1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
|
// saturate.cc: implementation of class saturator for sieving E(Q)/pE(Q)
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
#include <eclib/matrix.h>
#include <eclib/subspace.h>
#include <eclib/points.h>
#include <eclib/polys.h>
#include <eclib/curvemod.h>
#include <eclib/pointsmod.h>
#include <eclib/ffmod.h>
#include <eclib/divpol.h>
#include <eclib/tlss.h>
#include <eclib/elog.h>
#include <eclib/sieve_search.h>
#include <eclib/mwprocs.h>
#include <eclib/saturate.h>
#include <eclib/egr.h>
#include <eclib/htconst.h>
// If point search bound is greater than this, output a warning
// message and reduce to this value:
const int max_search_bound = 18;
// How many auxiliary primes to use without the image increasing in
// rank before attempting to enlarge the subgroup:
const int n_aux_stuck = 20;
void saturator::reset_points(const vector<Point>& PP)
{
Plist=PP;
Plistx=PP;
unsigned int i;
for(i=0; i<Plistp.size(); i++) Plistx.push_back(Plistp[i]);
rank=Plistx.size();
TLimage=mat(0,rank); // holds TL image in echelon form
TLrank=0;
qvar.init(); qvar++; qvar++; // skip past 2 and 3
stuck_counter=0;
Eqptr=Eqlist.begin();
newq=0;
}
int saturator::test_saturation(int pp, int ms)
{
p=pp;
// We add a basis for the torsion/p to the given points:
Plistx=Plist;
Plistp = pCoTorsion(AllTorsion,p);
int npcot = Plistp.size();
if(npcot>0)
{
if(verbose>1)
cout<< "saturator: adding "<<npcot<<" extra points before sieving: "
<<Plistp<<endl;
int i;
for(i=0; i<npcot; i++) Plistx.push_back(Plistp[i]);
}
rank=Plistx.size();
TLimage=mat(0,rank); // holds TL image in echelon form
TLrank=0;
if(use_div_pols)
{
pdivpol = makepdivpol(E,p);
//cout<<p<<"-division poly = "<<pdivpol<<endl;
}
qvar.init(); qvar++; qvar++; // skip past 2 and 3
stuck_counter=0;
log_index=0;
Eqptr=Eqlist.begin();
newq=0;
while((TLrank<rank)&&(stuck_counter<ms)) nextq();
return rank==TLrank;
}
int saturator::test_saturation_extra(int pp, int ms)
{
stuck_counter=0;
while((TLrank<rank)&&(stuck_counter<ms)) nextq();
return rank==TLrank;
}
void saturator::nextq()
{
int ntp=0;
TLSS sieve; bigint q;
while (ntp==0) /* (ntp<2) */
{
qvar++; q=qvar;
if(!qvar.ok())
{
if(verbose>1)
cout<<"*** not enough precomputed primes for saturation (max = "
<<maxprime()<<"), computing more primes..."<<flush;
the_primes.init(2*maxprime());
if(verbose>1)
cout<<"done, now max prime = "<<maxprime()<<endl;
qvar.init();
while(qvar.value()<=q) qvar++;
q=qvar;
if(verbose>1)
cout<<"Continuing with q="<<q<<endl;
}
while(div(q,disc)) {qvar++; q=qvar; }
if(verbose>1) cout<<"Trying q="<<q<<endl;
if(newq||(Eqptr==Eqlist.end()))
{
newq=1;
if(verbose>2) cout<<"Initializing q = "<<q<<": "<<endl;
curvemodqbasis Eq(*E,q); //,(p>10));
Eqlist.push_back(Eq);
sieve.assign(Eq);
}
else
{
sieve.assign(*Eqptr);
Eqptr++;
newq=(Eqptr==Eqlist.end());
// cout<<"Using stored reduced curve mod "<<q<<": "<<Eq<<endl;
}
if(q==p) continue;
if(use_div_pols) sieve.init(p,pdivpol,verbose);
else sieve.init(p,verbose);
ntp=sieve.get_rank();
}
if(verbose>1) cout<<"Using q = "<<q<<endl;
mat TLim = sieve.map_points(Plistx);
if(verbose>2)
{
cout<<"Adding "<<ntp<<" rows to TL matrix;\n";
cout<<TLim<<endl;
cout<<"Now reducing to echelon form..."<<endl;
}
vec pcols, npcols; // not used
long newTLrank, ny;
mat newTLmat = echmodp(rowcat(TLimage,TLim),pcols, npcols, newTLrank, ny, p);
if(verbose>2)
{
cout<<"New rank = "<<newTLrank<<endl;
cout<<"New TL matrix = "<<newTLmat<<endl;
}
if(newTLrank==TLrank)
{
stuck_counter++;
if(verbose>1)
cout<<"Stuck at rank "<<TLrank<<" for the last "<<stuck_counter<<" primes"<<endl;
}
else
{
stuck_counter=0;
if(verbose>1)
cout<<"rank increases by "<<(newTLrank-TLrank)<<" to "<<newTLrank<<endl;
TLimage=newTLmat;
TLrank=newTLrank;
}
if(verbose>1) cout<<endl;
}
vec saturator::kernel_vector()
{
if(TLrank==rank) return vec(0); // should not be called in this case!
// Now we assume that TLimage is in echelon form
mat ker = basis(pkernel(TLimage, p));
return ker.col(1);
}
// enlarge basis if dim(kernel)>0:
int saturator::enlarge()
{
if(TLrank==rank) return 0; // no enlargement; should not be called in this case
vec ker = basis(pkernel(TLimage, p)).col(1);
if(verbose>0) cout<<"possible kernel vector = "<<ker<<endl;
Point Q(E); int i, ci, keepi=-1;
for(i=0; i<rank; i++)
{
if((ci = mod(ker[i+1],p)))
{
if((keepi<0)&&(abs(ci)==1)) keepi=i;
Q+=ci*Plistx[i];
}
}
if(verbose>0) cout<<"This point may be in "<<p<<"E(Q): "<<Q<<endl;
vector<Point> Pi;
long prec, original_prec;
if(order(Q)==-1) // non-torsion point
{
// cout << "[attempting to divide by "<<p<<" using bit precision "
// <<bit_precision()<<"]"<<endl;
Pi=division_points(*E,Q,p);
if(Pi.size()==0)
{
prec = original_prec = bit_precision();
//cout << "Saving bit precision "<<prec<<endl;
prec *= 2;
set_bit_precision(prec);
// cout << "[attempting to divide by "<<p<<" using bit precision "
// <<prec<<"]"<<endl;
Pi=division_points(*E,Q,p);
set_bit_precision(original_prec);
//cout << "Restoring bit precision "<<bit_precision()<<endl;
}
}
if(Pi.size()==0)
{
if(verbose>0) cout<<"...but it isn't! "
<<"(this may be due to insufficient precision: decimal precision "
<<prec<<" was used)"<<endl;
return 0;
}
if(verbose>0) cout<<"...and it is! "<<endl;
// cout<<Pi<<endl;
Q=Pi[0];
if(verbose>0) cout<<"Replacing old generator #"<<(keepi+1)
<<" with new generator "<<Q<<endl;
Plist[keepi]=Q;
Plistx[keepi]=Q;
log_index++;
// reset TL matrix and q iteration
TLimage=mat(0,rank); // holds TL image in echelon form
TLrank=0;
qvar.init(); qvar++; qvar++; // skip past 2 and 3
stuck_counter=0;
Eqptr=Eqlist.begin();
newq=0;
return 1;
}
// repeat testing saturation and enlarging until done:
// returns log_p of index
int saturator::do_saturation(int pp, int maxntries)
{
p=pp;
if(verbose>1)
cout<<"Testing "<<p<<"-saturation..."<<endl;
if(test_saturation(p,n_aux_stuck)) return 0;
if(verbose>1)
cout<<"Points not (yet) proved to be "<<p
<<"-saturated, attempting enlargement..."<<endl;
int n=0;
while(1)
{
if(enlarge()) {n=0;}
else
{
if(verbose>1) cout<<" enlargement failed!"<<endl;
n++;
if(n==maxntries) // give up
{
cout<<"After "<<n<<" attempts at enlargement, giving up!\n";
cout<<"--points not proved "<<p<<"-saturated,"<<endl;
return -1;
}
}
if(test_saturation_extra(p,n_aux_stuck)) return log_index;
if(verbose>1) cout<<"Points not (yet) proved to be "<<p
<<"-saturated, attempting enlargement..."<<endl;
}
}
int saturator::do_saturation_upto(int maxp, int maxntries)
{
int pi, p, index=1;
primevar pvar; p=pvar;
while(p<=maxp)
{
if(verbose) cout<<"Checking "<<p<<"-saturation "<<endl;
pi = do_saturation(p,maxntries);
if(verbose&&(pi>=0))
{
cout<<"Points have successfully been "<<p
<<"-saturated (max q used = "<<get_q()<<")"<<endl;
if(pi>0) cout<<"Index gain = "<<p<<"^"<<pi<<endl;
}
if(pi>0) while(pi--) index *= p;
pvar++;
p=pvar;
}
return index;
}
int l2i(long i) {return (int)i;}
vector<int> lv2iv(const vector<long>& v)
{
vector<int> ans;
transform(v.begin(),v.end(),inserter(ans,ans.end()),ptr_fun(l2i));
return ans;
}
int i2l(int i) {return (long)i;}
vector<long> iv2lv(const vector<int>& v)
{
vector<long> ans;
transform(v.begin(),v.end(),inserter(ans,ans.end()),ptr_fun(i2l));
return ans;
}
int saturator::do_saturation(vector<long> plist,
bigint& index, vector<long>& unsat,
int maxntries)
{
vector<int>iplist = lv2iv(plist), iunsat;
int ans = do_saturation(iplist,index,iunsat,maxntries);
unsat = iv2lv(iunsat);
return ans;
}
int saturator::do_saturation(vector<int> plist,
bigint& index, vector<int>& unsat,
int maxntries)
{
unsigned int i; int pi, p;
int success=1;
index=1;
if(verbose) cout<<"Checking saturation at "<<plist<<endl;
for(i=0; i<plist.size(); i++)
{
p = plist[i];
if(verbose) cout<<"Checking "<<p<<"-saturation "<<endl;
pi = do_saturation(p,maxntries); // = log_index if >=0, -1 if failed
if(pi<0)
{
cout<<p<<"-saturation failed!"<<endl;
unsat.push_back(p);
success=0;
}
else
{
if(verbose)
{
if(pi>0)
{
cout<<"Points have successfully been "<<p
<<"-saturated (max q used = "<<get_q()<<")"<<endl;
cout<<"Index gain = "<<p<<"^"<<pi<<endl;
}
if(pi==0)
{
cout<<"Points were proved "<<p
<<"-saturated (max q used = "<<get_q()<<")"<<endl;
}
}
while(pi--) index *= p;
}
}
return success;
}
int saturator::saturate(vector<long>& unsat, bigint& index, long sat_bd,
int egr, int maxntries, int odd_primes_only)
{
// Determine the primes at which saturation is necessary: all those
// up to index bound (but truncated at sat_bd unless this is -1),
// and also the "Tamagawa primes" if the egr option is set
vector<long> satprimes;
primevar pr;
if(odd_primes_only) pr++; // useful after a 2-descent
int p=pr.value();
bigint ib = index_bound(E,Plist,egr,(verbose>1));
bigint ib0=ib;
if(sat_bd==-1) sat_bd=SAT_MAX_PRIME;
int bound_too_big = (ib>sat_bd);
if(verbose)
cout<<"Saturation index bound = "<<ib<<endl;
if(bound_too_big)
{
if(!verbose) cout<<"Saturation index bound = "<<ib<<endl;
cout<<"WARNING: saturation at primes p > "<<sat_bd
<<" will not be done; \n"
<<"points may be unsaturated at primes between "<<sat_bd
<<" and index bound"<<endl;
ib = sat_bd;
}
while(p<=ib)
{
satprimes.push_back(p);
pr++; p=pr.value();
}
// In principle we should add these primes to unsat list, but in
// practice we will not as there are likely to be too many!
#if(0)
if(bound_too_big)
while(p<=ib0)
{
unsat.push_back(p);
pr++; p=pr.value();
}
#endif
if(egr)
satprimes=vector_union(satprimes,tamagawa_primes(*E));
// do the saturation:
int sat_ok = do_saturation(satprimes, index, unsat);
return (!bound_too_big) && sat_ok;
}
// This function returns a list of 0,1 or 2 points which generate
// torsion modulo p*torsion:
//
// 0 if p ndiv #torsion; else
// 1 (a generator) if torsion is cyclic; else
// 2 (a point of max order and an independent 2-torsion point)
vector<Point> pCoTorsion(const vector<Point>& AllTorsion, int p)
{
long i, maxorder=0, ntorsion = AllTorsion.size();
vector<Point> ans;
// Case 0:
if(ndivides(p,ntorsion)) return ans; // empty
// find point Q of maximal order:
Point P,Q;
for(i=0; (i<ntorsion)&&(maxorder<ntorsion); i++)
{
P = AllTorsion[i];
if(order(P)>maxorder)
{
Q=P; maxorder=order(Q);
}
}
ans.push_back(Q);
// Case 1:
if((maxorder==ntorsion)||(p>2)) return ans; // p-torsion is cyclic, return Q (generator)
// Now order is 4, 8, 12 and torsion is not cyclic: add either
// 2-torsion point not a multiple of Q:
Q = (maxorder/2)*Q; // the 2-torsion point to avoid
for(i=0; i<ntorsion; i++)
{
P = AllTorsion[i];
if((order(P)==2) && (Q != P))
{
ans.push_back(P);
return ans;
}
}
return ans; // not necessary except to keep -Wall happy
}
int saturate_points(Curvedata& C, vector<Point>& points,
bigint& index, vector<long>& unsat,
long sat_bd, int egr, int verbose)
{
saturator sieve(&C,verbose);
sieve.set_points(points);
int ans = sieve.saturate(unsat, index, sat_bd, egr, (verbose));
points = sieve.getgens();
return ans;
}
// Bound for the index of saturation for the given set of points. If
// egr is set it determines the egr subgroup of the group the points
// generate and only searches for points with egr, This might be faster
// in some cases...
//
// Flaw: the point search carried out in order to find a lower bound
// for the height of non-torsion points might find points which gain
// some index on the input points, but we do not use this. Of course
// the caller can do their own points search first, in which case
// there is no (or less) loss, except that the searching has been done
// twice. Some redesign would be needed to optimize this -- for
// example, index_bound could be part of the mw class.
//
// New version 08/08/06: uses class CurveHeightConst and strategy in
// ANTS7 paper to find a lower bound for the height of egr non-torsion
// points
//
bigint index_bound(Curvedata* C, vector<Point>& points,
int egr, int verbose)
{
if(verbose)
cout<<"Entering index_bound("<<(Curve)(*C)<<")"<<endl;
int npts = points.size();
bigfloat reg = regulator(points);
if(verbose)
cout<<"Regulator of input points = "<<reg<<endl;
bigfloat gamma=lattice_const(npts);
if(verbose)
cout<<"Lattice constant = "<<gamma<<endl;
// If egr==1, find regulator of egr subgroup
bigfloat index = to_bigfloat(1), egr_reg=reg;
if(egr)
{
index = I2bigfloat(egr_index(points));
egr_reg = index*index*reg;
if(verbose)
{
cout<<"Index of egr points = "<<index<<endl;
cout<<"Regulator of egr points = "<<egr_reg<<endl;
}
}
// else we'll divide lambda later instead
#ifdef USE_SEARCHING_STRATEGY
bigfloat lambda=index_bound(C,points,egr,verbose);
if(verbose) cout<<"lambda (via search) = "<<lambda<<endl;
#else // use ANTS7 strategy instead to get lower bound for egr height
CurveHeightConst CHC(*C);
CHC.compute();
bigfloat lambda=CHC.get_value();
if(verbose) cout<<"lambda (via ANTS7) = "<<lambda<<endl;
#endif
if(!egr)
{
bigfloat tam = I2bigfloat(Tamagawa_exponent(*C));
lambda/=(tam*tam);
}
bigfloat ib = index*sqrt(reg*pow(gamma/lambda,npts));
if(verbose)
cout<<"raw index bound = "<<ib <<endl;
bigint ans = Ifloor(ib+0.1); // be careful about rounding errors!
if(ans<2) ans=1; // In case 0.9999 has rounded down to 0
if(verbose)
cout<<"Saturation index bound = "<<ans <<endl;
return ans;
} // end of index_bound()
// Tamagawa primes: primes dividing any Tamagawa number
vector<long> tamagawa_primes(const Curvedata& C)
{
CurveRed CR(C);
vector<bigint> badp = getbad_primes(CR);
vector<long> tp;
for(unsigned int i=0; i<badp.size(); i++)
{
tp = vector_union(tp, pdivs(getc_p(CR,badp[i])));
}
return tp;
}
//end of file saturate.cc
#if(0)
// Find optimally x-shifted curve for better point searching...
bigint x_shift;
Curvedata C_opt = opt_x_shift(*C,x_shift);
int shift_flag = !is_zero(x_shift);
if(shift_flag&&verbose)
cout<<"Using shifted model "<<(Curve)C_opt<<" for searching"<<endl;
double hc;
if(egr)
hc = egr_height_constant(C_opt);
else
hc = height_constant(C_opt);
if(verbose)
cout<<"height bound constant for shifted curve = "<<hc<<endl;
double hc1;
doublify(reg,hc1);
hc1 = (hc+hc1/(3.9));
if(hc1>12) hc1=12; // so hc1 = min(12,R/4+ht.const.)
double hcx = hc1-hc; // = min(12-ht.const., R/4)
if(hcx<0) {hcx=0.1; hc1=hcx+hc;}
if(verbose)
{
if(egr)
cout<<"Searching for egr points to naive height "<<hc1<<endl;
else
cout<<"Searching for all points to naive height "<<hc1<<endl;
}
if(hc1>max_search_bound)
{
cout<<"\n***Warning: search bound of "<<hc1
<<" reduced to "<<max_search_bound
<<" -- points may not be saturated***"<<endl;
hc1=max_search_bound;
}
point_min_height_finder pmh(&C_opt,egr,verbose);
pmh.search(to_bigfloat(hc1));
bigfloat lambda=pmh.get_min_ht();
newpoints = pmh.points();
// cout<<"Before shifting, newpoints = "<<newpoints<<endl;
if(shift_flag)
for(unsigned int i=0; i<newpoints.size(); i++)
newpoints[i] = transform(newpoints[i],C,BIGINT(1),
x_shift,BIGINT(0),BIGINT(0),1);
// cout<<"After shifting, newpoints = "<<newpoints<<endl;
Point Pmin = pmh.get_min_ht_point();
if(lambda==0)
{
lambda=hcx;
if(verbose)
cout<<"No points found, lambda = "<<lambda<<endl;
}
else
{
if(verbose)
cout<<"Min height of points found = "<<lambda<<" (point "<<Pmin<<")"<<endl;
if(lambda>hcx) lambda=hcx;
if(verbose)
cout<<"Using lambda = "<<lambda<<endl;
}
#endif
|