1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
// realroots.cc: implementation of funtions for real roots of polynomials
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
#include <eclib/compproc.h>
#include <eclib/realroots.h>
bigfloat safe_sqrt(const bigfloat& x)
{
static bigfloat zero=to_bigfloat(0);
if(x>zero) return sqrt(x);
return zero;
}
bigfloat cube_root(const bigfloat& x)
{
if(is_zero(x)) return x;
if(x<0) return -exp(log(-x)/3);
return exp(log(x)/3);
}
/*
bigfloat cube_root(const bigfloat& x)
{
static bigfloat third = to_bigfloat(1)/to_bigfloat(3);
if(x<0) return -pow(-x, third);
else return pow( x, third);
}
*/
// coeff contains deg+1 reals starting with the leading coefficient
// which must be nonzero
//
// we assume the roots are distinct
//#define DEBUG_REALROOTS
vector<bigfloat> realroots( const vector<bigfloat>& coeff )
{
#ifdef DEBUG_REALROOTS
cout<<"In realroots with coeff = "<<coeff<<endl;
#endif
// trim leading zeros:
vector<bigfloat> tcoeff;
unsigned int i=0; while(is_zero(coeff[i])) i++;
while(i<coeff.size()) tcoeff.push_back(coeff[i++]);
#ifdef DEBUG_REALROOTS
cout<<"realroots: trimmed coeffs = "<<tcoeff<<endl;
#endif
long deg = tcoeff.size()-1;
#ifdef DEBUG_REALROOTS
cout<<"deg = "<<deg<<endl;
#endif
vector<bigfloat> ans;
bigfloat a = tcoeff[0];
#ifdef DEBUG_REALROOTS
cout<<"a = "<<a<<" (should be nonzero!)"<<endl;
#endif
if(deg==0) return ans;
if(deg==1)
{
ans.push_back(-tcoeff[1]/a);
return ans;
}
if(deg==2)
{
bigfloat b=tcoeff[1], c=tcoeff[2];
bigfloat disc = b*b-4*a*c;
if(disc<0) return ans;
bigfloat r1 = (safe_sqrt(disc)-b)/(2*a);
ans.push_back(r1);
ans.push_back(-(b/a)-r1);
return ans;
}
if(deg==3)
{
#ifdef DEBUG_REALROOTS
cout<<"degree 3 case "<<endl;
#endif
bigfloat b=tcoeff[1], c=tcoeff[2], d=tcoeff[3];
bigfloat P = b*b-3*a*c;
bigfloat Q = b*c-9*a*d;
bigfloat R = c*c-3*b*d;
bigfloat D3 = Q*Q-4*P*R; // =-3*disc
if(D3>0) // one real root
{
#ifdef DEBUG_REALROOTS
cout<<"one real root "<<endl;
#endif
if(is_zero(P))
{
#ifdef DEBUG_REALROOTS
cout<<"Case P=0 (P="<<P<<")"<<endl;
cout<<"a = "<<a<<endl;
cout<<"Q = "<<Q<<endl;
cout<<"3*a*Q = "<<3*a*Q<<endl;
#endif
bigfloat eta3 = d/a - (c*R)/(3*a*Q);
#ifdef DEBUG_REALROOTS
cout<<"eta3 = "<<eta3<<endl;
#endif
bigfloat eta = cube_root(eta3);
#ifdef DEBUG_REALROOTS
cout<<"eta = "<<eta<<endl;
#endif
bigfloat alpha = -eta - R;
#ifdef DEBUG_REALROOTS
cout<<"root = "<<alpha<<endl;
#endif
ans.push_back(alpha);
return ans;
}
else
{
bigfloat U = 2*b*b*b + 27*a*a*d - 9*a*b*c;
#ifdef DEBUG_REALROOTS
cout<<"Case P!=0 (P="<<P<<")"<<endl;
cout<<"U = "<<U<<endl;
#endif
bigfloat delta = safe_sqrt(D3);
#ifdef DEBUG_REALROOTS
cout<<"delta = "<<delta<<endl;
#endif
bigfloat gamma1 = (-Q+delta)/(2*P); // roots of Hessian
bigfloat gamma2 = (-Q-delta)/(2*P); //
#ifdef DEBUG_REALROOTS
cout<<"gamma1 = "<<gamma1<<endl;
cout<<"gamma2 = "<<gamma2<<endl;
#endif
bigfloat lambda=U-3*a*delta; // lambda+mu=2*U, lambda*mu=4*P^3
bigfloat mu =2*U-lambda;
#ifdef DEBUG_REALROOTS
cout<<"lambda = "<<lambda<<endl;
cout<<"mu = "<<mu<<endl;
#endif
lambda=cube_root(lambda); mu=cube_root(mu);
bigfloat alpha = (lambda*gamma1-mu*gamma2)/(lambda-mu);
#ifdef DEBUG_REALROOTS
cout<<"root = "<<alpha<<endl;
#endif
ans.push_back(alpha);
return ans;
}
}
else // all roots real
{
vector<bigcomplex> croots = solvecubic(b/a,c/a,d/a);
for(int i=0; i<3; i++) ans.push_back(real(croots[i]));
return ans;
}
}
if(deg==4)
{
bigfloat b=tcoeff[1], c=tcoeff[2], d=tcoeff[3], e=tcoeff[4];
bigfloat ii = 12*a*e - 3*b*d + c*c;
bigfloat jj = (72*a*e + 9*b*d - 2*c*c) * c - 27*(a*d*d + b*b*e);
bigfloat disc = 4*ii*ii*ii-jj*jj;
bigfloat H = 8*a*c - 3*b*b, R = b*b*b + 8*d*a*a - 4*a*b*c;
bigfloat Q = H*H-16*a*a*ii; // = 3*Q really
int type;
if(disc<0)
{type=3;} // 2 real roots
else
{
if((H<0)&&(Q>0))
{type=2;} // 4 real roots
else
{type=1;} // 0 real roots
}
bigcomplex c1(to_bigfloat(0)), c2(-3*ii), c3(jj);
vector<bigcomplex> cphi = solvecubic( c1, c2, c3);
vector<bigcomplex> roots(4);
bigfloat a4=4*a;
bigfloat oneover4a = to_bigfloat(1)/a4;
if(type==1) return ans;
if(type<3) // all roots are real
{
// all the phi are real; order them so that a*phi[i] decreases
bigfloat phi1 = real(cphi[0]);
bigfloat phi2 = real(cphi[1]);
bigfloat phi3 = real(cphi[2]);
if(a>0) orderreal(phi1,phi2,phi3);
else orderreal(phi3,phi2,phi1);
bigfloat r1 = safe_sqrt((a4*phi1-H)/to_bigfloat(3));
bigfloat r2 = safe_sqrt((a4*phi2-H)/to_bigfloat(3));
bigfloat r3 = safe_sqrt((a4*phi3-H)/to_bigfloat(3));
if(R<0) r3 = -r3;
ans.push_back(( r1 + r2 - r3 - b) * oneover4a);
ans.push_back(( r1 - r2 + r3 - b) * oneover4a);
ans.push_back((-r1 + r2 + r3 - b) * oneover4a);
ans.push_back((-r1 - r2 - r3 - b) * oneover4a);
// Those are all real and in descending order of size
return ans;
}
bigfloat realphi; // will hold the real root, which will be cphi[2]
if (is_real(cphi[1]))
{
realphi=real(cphi[1]);
cphi[1]=cphi[2];
cphi[2]=realphi;
}
else
if (is_real(cphi[2]))
{
realphi=real(cphi[2]);
}
else
{
realphi=real(cphi[0]);
cphi[0]=cphi[2];
cphi[2]=realphi;
}
bigcomplex r1 = sqrt((a4*cphi[0]-H)/to_bigfloat(3));
bigfloat r3 = safe_sqrt((a4*realphi-H)/to_bigfloat(3));
if(R<0) r3 = -r3;
ans.push_back((( 2*real(r1) - r3 - b)) * oneover4a);
ans.push_back(((-2*real(r1) - r3 - b)) * oneover4a);
return ans;
}
return ans; // not implemented for degree>4
}
// As above but only root in the interval [-1,1]
vector<bigfloat> realroots11( const vector<bigfloat>& coeff )
{
#ifdef DEBUG_REALROOTS
cout<<"In realroots11 with coeff = "<<coeff<<endl;
#endif
vector<bigfloat> ans0 = realroots(coeff);
#ifdef DEBUG_REALROOTS
cout<<"realroots11: ans0 = "<<ans0<<endl;
#endif
vector<bigfloat> ans;
for(unsigned int i=0; i<ans0.size(); i++)
{
bigfloat x = ans0[i];
if((x<=1)&&(x>=-1)) ans.push_back(x);
}
#ifdef DEBUG_REALROOTS
cout<<"realroots11: ans = "<<ans<<endl;
#endif
return ans;
}
|