}
pointmodq pointmodq::operator-(void) const // -P
{
return this->negate();
}
pointmodq pointmodq::twice(void) const // doubles P
{
pointmodq ans(E);
if(is0flag) return ans;
// Do NOT make these static as the modulus might change!
gf_element two=to_ZZ_p(2);
gf_element three=to_ZZ_p(3);
gf_element a1,a2,a3,a4,a6; E.get_ai(a1,a2,a3,a4,a6);
gf_element den = two*Y+a1*X+a3;
if(den==0) return ans;
gf_element lambda=(three*X*X+two*a2*X+a4-a1*Y)/den;
gf_element mu = Y-lambda*X;
ans.X = lambda*(lambda+a1)-a2-two*X;
ans.Y = lambda*(ans.X)+mu;
ans.is0flag=0;
ans.order=0;
if(!(ans.on_curve()))
{
cout<<"\nerror in pointmodq::twice() with P = "<<(*this)<<": "<<(ans)<<" not on "<<E<<endl;
abort();
}
return ans.negate();
}
// calculates nP for long n
pointmodq operator*(long n, const pointmodq& P) // n*P
{
pointmodq ans(P.get_curve());
if(P.is0flag || n == 0) return ans;
int negative = (n < 0) ;
if(negative) n = - n ;
if(n == 1) {
return (negative? -P : P);
}
// now n >= 2
if(n == 2){
ans = P.twice() ;
return (negative? -ans : ans);
}
// now n >= 3
if(n&1) ans = P ; // (else ans is still 0 from initialization)
pointmodq Q = P ;
while(n > 1){
Q = Q.twice() ; // 2^k P
n /= 2 ;
if(n&1) ans = ans + Q ;
}
return (negative? -ans : ans);
}
// calculates nP for bigint n
pointmodq operator*(const bigint& n, const pointmodq& P) // n*P
{
static bigint one = BIGINT(1);
static bigint two = BIGINT(2);
pointmodq ans(P.get_curve());
if(P.is0flag || is_zero(n)) return ans;
int negative = (is_negative(n)) ;
bigint nn = n;
if(negative) nn = - n ;
if(nn == one) {
return (negative? -P : P);
}
// now nn >= 2
if(nn == two){
ans = P.twice() ;
return (negative? -ans : ans);
}
// now nn >= 3
if(odd(nn)) ans = P ; // (else ans is still 0 from initialization)
pointmodq Q = P ;
while(nn > one){
Q = Q.twice() ; // 2^k P
nn >>= 1 ;
if(odd(nn)) ans = ans + Q ;
}
return (negative? -ans : ans);
}
pointmodq curvemodq::random_point()
{
gf_element x;
pointmodq ans(*this);
while(ans.is_zero())
{
random(x);
ans=pointmodq(x,*this);
}
return ans;
}
pointmodq reduce_point(const Point& P, const curvemodq& Emodq)
{
// cout<<"Reducing "<<P<<" mod q -> "<<flush;
galois_field Fq = get_field(Emodq);
NewGF(Fq,x); NewGF(Fq,y); NewGF(Fq,z);
GFSetZ(z,getZ(P));
if(IsZero(z)) return pointmodq(Emodq);
GFSetZ(x,getX(P)); x/=z;
GFSetZ(y,getY(P)); y/=z;
// cout<<"("<<x<<","<<y<<")"<<endl;
return pointmodq(x,y,Emodq);
}
//#define DEBUG_ISO_TYPE 2
void curvemodqbasis::set_basis()
{
ffmodq(*this); // to initialize the class
P1=pointmodq(*this);
P2=P1;
if(lazy_flag)
{
n2=1;
one_generator(*this,n1,P1);
return;
}
my_isomorphism_type(*this,n1,n2,P1,P2);
n=n1*n2;
#ifdef DEBUG_ISO_TYPE
cout<<"Group structure of "<<(*this)<<" mod "<<::get_modulus(*this)<<": \n";
if(n1>1) cout<<" gen 1 = "<<P1<<" (order "<<n1<<")\n";
cout<<"Check: order is "<<order_point(P1)<<endl;
if(n2>1) cout<<" gen 2 = "<<P2<<" (order "<<n2<<")"<<endl;
cout<<"Check: order is "<<order_point(P2)<<endl;
if(n2>1)
{
pointmodq Q1=(n1/n2)*P1; // order n2
cout<<"Computing "<<n2<<"-Weil pairing of "<<Q1<<" and "<<P2
<<" mod "<<::get_modulus(*this)<<endl;
long m = I2long(n2);
gf_element mu = weil_pairing(Q1,P2,m);
cout<<"Weil pairing of generators = "<<mu<<endl;
gf_element mupow; power(mupow,mu,m);
if (mupow==mu/mu)
{
cout<<"OK, that's a "<<m<<"'th root of unity";
gf_element mupower = mu, one=mu/mu;
int m=1;
while(mupower!=one) {mupower*=mu; m++;}
cout<<" of exact order "<<m;
if(m==n2) cout<<" -OK"<<endl;
else cout<<" ???"<<endl;
}
else
cout<<"WRONG, that's NOT a "<<m<<"'th root of unity"<<endl;
}
#endif // DEBUG_ISO_TYPE
if(n1!=order_point(P1))
{
cout<<"Error in isomorphism_type("<<(*this)<<") mod "<<::get_modulus((curvemodq)*this)
<<": n1 = "<<n1
<<" but point P1 = "<<P1<<" has order "<<order_point(P1)<<endl;
n=n1=1; // to prevent this reduction being used
}
if(n2!=order_point(P2))
{
cout<<"Error in isomorphism_type("<<(*this)<<") mod "<<::get_modulus((curvemodq)*this)
<<": n2 = "<<n2
<<" but point P2 = "<<P2<<" has order "<<order_point(P2)<<endl;
n=n2=1; // to prevent this reduction being used
}
}
pointmodq curvemodqbasis::get_gen(int i)
{
if(i==1) return P1;
if(i==2) return P2;
return pointmodq(*this);
}
vector<pointmodq> curvemodqbasis::get_pbasis(int p)
{
vector<pointmodq> ans;
if((n%p)!=0) return ans;
#if 1
if((n1%p)==0) ans.push_back((n1/p)*P1);
if((n2%p)==0) ans.push_back((n2/p)*P2);
#else
ans = get_pbasis_via_divpol(p);
#endif
return ans;
}
//#define DEBUG_PBASIS
vector<pointmodq> curvemodqbasis::get_pbasis_via_divpol(int p)
{
vector<pointmodq> ans;
if((n%p)!=0) return ans;
FqPoly pdivpol = makepdivpol(*this, p);
#ifdef DEBUG_PBASIS
cout<<p<<"-division poly mod "<<get_modulus()<<" = "<<pdivpol<<endl;
#endif
vector<gf_element> xi = roots(pdivpol);
#ifdef DEBUG_PBASIS
cout<<"roots of "<<p<<"-div pol mod "<<get_modulus()<<": "<<xi<<endl;
#endif
return get_pbasis_from_roots(p,xi);
}
vector<pointmodq> curvemodqbasis::get_pbasis_via_divpol(int p, const vector<bigint>& pdivpol)
{
vector<pointmodq> ans;
if((n%p)!=0) return ans;
galois_field Fq = get_field(*this);
NewFqPoly(Fq,pdivpolmodq);
long i, deg = pdivpol.size()-1;
SetDegree(pdivpolmodq,deg);
for (i=0; i<=deg; i++) SetCoeff(pdivpolmodq,i,ZtoGF(Fq,pdivpol[i]));
#ifdef DEBUG_PBASIS
cout<<p<<"-division poly mod "<<get_modulus()<<" = "<<pdivpolmodq<<endl;
#endif
vector<gf_element> xi = roots(pdivpolmodq);
#ifdef DEBUG_PBASIS
cout<<"roots of "<<p<<"-div pol mod "<<get_modulus()<<": "<<xi<<endl;
#endif
return get_pbasis_from_roots(p,xi);
}
//#define DEBUG_PBASIS
vector<pointmodq> curvemodqbasis::get_pbasis_from_roots(int p, const vector<gf_element>& xi)
{
vector<pointmodq> ans;
if(xi.size()==0)
{
#ifdef DEBUG_PBASIS
// cout<<"no "<<p<<"-division points mod "<<get_modulus()<<endl;
#endif
return ans;
}
unsigned int i;
if(p==2)
{
for(i=0; (i<xi.size())&&(ans.size()<2); i++)
{
pointmodq P(*this);
if(P.set_x_coordinate(xi[i])) ans.push_back(P);
}
#ifdef DEBUG_PBASIS
cout<<"basis for 2-division points mod "<<get_modulus()<<": "<<ans<<endl;
#endif
return ans;
}
// p is now odd
unsigned int p12 = (p-1)/2, p212 = (p*p-1)/2;
if(xi.size()==p212) // might have full p-torsion...
{
pointmodq P(*this);
if(P.set_x_coordinate(xi[0]))
// then we do have full p-torsion, else _none_ of the xi will give rational points
{
// store x-coords of multiples of p
ans.push_back(P);
vector<gf_element> xjp;
pointmodq Q=P;
for(i=0; i<p12; i++)
{
{xjp.push_back(Q.get_x()); Q+=P;}
}
// now look for a point with x-coord not in that list
for(i=1; (i<xi.size())&&(ans.size()==1); i++)
if(find(xjp.begin(),xjp.end(),xi[i])==xjp.end())
{
P.set_x_coordinate(xi[i]);
ans.push_back(P);
}
}
} // end of all xi Fq-rational case
else // we have at least one x
{
for(i=0; (i<xi.size())&&(ans.size()==0); i++)
{
pointmodq P(*this);
if(P.set_x_coordinate(xi[i])) ans.push_back(P);
}
}
#ifdef DEBUG_PBASIS
cout<<"basis for "<<p<<"-division points mod "<<get_modulus()<<": "<<ans<<endl;
#endif
return ans;
}
// Baby-step-giant-step, point order, group structure
// EC discrete log via baby-step-giant-step adapted from LiDIA
const long MAX_BG_STEPS = 3000000;
#ifdef DEBUG_ISO_TYPE
const int debug_iso_type=DEBUG_ISO_TYPE;
#else
const int debug_iso_type=0;
#endif
bigint my_bg_algorithm(const pointmodq& PP,
const pointmodq& QQ,
const bigint& lower,
const bigint& upper,
bool info)
{
// cout<<"In my_bg_algorithm() with P="<<PP<<", Q="<<QQ<<", bounds "<<lower<<","<<upper<<endl;
const bigint zero = BIGINT(0);
const bigint minus_one = BIGINT(-1); // return value on failure
if (PP.is_zero() && !QQ.is_zero()) return minus_one;
if ((is_zero(lower)) && QQ.is_zero()) return zero;
if (PP.get_curve() != QQ.get_curve())
{
cout<<"bg_algorithm: Points P and Q on different curves"<<endl;
abort();
return minus_one;
}
if ((is_negative(lower)) || (upper<lower))
{
cout<<"bg_algorithm: lower bound > upper bound"<<endl;
abort();
return minus_one;
}
pointmodq P(PP), Q(QQ);
pointmodq H(P.get_curve()), H2(P.get_curve()), H3(P.get_curve());
long i;
bigint number_baby, number_giant, j, h;
if (info)
cout<<"\nBabystep Giantstep algorithm: "<<flush;
if (upper - lower < BIGINT(30)) // for very small intervals
{
if (info)
cout<<"\nTesting "<<(upper - lower) <<" possibilities ... "
<<flush;
H=lower*P;
h=lower;
if (H == Q) return h;
do
{
H+=P;
h++;
if (H == Q) return h;
}
while (h <= upper);
return minus_one;
}
//**** otherwise we use the Babystep Giantstep idea **************
h = 1 + sqrt((upper - lower)); // compute number of babysteps
if (h > MAX_BG_STEPS) h = MAX_BG_STEPS;
number_baby=h;
map<bigint,long> HT;
H2 = Q-lower*P;
H = pointmodq(P.get_curve());
//****** Babysteps, store [x(i * P),i] *********************
if (info)
cout << " (#Babysteps = " << number_baby << flush;
for (i = 1; i <= number_baby; i++)
{
H+=P; // H = i*P and H2 = Q-lower*P
if (H == H2) // i * P = Q - lower* P, solution = lower+i
{
if (info) cout<<") "<<flush;
#ifdef DEBUG
assert((lower + i) * P == Q);
#endif
return (lower + i);
} // H==H2 case
if (!H.is_zero()) // store [x(H),i] in table
HT[LiftGF(H.get_x())]=i;
}
// Now for all i up to number_baby we have a table of pairs [x(i*P),i]
// and H = number_baby*P
// and H2 = Q-lower*P
// We will subtract H from H2 repeatedly, so H2=Q-lower*P-j*H in the loop
//****** Giantsteps ***************************************************/
number_giant = 1+((upper - lower)/(number_baby));
if (info)
cout << ", #Giantsteps = " << number_giant << ") " << endl;
bigint step_size = number_baby;
for (j = 0; j <= number_giant; j++)
{
// Here H2=Q-(lower+j*step_size)*P
if (H2.is_zero()) // on the nail, no need to check table
{
h = lower + j * step_size;
#ifdef DEBUG
assert(h*P == Q);
#endif
if (h <= upper) return h; else return minus_one;
}
// look in table to see if H2= i*P for a suitable i
map<bigint,long>::iterator HTi = HT.find(LiftGF(H2.get_x()));
if(HTi!=HT.end())
{
i = HTi->second;
H3=i*P;
if (H3 == H2)
{
h = lower + i + j * step_size;
#ifdef DEBUG
assert(h * P == Q);
#endif
if (h <= upper) return h; else return minus_one;
}
} // H2 is in table
H2-=H;
} // loop on j
return minus_one;
}
bigint my_order_point(const pointmodq& P, const bigint& mult)
{
vector<bigint> plist = pdivs(mult);
unsigned int i; bigint m, p, ans = BIGINT(1);
if(P.is_zero()) return ans;
for(i=0; i<plist.size(); i++)
{
p = plist[i];
m = mult;
divide_out(m,p);
pointmodq Q = m*P;
while(!Q.is_zero()) {Q=p*Q; ans*=p;}
}
return ans;
}
bigint my_order_point(const pointmodq& P, const bigint& lower, const bigint& upper)
{
return my_order_point(P,my_bg_algorithm(P,pointmodq(P.get_curve()),lower,upper));
}
bigint my_order_point(const pointmodq& P)
{
bigint q = get_field(P.get_curve()).characteristic();
bigint lower, upper;
set_hasse_bounds(q,lower,upper);
return my_order_point(P,lower,upper);
}
// returns minimal m>0 s.t. m*Q is in <P> with m*Q=a*P; n is assumed
// to be the order of P. Special case: if <Q> and <P> are disjoint,
// then m=order(Q) and a=0. On input, m holds order(Q) if known, else 0
bigint linear_relation( pointmodq& P, pointmodq& Q, bigint& a)
{
static bigint zero = BIGINT(0);
static bigint one = BIGINT(1);
bigint n = order_point(P), m = order_point(Q), g,n1,m1,h;
int debug_linear_relation=0;
if(debug_linear_relation)
cout<<"In linear_relation() with P = "<<P<<" of order "<<n
<<" and Q = "<<Q<<" of order "<<m<<endl;
g=gcd(n,m);
if(debug_linear_relation) cout<<"gcd = "<<g<<endl;
if(g==one) {a=zero; return g /* =1 */;}
n1=n/g; m1=m/g;
pointmodq P1=n1*P; // both of exact order g:
pointmodq Q1=m1*Q; // now see if Q1 is a mult of P1
if(debug_linear_relation)
cout<<"P1 = "<<P1<<" and Q1 = "<<Q1<<endl;
h=g; // holds h s.t. h*Q1 is in <P1>
vector<bigint> dlist = posdivs(g);
sort(dlist.begin(),dlist.end());
a=-1;
for(unsigned int i=0; (i<dlist.size())&&(a==-1); i++)
{
h = dlist[i];
a = my_bg_algorithm(P1,h*Q1,zero,g-1);
if(debug_linear_relation) cout<<"h = "<<h<<"; a = "<<a<<endl;
}
a=a*n1;
m=h*m1;
// debugging:
if(m*Q!=a*P)
{
cout<<"Error in linear relation with P="<<P<<", n="<<n<<", Q="<<
Q<<": returns a="<<a<<" and m="<<m<<endl;
abort();
}
return m;
}
void set_hasse_bounds(const bigint& q, bigint& l, bigint& u)
{
static const bigint one=BIGINT(1);
sqrt(u, q << 2);
l = q + one - u; // lower bound of Hasse interval
if (is_negative(l)) l=one;
u = q + one + u; // upper bound of Hasse interval
}
// Given positive integers m,n, replace them by divisors which are
// coprime and have the same lcm
//#define DEBUG 1
bigint tidy_lcm(bigint& m, bigint& n)
{
#ifdef DEBUG
bigint m0=m, n0=n;
#endif
bigint g=gcd(m,n);
bigint l=m*n/g; // = lcm(m,n)
g=gcd(m,n/g); // divisible by primes dividing n to a higher power than m
while(g!=BIGINT(1)) {m/=g; g=gcd(m,g);}
n=l/m;
#ifdef DEBUG
if((m*n==lcm(m0,n0)) &&
(gcd(m,n)==BIGINT(1)) &&
(m0%m==BIGINT(0)) &&
(n0%n==BIGINT(0)))
{
cout<<"tidy_lcm("<<m0<<","<<n0<<") changes them to "<<m<<","<<n<<" and returns "<<l<<endl;
return l;
}
cout<<"Error in tidy_lcm("<<m0<<","<<n0<<")"<<endl;
return BIGINT(0);
#else
return l;
#endif
}
// merge_points_1: given a point P of order ordP, and another point Q,
// replaces P with a point of order lcm(ordP,order(Q)) (and updates
// ordP)
void merge_points_1(pointmodq& P, bigint& ordP, pointmodq& Q)
{
// First easy case: order(Q) divides order(P), do nothing
if ((ordP * Q).is_zero())
{
if(debug_iso_type>1) cout<<"Order(Q) divides order(P)" <<endl;
return;
}
bigint ordQ = order_point(Q);
if(debug_iso_type>1) cout<<"Order(Q) = "<< ordQ <<endl;
// Second easy case: order(P) divides order(Q), swap P & Q
if (ordQ%ordP==0)
{
if(debug_iso_type>1) cout<<"Order(P) divides order(Q)" <<endl;
P=Q; ordP=ordQ;
return;
}
// General case:
// Construct a point whose order is lcm(ordP, ordQ):
bigint nP=ordP, nQ=ordQ;
bigint nPQ=tidy_lcm(nP,nQ);
// Now (1) nP*nQ = lcm(ordP,ordQ)
// (2) gcd(nP,nQ)=1
// (3) nP|ordP and nQ|ordQ
// So (ordP/nP)*P has order nP, similarly for Q, and
// these orders are coprime so the sum of the points
// has order nP*nQ=lcm(ordP,ordQ) as required:
P = (ordP/nP)*P + (ordQ/nQ)*Q;
ordP = nPQ;
if(debug_iso_type)
{
cout<<"Changed P = "<<P<<":\t order(P) = "<<nPQ<<endl;
if(order_point(P)!=nPQ) cout<<"that's wrong!"<<endl;
}
set_order_point(P,nPQ);
}
// merge_points_2: given independent points P1, P2 of orders n1,n2,
// and another point Q, EITHER (unusual) replaces P1 with a point of
// higher order and updates n2target and replaces P2 with 0, OR
// (usual) replaces P2 with a point of higher order still independent
// of P1. Here n2target is such that we expect the final group order
// to be n1*n2target, based on an assumption that P1 does have maximal
// order n1, but this assumption must be revised if using Q reveals a
// point of order greater than P1
void merge_points_2(pointmodq& P1, bigint& n1, pointmodq& P2, bigint& n2,
bigint& n2target, pointmodq& Q)
{
// Case 1: Q cannot improve if its order divides n2:
pointmodq Q1 = n2*Q;
if(Q1.is_zero())
{
if(debug_iso_type>0) cout<<"Order(Q) divides n2=" <<n2<<endl;
return;
}
pointmodq Q2 = (n1/n2)*Q1; // = n1*Q
if(!(Q2.is_zero()))
{
// Case 2: P1 needs updating and we discard P2
if(debug_iso_type>0)
cout<<"Order(Q) does not divide n1="<<n1<<", updating P1" <<endl;
bigint oldn1=n1;
merge_points_1(P1,n1,Q);
n2target=(n2target*oldn1)/n1;
if(debug_iso_type>0)
cout<<"New P1 has order " <<n1<<", assuming group structure "
<<n1<<"*"<<n2target<<endl;
if(n2>1) {P2 = pointmodq(P2.get_curve()); n2=1;}
return;
}
// General Case 3:
// We find a multiple a*P1 such that Q-a*P1 is killed by n2target so
// we can apply the Weil Pairing of order n2target
Q1 = n2target*Q;
Q2 = n2target*P1; // has exact order n1/n2target
bigint a = my_bg_algorithm(Q2,Q1,BIGINT(0),n1/n2target);
if(a==BIGINT(-1)) // dlog failed, n1 must be wrong
{
if(debug_iso_type)
{
cout<<"Dlog of "<<Q1<<" w.r.t. "<<Q2<<" (order "<<n1/n2target
<<") does not exist, so current n1 must be too small"<<endl;
}
return;
}
if(debug_iso_type)
{
cout<<"Dlog of "<<Q1<<" w.r.t. "<<Q2<<" (order "<<n1/n2target<<") is "<<a<<endl;
cout<<"Check: a*Q2-Q1 = "<<a*Q2-Q1<<" ( should be zero)"<<endl;
}
Q = Q-a*P1; // this is killed by n2target
if(Q.is_zero()) // then Q is a multiple of P, so we gain nothing
{
if(debug_iso_type) cout<<"Q-a*P1 = "<<Q<<", no use"<<endl;
return;
}
if(debug_iso_type)
{
cout<<"Replacing Q by Q-a*P1 = "<<Q<<" where a = "<< a << endl;
cout<<"whose order divides n2target; computing Weil pairing of order "
<<n2target<<endl;
}
// At this point we have not changed the subgroup generated by P1,Q
// (and have not touched P2) but now Q has order dividing n2target
// (as for P2). We now use the Weil pairing of P1 and Q, which is
// an n2target'th root of unity
Q1 = (n1/n2target)*P1;
if(debug_iso_type)
{
cout<<"order((n1/n2target)*P1) = "<<Q1<<" is "<<order_point(Q1)<<endl;
cout<<"order(Q) = "<<Q<<" is "<<order_point(Q)<<endl;
}
gf_element zeta = weil_pairing(Q1,Q,I2long(n2target));
if(debug_iso_type) cout<<"zeta = "<< zeta <<endl;
if(IsZero(zeta))
{
cout<<"Error: weil_pairing returns 0!"<<endl;
cout<<"n1 = "<<n1<<endl;
cout<<"n2 = "<<n2<<endl;
cout<<"n2target = "<<n2target<<endl;
cout<<"order((n1/n2target)*P1) = "<<Q1<<" is "<<order_point(Q1)<<endl;
cout<<"order(Q) = "<<Q<<" is "<<order_point(Q2)<<endl;
abort();
}
bigint m = order(zeta);
if(debug_iso_type) cout<<"order = "<< m <<endl;
// Compare this with n2 to see if we have gained:
bigint l = lcm(n2,m);
if(l==n2) return; // no gain
bigint ordQ = my_order_point(Q,n2target);
Q1 = (ordQ/m)*Q; // of order m
if(l==m) // replace P2, n2 by Q1, m
{
P2 = Q1;
n2 = m;
return;
}
// Now P2,Q1 have orders n2,m & both are independent of P1,
// so we combine them to get a point of order l=lcm(n2,m)
// still independent of P1
bigint n2d=n2, md=m;
l = tidy_lcm(n2d,md);
P2 = (n2/n2d)*P2 + (m/md)*Q1; // of order n2d*md=l
n2 = l;
if(debug_iso_type)
{
cout<<"Changed P2 = "<<P2<<":\t order(P2) = "<<n2<<endl;
if(order_point(P2)!=n2) cout<<"that's wrong!"<<endl;
}
}
// returns list of integers n2 such that
// (1) lower <= n1*n2 <= upper
// (2) n2|gcd(n1,q-1)
vector<bigint> n2list(const bigint& n1,
const bigint& lower, const bigint& upper,
const bigint& q)
{
bigint n2min = lower/n1, n2max = upper/n1, n2, g = gcd(n1,q-1);
if(n2min*n1<lower) n2min++;
vector<bigint> ans;
for(n2=n2min; n2<=n2max; n2++) if(div(n2,g)) ans.push_back(n2);
return ans;
}
// find a point of "large" order
void one_generator(curvemodq& Cq, bigint& n1, pointmodq& P1)
{
galois_field Fq = get_field(Cq);
bigint q = Fq.characteristic();
bigint upper, lower; // bounds on group order
set_hasse_bounds(q,lower,upper);
if(debug_iso_type)
cout<<"Lower and upper bounds on group order: ["
<<lower<<","<<upper<<"]"<<endl;
P1 = Cq.random_point();
if(debug_iso_type) cout<<"P1 = "<<P1<<":\t"<<flush;
n1 = my_order_point(P1,lower,upper);
if(debug_iso_type) cout<<"Order(P1) = "<< n1 <<endl;
int n;
for(n=1; ((n<=10)&&(2*n1<=upper)); n++)
{
pointmodq Q = Cq.random_point();
if(debug_iso_type>1) cout<<"Q = "<<Q<<":\t"<<flush;
merge_points_1(P1,n1,Q);
if(debug_iso_type>1)
{
cout<<"now P1 = "<<P1<<":\tof order "<<n1<<endl;
}
}
}
// find full Z-basis
void my_isomorphism_type(curvemodq& Cq,
bigint& n1, bigint& n2, pointmodq& P1, pointmodq& P2)
{
galois_field Fq = get_field(Cq);
bigint q = Fq.characteristic();
bigint upper, lower; // bounds on group order
set_hasse_bounds(q,lower,upper);
if(debug_iso_type)
cout<<"Lower and upper bounds on group order: ["
<<lower<<","<<upper<<"]"<<endl;
int group_order_known=0;
if((q<100)||(q==181)||(q==331)||(q==547))
{
Cq.set_group_order_via_legendre();
lower = upper = Cq.group_order();
group_order_known=1;
if(debug_iso_type)
cout<<"Lower and upper bounds on group order adjusted to actual order "
<<lower<<" since prime field size <100 or =181, 331, 547"<<endl;
}
pointmodq P(Cq), Q(Cq), Q1(Cq);
bigint ordP, ordP2, ordQ;
P = Cq.random_point();
if(debug_iso_type) cout<<"P = "<<P<<":\t"<<flush;
if(group_order_known) ordP = my_order_point(P,lower);
else ordP = my_order_point(P,lower,upper);
if(debug_iso_type) cout<<"Order(P) = "<< ordP <<endl;
vector<bigint> quotlist=n2list(ordP,lower,upper,q);
if(debug_iso_type)
cout<<"Possible n2 values if n1 = "<<ordP<<": "<<quotlist<<endl;
int n;
for(n=1; ((n<=10)&&(2*ordP<=upper)) || quotlist.size()!=1; n++)
{
Q = Cq.random_point();
if(debug_iso_type>1) cout<<"Q = "<<Q<<":\t"<<flush;
merge_points_1(P,ordP,Q);
quotlist = n2list(ordP,lower,upper,q);
if(debug_iso_type>1)
{
cout<<"now P = "<<P<<":\tof order "<<ordP<<endl;
cout<<"possible n2 values: "<<quotlist<<endl;
}
}
// At this stage, P is likely to be the first generator; if so,
// there is a second independent generator of order quot which we
// must now find. If not, then while looking for the second
// generator we will come across a point whose order is not a
// divisor of ordP, at which point we update P, ordP and quot.
P1 = P; n1 = ordP;
P2 = pointmodq(Cq); n2 = 1;
bigint quot=quotlist[0]; // the only value in the list
if(quot==1) // then there is no ambiguity (thanks to the special
// cases dealt with where the grou order is computed in
// advance)
{
if(debug_iso_type)
cout<<"group is cyclic, generated by P = "<<P<<endl;
return;
}
if(debug_iso_type)
{
cout<<"Maximal order found after using "<<n<<" random points is "
<<ordP<<endl;
cout<<"with n2 = "<<quot<<endl;
cout<<"Assuming that P does have maximal order,\n";
cout<<"group structure is "<<ordP<<"*"<<quot<<"="<<(quot*ordP)<<endl;
}
ffmodq dummy(Cq); // to initialize the function field's static data
if(debug_iso_type)
cout<<"Looking for a second generator of order "<<quot<<endl;
if(even(quot))
{
// We find the 2-torsion explicitly: this is better than
// using random points
pointmodq T = (ordP/2)*P1; // the one we have already
if(debug_iso_type)
cout<<"Existing 2-torsion point "<<T<<endl;
NewFqPoly(Fq,f); FqPolyAssignX(f); f=f-T.get_x();
FqPoly x2divpol = makepdivpol(Cq,2);
if(debug_iso_type)
cout<<"2-division poly = "<<x2divpol<<endl;
divide(x2divpol,x2divpol,f);
if(debug_iso_type)
cout<<"reduced 2-division poly = "<<x2divpol<<endl;
// Now x2divpos will have as roots the two other x-coords of
// 2-division points _unless_ P1 is not of maximal order in
// which case it may be irreducible.
gf_element a1=PolyCoeff(x2divpol,1);
gf_element d =a1*a1-ItoGF(Fq,16)*PolyCoeff(x2divpol,0), rd;
if(sqrt(Fq,d,rd))
{
P2.set_x_coordinate((sqrt(Fq,d)-a1)/ItoGF(Fq,8));
if(debug_iso_type)
cout<<"New 2-torsion point "<<P2<<endl;
n2=2;
}
else
{
if(debug_iso_type)
cout<<"No more 2-torsion points! P1 must not be of maximal order"
<<endl;
}
}
while(n2!=quot)
{
Q = Cq.random_point();
if(debug_iso_type) cout<<"Using Q = "<<Q<<endl;
merge_points_2(P1,n1,P2,n2,quot,Q);
if(debug_iso_type) cout<<"Group order now "<<(n1*n2)<<endl;
}
if(debug_iso_type)
cout<<"Finished: group structure ("<<n1<<","<<n2<<") with "
<<"generators "<<P1<<","<<P2<<endl;
return;
}
// find full Z-basis
void my_isomorphism_type_new(curvemodq& Cq,
bigint& n1, bigint& n2, pointmodq& P1, pointmodq& P2)
{
galois_field Fq = get_field(Cq);
bigint q = Fq.characteristic();
bigint upper, lower; // bounds on group order
set_hasse_bounds(q,lower,upper);
if(debug_iso_type)
cout<<"Lower and upper bounds on group order: ["
<<lower<<","<<upper<<"]"<<endl;
int group_order_known=0;
if((q<100)||(q==181)||(q==331)||(q==547))
{
Cq.set_group_order_via_legendre();
lower = upper = Cq.group_order();
group_order_known=1;
if(debug_iso_type)
cout<<"Lower and upper bounds on group order adjusted to actual order "
<<lower<<" since prime field size <100 or =181, 331, 547"<<endl;
}
pointmodq P(Cq), Q(Cq), Q1(Cq), P3(Cq);
P1=P; P2=P; n1=n2=BIGINT(1);
bigint m,a, ordQ, oldn1;
// At all stages the current subgroup is generated by P1, P2 with
// orders n1,n2 which are disjoint. We stop when n1*n2 >= lower
int count=0;
while(n1*n2<lower)
{
count++;
Q = Cq.random_point();
if(debug_iso_type) cout<<"Q = "<<Q<<":\t"<<flush;
if(group_order_known) ordQ = my_order_point(Q,lower);
else ordQ = my_order_point(Q,lower,upper);
ordQ = order_point(Q);
if(debug_iso_type) cout<<"Order(Q) = "<< ordQ <<endl;
Q1=n1*Q;
if(Q1.is_zero()) // P1,n1 will not change but we may increase n2
{
if(debug_iso_type)
cout<<"Case 1: n2 may increase"<<endl;
// if(count>5)
{
m = linear_relation(P1,Q,a);
if(debug_iso_type)
cout<<"linear relation gives m="<<m<<", a="<<a<<endl;
if(m>1)
{
Q=Q-(a/m)*P1; // has order m and is disjoint from P1
set_order_point(Q,m);
if(n2==1)
{
P2=Q; n2=m;
if(debug_iso_type)
{
cout<<"Adding second generator "<<P2<<" of order "
<<n2<<endl
<<"Group order now "<<n1*n2<<"="<<n1<<"*"<<n2<<endl;
}
}
else
{
// Now we must merge P2 and Q:
a=n2; // holds old value
merge_points_1(P2,n2,Q);
if(debug_iso_type)
{
if(n2>a)
cout<<"Replacing second generator by "<<P2<<" of order "
<<n2<<", gaining index "<<n2/a<<endl
<<"Group order now "<<n1*n2<<"="<<n1<<"*"<<n2<<endl;
}
}
}
}
}
else // Q1 nonzero: n1 will increase
{
if(debug_iso_type)
cout<<"Case 2: n1 may increase"<<endl;
oldn1=n1;
if(n2>1)
{
P3=(n1/n2)*P1; // so P2,P3 are a basis for n2-torsion
set_order_point(P3,n2);
if(debug_iso_type)
cout<<"storing generator "<<P3<<" of "<<n2<<"-torsion"<<endl;
}
merge_points_1(P1,n1,Q);
if(debug_iso_type)
{
cout<<"Replacing first generator by "<<P1<<" of order "
<<n1<<", gaining index "<<n1/oldn1<<endl
<<"Group order now "<<n1*n2<<"="<<n1<<"*"<<n2<<endl;
}
// Now replace P2 by a point of order n2 s.t. it and
// (n1/n2)*P1 are still abasis for n2-torsion:
if(n2>1)
{
m = linear_relation(P1,P3,a);
if(debug_iso_type)
cout<<"linear relation gives m="<<m<<", a="<<a<<endl;
P3=P3-(a/m)*P1;
set_order_point(P3,m);
if(debug_iso_type)
cout<<"First P2 component ="<<P3<<endl;
if(m==n2) {P2=P3;} else
{
m = linear_relation(P1,P2,a);
if(debug_iso_type)
cout<<"linear relation gives m="<<m<<", a="<<a<<endl;
P2=P2-(a/m)*P1;
set_order_point(P2,m);
if(debug_iso_type)
cout<<"Second P2 component ="<<P2<<endl;
merge_points_1(P2,m,P3);
if(debug_iso_type)
cout<<"Combined P2 component ="<<P2<<endl;
}
}
}
if(debug_iso_type)
{
if(order_point(P1)!=n1)
{
cout<<"Generator P1 = "<<P1<<" has order "<<order_point(P1)
<<" and not "<<n1<<endl;
abort();
}
if(order_point(P2)!=n2)
{
cout<<"Generator P2 = "<<P2<<" has order "<<order_point(P2)
<<" and not "<<n2<<endl;
abort();
}
if(linear_relation(P1,P2,a)!=n2)
{
cout<<"Generators not independent!"<<endl;
abort();
}
cout<<"Generators: P1 = "<<P1<<" of order "
<<n1<<", P2 = "<<P2<<" of order "<<n2<<endl;
cout<<"Group order now "<<n1*n2<<"="<<n1<<"*"<<n2<<endl;
}
}
}
|