1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
// tlss.cc: implementation of class TLSS for sieving E(Q)/pE(Q) at one prime q
//////////////////////////////////////////////////////////////////////////
//
// Copyright 1990-2012 John Cremona
//
// This file is part of the eclib package.
//
// eclib is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// eclib is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eclib; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
//
//////////////////////////////////////////////////////////////////////////
// NB: TLSS = Tate--Lichtenbaum--Samir-Siksek: we use a simple
// discrete log a la Siksek when the p-torsion in E(F_q) is cyclic,
// else use the Tate-Lichtenbaum pairing
#include <eclib/matrix.h>
#include <eclib/subspace.h>
#include <eclib/points.h>
#include <eclib/polys.h>
#include <eclib/curvemod.h>
#include <eclib/pointsmod.h>
#include <eclib/ffmod.h>
#include <eclib/tlss.h>
void TLSS::init(int pp, int verb)
{
verbose=verb;
p=pp;
Pi=Emodq.get_pbasis(p);
rank=Pi.size();
if((verbose>1)&&(rank>0))
{
cout<<"Generators of "<<p<<"-torsion mod "<<q<<": \n";
cout<<"P1 = "<<Pi[0]<<endl;
if(rank>1) cout<<"P2 = "<<Pi[1]<<endl;
}
if(rank==2) init_tlpolys();
}
void TLSS::init(int pp, const vector<bigint>& pdivpol, int verb)
{
verbose=verb;
p=pp;
Pi=Emodq.get_pbasis_via_divpol(p, pdivpol);
rank=Pi.size();
if((verbose>1)&&(rank>0))
{
cout<<"Generators of "<<p<<"-torsion mod "<<q<<": \n";
cout<<"P1 = "<<Pi[0]<<endl;
if(rank>1) cout<<"P2 = "<<Pi[1]<<endl;
}
if(rank==2) init_tlpolys();
}
void TLSS::init_tlpolys()
{
if (rank<2) return;
// case rank=2: prepare to use TL map
// first find p'th root of 1 mod q
// initialize the array of all p'th roots mod q
q1p=(q-1)/p;
mu_p = roots_of_unity(Fq,p);
if(verbose>1)
{
cout<<"q="<<q<<endl;
cout<<"p'th roots of unity mod q = "<<mu_p<<endl;
cout<<"Rank of p-torsion mod q = "<<rank<<endl;
}
// initialize the ffmodq class
ffmodq dummy((const curvemodq)Emodq);
// initialize the TL-functions
TLpolys.resize(0);
int i;
for(i=0; i<rank; i++) TLpolys.push_back(weil_pol(Pi[i],p));
if(verbose>1) for(i=0; i<rank; i++) cout<<"TL poly: "<<TLpolys[i]<<endl;
}
//#define debugTL
// apply map to P, result in (rank*)[0..p-1]:
vector<int> TLSS::map1point(const Point& P) const
{
#ifdef debugTL
cout<<"Applying TLSS::map1point (q="<<q<<") to P="<<P<<endl;
#endif
pointmodq Pmodq = reduce_point(P,(const curvemodq&)Emodq);
#ifdef debugTL
cout<<"P mod q ="<<Pmodq<<endl;
#endif
int i, sw;
vector<int> ans;
ans.resize(rank);
for(i=0; i<rank; i++) ans[i]=0;
if(Pmodq.is_zero()) return ans;
if(rank==1)
{
pointmodq P1=Pi[0];
bigint n1 = Emodq.n1; // order of relevant cyclic factor if known
if(n1==0) n1 = Emodq.n; // else full group order if not
Pmodq = I2long(n1/p) * Pmodq;
if(Pmodq.is_zero()) return ans;
#ifdef debugTL
cout<<"after multiplying by "<<I2long(n1/p)<<", get "<<Pmodq<<endl;
cout<<"finding discrete log of "<<Pmodq<<" w.r.t. "<<P1<<endl;
#endif
pointmodq Q(Emodq);
pointmodq minusPmodq=-Pmodq;
for(i=0; i<p; i++)
{
if(Q==Pmodq) {ans[0]=i; return ans;}
if(i) if(Q==minusPmodq) {ans[0]=p-i; return ans;}
Q+=P1;
}
// Optional check:
#ifdef debugTL
int check = ans[0]*P1 == Pmodq;
if(!check)
{
cout<<"Error: discrete log of "<<Pmodq<<" w.r.t. "<<P1<<" returns "<<ans[0]<<endl;
abort();
}
#endif
return ans;
}
// else apply TL maps
gf_element xP=Pmodq.get_x();
gf_element yP=Pmodq.get_y();
gf_element lambda, mu, t;
gf_element a1,a2,a3,a4,a6;
Emodq.get_ai(a1,a2,a3,a4,a6);
gf_element b2 = a1*a1 + 4*a2;
gf_element b4 = 2*a4 + a1*a3;
for(i=0; i<rank; i++)
{
const pointmodq& T = Pi[i];
gf_element xT=T.get_x(), yT=T.get_y();
#ifdef debugTL
cout<<"(xT,yT)=("<<xT<<","<<yT<<")"<<endl;
#endif
switch(p) {
case 2:{
t=xP-xT;
if(t==0)
{
lambda=4*xT+b2;
mu=xT*lambda+b4+b4;
t=4*xP*xP+lambda*xP+mu;
}
#ifdef debugTL
cout<<"calling power_mod with (t,q1p,q) = ("<<mu<<","<<t<<","<<q1p<<","<<q<<")"<<endl;
#endif
power(mu,t,q1p);
#ifdef debugTL
cout<<"mu = "<<mu<<endl;
#endif
ans[i] = ((mu==1)? 0 : 1);
break;
}
default:{
#ifdef debugTL
cout<<"applying TL poly = "<<TLpolys[i]<<" to "<<Pmodq<<endl;
#endif
t=TLpolys[i](Pmodq);
sw=0;
if(t==0)
{
sw=1;
t=TLpolys[i](-Pmodq);
}
if(t==0)
{
cout<<"Error: both P and -P map to 0"<<endl;
abort();
}
power(mu,t,q1p);
#ifdef debugTL
cout<<"t="<<t<<endl;
cout<<"mu = "<<mu<<endl;
gf_element t2, mu2;
if(!(p*Pmodq).is_zero()) t2 = evaluate_weil_pol(T,p,Pmodq);
else
{
cout<<"(new method having to use shifting trick)"<<endl;
pointmodq R=Pmodq.get_curve().random_point();
while((p*R).is_zero())
R=Pmodq.get_curve().random_point();
t2 = evaluate_weil_pol(T,p,R+Pmodq)/evaluate_weil_pol(T,p,R);
}
power(mu2,t2,q1p);
if(mu==mu2) cout<<"New method agrees"<<endl;
else cout<<"New method gives mu value "<<mu2<<" instead!"<<endl;
#endif
if(mu==1) ans[i]=0; else // discrete log: mu is some power of mu_p
{
int dl=find(mu_p.begin(),mu_p.end(),mu)-mu_p.begin();
#ifdef debugTL
cout<<"discrete log of mu = "<<dl<<endl;
#endif
if(dl==p)
{
cout<<"Error: mu="<<mu<<" (mod "<<q<<") is not a "<<p<<"'th root of unity!"<<endl;
abort();
}
ans[i] = (sw? p-dl: dl);
}
break;
} // end of default case
} // switch(p)
}
#ifdef debugTL
cout<<"ans = "<<ans<<endl;
#endif
return ans;
}
// apply map to all P in Plist, result is a (rank*#Plist) matrix:
mat TLSS::map_points(const vector<Point>& Plist) const
{
int npts = Plist.size();
mat TLim(rank,npts);
int i,j;
for(i=0; i<npts; i++)
{
Point P=Plist[i];
vector<int> tlP = map1point(P);
if(verbose>1) cout<<"P="<<P<<" -> "<<tlP<<endl;
for(j=0; j<rank; j++)
{
TLim(j+1,i+1)=tlP[j];
}
}
return TLim;
}
|